Fourier Transform 2D




The 2D Discrete Fourier Basis

For a 2D image f(x,y) x=0..N-1, y=0..M-1, the DFT basis
functions are 2D:

Bu v (X! y) — 1 ezni(%Jrv_l\)llj u=0..N-1, M=0..M-1

JYMN

For frequency u,v the Fourier coefficient is:

F(u,v) = (f(x,¥),B,,(x,y)) =

:ZMZf(x,y)BL,V (x,y)

—1
x=0 y=0



u=-2, v=2

u=-2, v=1

u=-2,v=0

u=-2, v=-1




The 2D Discrete Fourier Transform

For a 2D image f(x,y) x=0..N-1, y=0..M-1,
the 2D Discrete Fourier Transform is defined as:

N-1 M-1 :
F(uv) = £ix —2mi(ux/N+vy/M)
Lv)=2 2 fixye ol
v=0,1,2,.. M-I

Matlab: F=fft2(f);

The Inverse Discrete Fourier Transform (IDFT) is defined as:

Xy ——i Z— |:uva'rci(ux/NJrvy/M)

y
X

0,1,2,..,N-1
0,1,2,.. M-1

Matlab: f=ifft2(F);



Fourier Transform Image




Fourier Transform — Image

Fourier Image

F(u,
Original |F(u,v)|
. Shifted
Shifted Log Fourier
Fourier Imag

log(1+ |F(u,v)|)




Fourier Transform — Image

« F(u,v) is a Fourier transform of f(x,y) and it has complex entries.
F = fft2(f);

* In order to display the Fourier Spectrum |F(u,v)|
— Reduce dynamic range of |F(u,v)| by displaying the log:

D = log(1+abs(F));

— Cyclically rotate the image so that F(0,0) is in the center:

D = fftshift(D);

Example:

|IF(u)] =100 4 2 1 001 2 4

Display in Range
([0..100]): log(1+|F(u)|) =4.621.61 1.010.69 0 0 0.69 1.011.61

log(1+|F(u)|)/0.0462 = 100 40 20 10 0 0 10 20 40

fftshift(log(1+|F(u)|) = 0 10 20 40 100 40 2010 O



Fourier Transform — Image

Original
log(1 + |F(u,v)| fitshift(log(1 + |F(u,v)|




Fourier Transform — Image




Fourier Transform — Image

e Curious fact

— all natural images have about the same magnitude
transform

— hence, phase seems to matter, but magnitude largely
doesn’t

e Demonstration

— Take two pictures, swap the phase transforms,
compute the inverse - what does the result look like?

Slide: Freeman & Durand
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Slide: Freeman & Durand
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Magnitude transform of cheetah
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Slide: Freeman & Durand

Magnitude transform of cheetah
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Phase transform of cheetah
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Slide: Freeman & Durand



Slide: Freeman & Durand

Magnitude transform of zebra
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Phase transform of zebra
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Freeman & Durand

Slide



Recon: Zebra Phase + Cheetah Magnitude

Slide: Freeman & Durand
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Recon: Cheetah Phase + Zebra Magnitude

Slide: Freeman & Durand
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Fourier Transform — Properties

* Linearity:

iE[OL fl=oF[f]
+ Distributive (additivity):

lE[f1 + fz] - IE[f1]+ IE[fz]
-+ DC (average):

F(0,0)= ZX:Zf(x,y)eo

- Parseval

>3 = X T
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Distributive:

f(x)

f+g

| F(®)+G() |
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Parseval’s Theorem:

3 = E T e
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Fourier Transform — Properties

* Symmetric:

If f(X,y) Is real then,

Fuv)=F(-u~v) thus |F(uv)=F(-u-v)

« Cyclic:

if f(x)y) is discrete
F(u,v)=F(u+N,v)=F(u,v +M)=Fu+Nv+M)

22



Symmetry of FT (for real signals):

F(u,v) = F*(—u,—v)

1
AN A VN A A A A
or rormmnne AN AAAAAAANA A s
Vol \V

80 -60 -40 -20 0 20 40 60 80
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Cyclic and Symmetry of FT :

1 cycle

-N/2 0 N/2 N-1

Due to replicas: F(k)=F(N+k)
Due to symmetry: F(k)=F*(-k)=F*(N-k)

24



Cyclic and Symmetry of FT :
n20:  F(u,v)=Fu+N,v)=F(uv+M)=Fu+N,v +M)

25



Fourier Transform — Properties
Seperability:

ux vy

-3 ilyle

—Z[foy ZH'N) i - Y Flxv)e e

Thus, performing a 2D Fourier Transform is equivalent to performing 2
1D transforms:
1. 1D transform on EACH column of image f(x,y), obtaining F(x,v).
2. 1D transform on EACH row of F(x,v), obtaining F(u,v).

Higher Dimensions: Fourier in any dimension can be performed by
applying 1D transform on each dimension.
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Example - Seperability:

2D Image Fourier Spectrum




Image Transformations

Translation:

ﬁ[f(x—xo,y—yo)]:F(u,v)e 2 (

The Fourier Spectrum remains unchanged under translation:

‘F(u,v)‘ =

F(u,v)e_zm(

Ux, VvV
o_|_)’o

N M

N M

J
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Example
Translation:

1D Image real(F(u))

1 - 10 10
0.8 5 5
0.6 0 0
0.4 5 5
0.2 -10 -10

% s 100 o0 s0 100

Translated

1 - 10 10
0.8 5 5
0.6 0 0
0.4 5 5
0.2 -10 -10

% s 10 0 s0 10

10 10

5 5

Differences: 0 0
5 5

-10 -10

0 s 10

0 50

0 50

imag(F(u))

100

100

100

10

o N b~ O

10

o N b~ O ®

|F(u)|

50 100

50 100

50 100

29



Image Transformations

Scaling:

Artany)=par{%7)

Rotation:

Rotation of f(x,y) by 6 — rotation of F(u,v) by 6
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Change of Scale: it Ef(x)}-Fo) then Fir(wx )= L 2

2 \a
f(x) |F(o)]
1
> X ——AAAA@A—‘ ®
f(x) |F(o)|
2
> X /vvvév[kvév—‘m
f(x) |F(w)]
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Change of Scale:
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Rotation - Example

2D Image 2D Image - Rotated

Fourier Spectrum Fourier Spectrum




Fourier Transform — Examples

Image Domain

Frequency Domain




Fourier Transform — Examples

Image Domain

w B

Frequency Domain
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Fourier Transform — Examples

Image Domain

Frequency Domain




Fourier Transform — Examples

Image Domain

Frequency Domain




Why do we need representation in
the frequency domain?

Original
Problem

Fourier

Transform

Problem in
Frequency
Space

Difficult
solution

Relatively
easy solution

Solution of
Original
Problem

Inverse
Fourier
Transform

Solution in
Frequency
Space
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The Convolution Theorem

g=1f*h g=1th
implies implies
G=FH G=F*H

Convolution in one domain is multiplication in the
other and vice versa
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The Convolution Theorem

FiE (x) * g (x)f = Fif (%)} Fig(x)}

and likewise




The Convolution Theorem - Proof

Convolution can be represented as a matrix multiplication:
y=AX

where A is a circulant matrix.




The Convolution Theorem - Proof

Let F be a matrix composed of the Fourier bases:

T N

& _/

Transformed signal is then: X = FTx

1 2mrimn

Note 1: F,, =~e N = Fon thus: F=FT
Note 2: F'FT = FTF =1



The Convolution Theorem - Proof
Spatial Domain y = AX

Frequency Domain FTy = FTAXx

Fly = FTA(F'FT) x
= (FTAF)FTx
= DFTx
Where D = FTAF" is a diagonal matrix with the Fourier

coefficients of filter H on its diagonal.
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The Convolution Theorem - Proof
F'y = DFTx

Y=DX

Thus, the Convolution theorem is nothing more than a
system diagonalization.
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The Convolution Theorem - Example

f(x) g(x) f*g(x)
1 ] 1 1 N
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 A 0.2
%0 s0 100 %0 s0 100 00 50 100
F(u) G(u) F(u)G(u) 4 [F(u) G(u)]
10 10 10 1 n
8 8 8 0.8
6 6 6 0.6
4 4 4 0.4
2 2 2 0.2
0 0 - 0 0




The Convolution Theorem - Example

f(x,y) g(x,y) g (x,y)
G(u,v) F(u,v) G(u,v) H*F(u,v) “ G(u,v)]



Convolution Theorem - Example

Example: What is the Fourier Transform of:

f(x f(x)
Ar 4

h(x)

I
*

-0.5 0.5 -0.5 0.5

F(o) Flo)

H(w)

F(w)
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Convolution Theorem - Example

Example: What is the Fourier Transform of the Dirac Function?

5(x)={

For any function f(x):

J(x) * o(x) = f(x)

|

F(u)-Flo(x)]=F(u)

MAAAA»*

if x=0

0 otherwise

| F[5(x)]

1
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Convolution Theorem - Example

Example: What is the Fourier Transform of a constant Function?

g(x)=c

For any function g(x):

f(x)g(x)=cf (x)
l l Flcl=co(u)

!

F(u)* G(u) =clF(u)

4
"AAA@‘. - <Py
< > £\ AVA\J I\VAVA‘A"
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Sampling the Spatial Domain

f(x)4 |F(w)]
f(x)¢ R |Flw)]
] = | |
W X —_— ®
T 1/T
f(x), |F(w)]

m>

-1/2T7 1/2T ®

Sampling f(x) at cycle T produces replicas in the
frequency domain with cycle 1/T.
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Symmetry of FT :

1 cycle

A
v

-N/2 0 N/2 N-1

F(k)=F(N+k)

F(u,v) = F(u+N,v)
=F(u,v+M)
F(u+N,v+M)

51



f(x);

Undersampling and Aliasing

=

AN

f(x)1

X

f(x)‘r

1 AN
{IEN
»r’] I | [\\ >

X

i ®
(-
T

X

f(X)A

=

|F(o)]|
é? 41..-=ﬁ:ffi:
D> ¥o)
*ll
SO |
> >
—_— P
1/T
A
D> \__'_/\,_
-1/27 1/27 @
1
i |
D>
—_—— Q)
1/7 ‘
T
A
— NN SN

-1/27

1/21
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Critical Sampling

* |f the maximal frequency of f(x) IS w,,,, , It IS clear from

the above replicas that o, should be smaller that 1/2T

1

a)sampling = ? > 2a)max

Nyquist Theorem: If maximal frequency of f(X) IS ® 4
sampling rate should be larger than 2e,,,, in order to
fully reconstruct f(x) from its samples.

20, IS the Nyquist frequency.

If the sampling rate is smaller than 2e,,,, overlapping

replicas produce aliasing. IF(o)]
/m

-1/2T 1/21 53




Demo: B. Freeman

Critical Sampling

Input

Reconstructed
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Demo: B. Freeman

Aliasing

Input

Reconstructed
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Sampling the Frequency Domain

f(x)4 |F() ]
/\/\ F1 :|I
:x < ©
* @

f(X)“ A
A
F-1
| | = [l
—_— X A o)
1/S S
f(x)4 A
F-1
MMM = /'\
< X: < :(D

Sampling F(w) at cycle S produces replicas in
the image domain with cycle 1/S.
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Sampling both Image and Frequency Domain
Sampling both f(x) with impulses of cycle T and F(w») with impulses of cycle S:

ooy |F(o)]
/\/\ F
> ——>

’ 0
.A‘M
1/2T 1/2T
1/T
f(x)¢ F1
.e h \._,/’ ‘\ 1 \_," \\ (D
AT L T
> v
T J o>
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Sampling both Image and Frequency Domain
f(x

ﬂ/l\lxl’]’l-l\.

Question: Assuming f(x) was samples with N samples.
What is the minimal number of samples M in F(w) in order
to fully reconstruct f(x) ?

Answer:
If we sample f(x) with N samples of cycle T, the support of f(x) is NT.
The support of F(w) is 1/T in the frequency domain.
If we sample F(w) with M samples, the sample cycle is 1/MT.
The replicas in the spatial domain are each MT.
In order to avoid replicas overlap, MT should be greater or equal to

NT (the function support).
M >N
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Optimal Interpolation

If sampling rate is above Nyquist — it is possible to fully reconstruct
f(x) from its samples.

f(x)‘} | F((D) | A
N
F
AL, = N\ S
X -1/2T 1/27 ®
* o
f(x) R
N
F 1
<—
X -1/2T 1/2T 63
f(x)‘} A
N
|:-1

| 1 >
-1/271 1/2T ()]
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Image Scaling

If sampling rate is above Nyquist — it is possible to interpolate f(x)
from its samples.

flx)y " IF(o)]
'I‘\\\ -~
»r’/ 1 [\\\ > < /\: | >
b X /2T 1/2T ®
T N —r
1/T
fx)4 A | F(w)]
J\ /\
Y X -1/IT 1/IT &
T/2 —

2/T
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Image Scaling

If sampling rate is above Nyquist — it is possible to interpolate f(x)
from its samples.

f(x) . |F(w)|
'I‘\\\ -~
»r’/ 1 [ \\\ > < /\: | >
Y X -1/2T  1/2T ®
T N —r
1/T
l Zero Padding
flx) ", |F()]
Y X -1/T 1/IT o

2/T
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Image Scaling Example

63



Image Scaling Example

— N N

Duplicate Zero FFT



Image Scaling Example
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f(x)4

f(x).

f(x).

Optimal Interpolation - Digital

|F(w) |
. N
AT, =
X -1/2T 1/21 Y
} 1T
X -1/t 21 , O
Y
¥ 2/T
@
f(x) A N
F1 1
<
X ) 121 121 ) 6)
Y
!
N
i F'1
| | l
X ) w -1/I2T 1/I2T J ©®




Fast Fourier Transform

1 N 1 2TTiuxX
F(U) = — Zf(X)e N u= OI 1/ 2 2 N-1
X =
1 N/21 — 2TTiu2x N/2A — 2Tmiu(2x + 1)
=— > f(2x)e M Zf2x+1 N
N x=0 X=
o
ev\e/n X odd x
1 1 N/i f(2 ) _ijigx _2r:11iu 22: (2 1) _i;izux
= | —— xX)e V2 + e N x+1)e
2| N/2 x=0o N/2 <o
- - / \_ ~ /
Fourier Transform of Fourier Transform of
of N/2 even points of N/2 odd points
Even Odd

All sampling points

sampling points

sampling points

N
\\ N

/

0123 45 6 7

0 2 46

O(n?) operations

The Fourier transform of N
inputs, can be performed
as 2 Fourier Transforms of
N/2 inputs each + one
complex multiplication
and addition for each
value.

Thus, if F(N) is the
computation complexity
of FFT:

F(N)=F(N/2)+F(N/2)+O(N)
= F(N)=N logN

67




Fast Fourier Transform

F(0) F(1) F(2) F(3) F(4) F(5) F(6) F(7)

/ N\

F(O) F(2) F(4) F(6) F(1) F(3) F(5) F(7) FFT 1D:
/ \ / \ O(N log(N)) operations
F(O) F(4) F(2) F(6) F(1) F(5) F(3) F(7)

FFT of 2D (NxN) :

O(NZ?log(N)) operations

F(O) F(1) F(2) F(3) F(4) F(5) F(6) F(7)

2-point
transform

4-point
transform

Reference: James W. Cooley and John W. Tukey,
l "An algorithm for the machine calculation of complex
Fourier series," Math. Comput. 19, 297-301 (1965).
FFT 68



