
1



2

For a 2D image f(x,y)   x=0..N-1,  y=0..M-1,  the DFT basis 

functions are 2D:

For frequency u,v the Fourier coefficient is:

The 2D Discrete Fourier  Basis 

u=0..N-1,  M=0..M-1( )
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For a 2D image f(x,y)   x=0..N-1,  y=0..M-1,  

the 2D Discrete Fourier Transform is defined as:

The Inverse Discrete Fourier Transform (IDFT) is defined as:

The 2D Discrete Fourier  Transform

u = 0, 1, 2, ..., N-1
v = 0, 1, 2, ..., M-1
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Matlab:   F=fft2(f);

Matlab:   f=ifft2(F);
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Fourier Transform Image

v

u
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Fourier Transform – Image 

Original

Shifted 
Fourier Image

Shifted 
Log Fourier 

log(1+ |F(u,v)|)

Fourier Image
|F(u,v)|
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Fourier Transform – Image 

• In order to display the Fourier Spectrum |F(u,v)|

– Reduce dynamic range of |F(u,v)| by displaying the log:   

– Cyclically rotate the image so that F(0,0) is in the center:    

Example: 
|F(u)|  =  100   4    2   1   0   0  1   2   4 

fftshift(log(1+|F(u)|) =  0   10  20  40  100  40  20 10  0

log(1+|F(u)|) = 4.62 1.61  1.01 0.69  0  0  0.69 1.01 1.61 

100   40  20  10  0   0  10  20  40

Display in Range

([0..100]):

log(1+|F(u)|)/0.0462 =  

D = log(1+abs(F));

F = fft2(f);

D = fftshift(D);

• F(u,v) is a Fourier transform of f(x,y) and it has complex entries.   
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Original |F(u,v)|

log(1 + |F(u,v)|) fftshift(log(1 + |F(u,v)|))

Fourier Transform – Image 
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Fourier Transform – Image 
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Fourier Transform – Image 

• Curious fact

– all natural images have about the same magnitude 

transform

– hence, phase seems to matter, but magnitude largely 

doesn’t

• Demonstration

– Take two pictures, swap the phase transforms, 

compute the inverse - what does the result look like?

Slide: Freeman & Durand



11Slide: Freeman & Durand

Magnitude transform of cheetah



12Slide: Freeman & Durand

Magnitude transform of cheetah



13Slide: Freeman & Durand

Phase transform of cheetah



14Slide: Freeman & Durand



15Slide: Freeman & Durand

Magnitude transform of zebra



16Slide: Freeman & Durand

Phase transform of zebra



17Slide: Freeman & Durand

Recon: Zebra Phase + Cheetah Magnitude



18Slide: Freeman & Durand

Recon: Cheetah Phase + Zebra Magnitude
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• Linearity:

• Distributive (additivity):

• DC (average):

• Parseval
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Fourier Transform – Properties
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Distributive:
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Parseval’s Theorem:
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Fourier Transform – Properties

• Symmetric:

If f(x,y) is real then,

• Cyclic:

if f(x,y) is discrete

( ) ( ) ( ) ( )v,uFv,uFthusv,uFv,uF * −−=−−=

( ) ( ) ( ) ( )Mv,NuFMv,uFv,NuFv,uF ++=+=+=
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Symmetry of FT (for real signals):

( ) ( )vuFvuF −−= ,, *
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Cyclic and Symmetry of FT :

1 cycle

0 N/2 N-1-N/2

Due to replicas:  F(k)=F(N+k)

Due to symmetry:  F(k)=F*(-k)=F*(N-k)

|F(u)|
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Cyclic and Symmetry of FT :

( ) ( ) ( ) ( )Mv,NuFMv,uFv,NuFv,uF ++=+=+=In 2D: 
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Seperability:

Fourier Transform – Properties
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Thus, performing a 2D Fourier Transform is equivalent to performing 2 
1D transforms:

1. 1D transform on EACH column of image f(x,y), obtaining F(x,v).
2. 1D transform on EACH row of  F(x,v), obtaining F(u,v).

Higher Dimensions: Fourier in any dimension can be performed by 
applying 1D transform on each dimension.
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Example - Seperability:

Fourier Spectrum2D Image
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Translation:

Image Transformations
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The Fourier Spectrum remains unchanged under translation: 
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Example

Translation:

0 50 100
0

0.2

0.4

0.6

0.8

1

0 50 100
0

0.2

0.4

0.6

0.8

1

0 50 100
-15

-10

-5

0

5

10

0 50 100
-15

-10

-5

0

5

10

0 50 100
-15

-10

-5

0

5

10

0 50 100
-15

-10

-5

0

5

10

0 50 100
0

2

4

6

8

10

0 50 100
0

2

4

6

8

10

0 50 100
-15

-10

-5

0

5

10

0 50 100
-15

-10

-5

0

5

10

0 50 100
-15

-10

-5

0

5

10

1D Image

Translated

real(F(u)) imag(F(u)) |F(u)|

Differences:
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Scaling:

Image Transformations
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Rotation:

Rotation of f(x,y) by θ → rotation of F(u,v) by θ
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Change of Scale:
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Change of Scale:
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Rotation - Example

2D Image 2D Image - Rotated

Fourier Spectrum Fourier Spectrum
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Fourier Transform – Examples

Image Domain

Frequency Domain
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Fourier Transform – Examples

Image Domain

Frequency Domain
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Fourier Transform – Examples

Image Domain

Frequency Domain
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Fourier Transform – Examples

Image Domain

Frequency Domain



Relatively 

easy solution Solution in 

Frequency 
Space

Problem in 

Frequency 
Space

Original 
Problem

Solution of 
Original 

Problem

Difficult 

solution

Fourier 

Transform

Inverse 

Fourier 

Transform

Why do we need representation in 
the  frequency domain?

38
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The Convolution Theorem

g = f * h g = f h

implies implies

G = F H G = F * H

 

Convolution in one domain is multiplication in the 

other and vice versa
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The Convolution Theorem

( ) ( ){ } ( ){ } ( ){ }xgFxfFxgxfF
~~~ =∗

and likewise

( ) ( ){ } ( ){ } ( ){ }xgFxfFxgxfF
~~~ ∗=
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The Convolution Theorem - Proof

Convolution can be represented as a matrix multiplication:

where A is a circulant matrix.

y=Ax

H 0   0   ……

H 0   0   ……

H 0   0   ……

…… 0  0

…… 0  0

…… 0  0

.

.

.

.

.

.

A = 
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The Convolution Theorem - Proof

X = FTx

F = 

Let F be a matrix composed of the Fourier bases: 

……

Transformed signal is then:

Fnm = 
�

�
�

�����

	 = FmnNote 1: thus: F = FT

Note 2: F*FT = FTF* = I
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The Convolution Theorem - Proof

y = Ax

FTy = FTAx

Spatial Domain

Frequency Domain

FTy = FTA(F*FT) x

= (FTAF*)FTx

= DFTx

Where D = FTAF* is a diagonal matrix with the Fourier

coefficients of filter H on its diagonal.
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The Convolution Theorem - Proof

FTy = DFTx

Y = D X

Thus, the Convolution theorem is nothing more than a 
system diagonalization.
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The Convolution Theorem - Example
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f(x) g(x) f * g (x)

F(u) G(u) F(u)G(u) F-1[F(u) G(u)]
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The Convolution Theorem - Example

f(x,y) g(x,y) f * g (x,y)

F(u,v) G(u,v) F(u,v) G(u,v) F-1[F(u,v) ׳ G(u,v)]
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Convolution Theorem - Example

f(x)

-0.5 0.5

x

h(x)

Example:  What is the Fourier Transform of:

-1 1

f(x)

-0.5 0.5

*h(x)    = 

F(ω) F(ω)

H(ωωωω)    = .
= 

F(ω)
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Convolution Theorem - Example

Example:  What is the Fourier Transform of  the Dirac Function?

*
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For any function   f(x) :
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Convolution Theorem - Example

Example:  What is the Fourier Transform of  a constant Function?

For any function   g(x) :

cxg =)(

•••• =

( ) ( ) )(xcfxgxf =

( ) ( ) )(ucFuGuF =∗

)(][
~

uccF δ=
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Sampling the Spatial Domain

f(x) |F(ω)|

T 1/T

*

-1/2T 1/2T

Sampling f(x) at cycle T produces replicas in the 

frequency domain with cycle 1/T.

f(x) |F(ω)|

f(x) |F(ω)|

=

x ω

x

ω

ω

x

F
^

F
^

F
^
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Symmetry of FT :

F(k)=F(N+k)

1 cycle

0 N/2 N-1-N/2

|F(u)|

F(u,v) = F(u+N,v)

=F(u,v+M)

=F(u+N,v+M)
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Undersampling and Aliasing

x

f(x)

ω

|F(ω)|

*

F
^

x
T

f(x)

ω
1/T

x

f(x)

ω-1/2T 1/2T

=

x

f(x)

T

x

f(x)

ω

1/T

ω
-1/2T 1/2T

=

F
^

F
^

F
^

F
^
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Critical Sampling

• If the maximal frequency of  f(x) is ωmax , it is clear from 

the above replicas that ωmax should be smaller that 1/2T

• Nyquist Theorem: If maximal frequency of  f(x) is ωmax , 

sampling rate should be larger than 2ωmax in order to 

fully reconstruct f(x) from its samples.  

2ωmax is the Nyquist frequency.

• If  the sampling rate is smaller than 2ωmax overlapping 

replicas produce aliasing.

ω

|F(ω)|

-1/2T 1/2T

max2
1

ωω >=
T

sampling
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Critical Sampling

Input

Reconstructed
Demo: B. Freeman
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Aliasing

Demo: B. Freeman

Input

Reconstructed
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Aliasing
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Sampling the Frequency Domain

f(x) |F(ω)|

*

Sampling F(ω) at cycle S produces replicas in 

the image domain with cycle 1/S.

=

x ω

S1/S

ω

F-1^

x

x

f(x)

ω

f(x)

F-1^

F-1^
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Sampling both Image and Frequency Domain

x

f(x)

ω

|F(ω)|

F
^

x

f(x)

ω-1/2T 1/2T

F
^

ω

S

1/T

...

...

1/S

f(x) F-1^

T

1/T

Sampling both f(x) with impulses of cycle T and F(ω) with impulses of cycle S:

T
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Sampling both Image and Frequency Domain

Answer: 

If we sample f(x) with N samples of cycle T,  the support of f(x) is NT.

The support of F(ω) is 1/T in the frequency domain. 

If we sample F(ω) with M samples, the sample cycle is 1/MT.

The replicas in the spatial domain are each MT.

In order to avoid replicas overlap, MT should be greater or equal to 
NT (the function support).

NM ≥

ω

S

1/T

...

...

1/S

f(x) F-1^

T

Question: Assuming f(x) was samples with N samples. 

What is the minimal number of samples M in F(ω) in order 

to fully reconstruct f(x) ?
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Optimal Interpolation

x

f(x)

ω-1/2T 1/2T

If sampling rate is above Nyquist – it is possible to fully reconstruct 

f(x) from its samples.

|F(ω)|

ωx

f(x)

-1/2T 1/2T

ωx

f(x)

-1/2T 1/2T

1

*

=

F-1^

F-1^

F
^
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Image Scaling

If sampling rate is above Nyquist – it is possible to interpolate f(x) 

from its samples.

ω

|F(ω)|

x

f(x)

-1/2T 1/2T

f(x)

ω

|F(ω)|

x
-1/T 1/T

T/2

F
^

F
^

T
1/T

2/T
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Image Scaling

If sampling rate is above Nyquist – it is possible to interpolate f(x) 

from its samples.

ω

|F(ω)|

x

f(x)

-1/2T 1/2T

f(x)

ω

|F(ω)|

x
-1/T 1/T

T/2

F
^

T
1/T

2/T

Zero Padding

F-1^
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Image Scaling Example
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Image Scaling Example

FFT

Duplicate Zero FFT-1
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Image Scaling Example



x

f(x)

66

Optimal Interpolation - Digital

x

f(x)

ω-1/2T 1/2T

|F(ω)|

ω-1/2T 1/2T

ωx

f(x)

-1/2T 1/2T

1

*

=

F-1^

F-1^

F
^

1/T

x

f(x)

ω-1/2T 1/2T

F
^

2/T
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Fast Fourier Transform

u = 0, 1, 2, ..., N-1∑
−

=

−
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1
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The Fourier transform of N 

inputs, can be performed 

as 2 Fourier Transforms of 

N/2 inputs each + one 

complex multiplication 

and addition for each 

value.

Thus, if F(N) is the  

computation complexity 

of FFT:

F(N)=F(N/2)+F(N/2)+O(N)  

⇒ F(N)=N logN

∑∑
−

=

−

=

+−−

++=
12/N

0x

12/N

0x

N

)1x2(iu2

N

x2iu2 ππ

e)1x2(f
N

1
e)x2(f

N

1
)u(F

even x odd x














∑ ++∑=

−

=

−−−

=

−
12/N

0x

2/N

iuxπ2

N

iuπ2
12/N

0x

2/N

iuxπ2

e)1x2(f
2/N

1
ee)x2(f

1

2

1

2/N

Fourier Transform of
of N/2 even points

Fourier Transform of
of N/2 odd points

0    1    2    3     4    5     6    7 0    2    4    6 1    3    5    7

All sampling points
Odd 

sampling points
Even 

sampling points
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Fast Fourier Transform

F(0)  F(1)  F(2)  F(3)  F(4)  F(5)  F(6)  F(7) 

F(0)  F(2)  F(4)  F(6) F(1)  F(3)  F(5)  F(7)

F(0)  F(4) F(2)  F(6) F(1)  F(5) F(3)  F(7)

F(0)   F(1) F(2) F(3) F(4)  F(5) F(6)  F(7) 

2-point

transform

4-point

transform

FFT

Reference: James W. Cooley and John W. Tukey, 

"An algorithm for the machine calculation of complex 

Fourier series,"  Math. Comput. 19, 297–301 (1965). 

FFT 1D:  

O(N log(N))  operations

FFT of 2D (NxN) : 

O(N2 log(N))  operations 


