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Spatial OperationsSpatial Operations
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Very simple Examples: Min/Max filtersVery simple Examples: Min/Max filters

• Min filter:

• Max filter  
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Min(fn) 

2x2 neighborhood

Max(fn) 

2x2 neighborhood



MinMax(fn) MaxMin(fn) 



Noisy Image Fn MaxMin(MinMax(fn)) 



Complexity Min/Max FiltersComplexity Min/Max Filters

• Naïve: Calculating the min/max filter for nxn image and 

for kxk neighborhood size requires k2n2 operations.

• Separabilty: Min/max filters are separable, thus 

calculations can be applied with 2kn2 operations:

Min(f,k,k)=min(min(f,1,k),k,1)

• Linear time algorithm is available.
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• Linear time min/max filter requires 3n comparisons at 

each axis  (Werman & Gil 1992)



The Median FilterThe Median Filter

• The median minimizes the sum of absolute differences 

(SAD) of {f(m,n)}:

• Is median filter separable?

• What about complexity?

30    10   20

10    25   250

20    25   30

10, 10, 20, 20, 25, 25, 30, 30, 250 

median

( ) ( ){ }( ) ( ) ( )yxNnmnmfmedyxf ,,,, ∈=′

( ){ }( ) ( )∑
∈

−=
N)n,m(u

un,mIn,mImed min



Noisy Image median (f) 

3x3 neighborhood



Degraded ImageDegraded Image

Source: Freeman and Durand



3x3 median filter3x3 median filter

Source: Freeman and Durand



5x5 median filter5x5 median filter

Source: Freeman and Durand



5x5 median filter5x5 median filter

Source: Freeman and Durand



The Average FilterThe Average Filter

• The average minimizes the sum of squared differences 

(SSD) of {f(m,n)}:

• Is average filter separable?

• What about complexity?
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Average filter for Noise ReductionAverage filter for Noise Reduction

Noisy image

3x3 average 5x5 average 7x7 average median



The ConvolutionThe Convolution

• The average filter is a particular example of a more 

general operation: Image Convolution.

• Let A, B be images. B is typically smaller than A.

• B is typically called the mask or the kernel.

• The convolution for 1D signal
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1D Convolution1D Convolution
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What happens near the edges?

• Option 1:  Zero padding

• Option 2: Wrap around

• Option 3: Reflection
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What is the length of the result? 

• Option 1:  “same” (size A)

• Option 2:  “full”  (size A + size B + 1)

• Option 3: “valid”  (size A – size B +1 )
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ExamplesExamples

0    1    0

Example 1: BA
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* = A*B

Example 2:

Example 3:
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• Why should we flip the mask before the convolution?

• Reflection is needed so that convolution is commutative:

A*B=B*A

0    1    2    3    00    1    0 ........ 1    2    3 ........* ........=

0    1    2    3    01    2    3 ........ 0    1    0 ........* ........=

With reflection:

0    3    2    1   00    1    0 ........ 1    2    3 ........* ........=

0    1   2    3    01    2    3 ........ 0    1    0 ........* ........=

Without reflection:



CorrelationCorrelation
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Convolution: 1D continuous caseConvolution: 1D continuous case
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2D convolution2D convolution

A B*

A

(A*B)(x,y) = Σi,j A(i,j) B(x-i,y-j)
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C = CONV2(A, B)
performs the 2-D convolution of matrices A and B.   

If [ma,na] = size(A) and [mb,nb] = size(B),  then  size(C) = [ma+mb-1,na+nb-1].

C = CONV2(HCOL, HROW, A)  
convolves A separable with HCOL  in the column direction and HROW in the row 

direction.  HCOL and HROW should both be vectors.

C = CONV2( ... ,'shape')
returns a subsection of the 2-D convolution with size specified by 'shape':

'full'  - (default) returns the full 2-D convolution,

'same'  - returns the central part of the convolution that is the same size as A.

'valid' - returns only those parts of the convolution that are computed without 

the zero-padded edges, size(C) = [ma-mb+1,na-nb+1] when size(A) > size(B).

CONV2 is fastest  when size(A) > size(B).

2D Convolution in Matlab2D Convolution in Matlab



2D Convolution in Matlab – Output size2D Convolution in Matlab – Output size

maskInput Image Ouput Image

“Same”

“Valid”

“Full”



Grayscale Convolution – Examples
The Delta Kernel
Grayscale Convolution – Examples
The Delta Kernel
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• Due to shift-invariance:

A(x,y)*δ(x-x0,y-y0) = A(x-x0,y-y0)
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A(x-1,y-1)

(Zero padding)
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Grayscale Convolution - Example

*

A B

A  *  B



Grayscale Convolution - Examples
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Salt & Pepper noise

4x4 Average 7x2 Average

Convolution Examples - Oriented Filters



Convolution PropertiesConvolution Properties

• Commutative:

A*B = B*A

• Associative:

(A*B)*C = A*(B*C)

• Homogeneous:

A*(λB)= λ A*B

• Additive (Distributive):

A*(B+C)= A*B+A*C

• Linear:

A*(αB+βC)= αA*B+ βA*C

• Shift-Invariant

A*B(x-x0,y-yo)= (A*B) (x-x0,y-yo) 



Convolution ComplexityConvolution Complexity

• Assume  A is nxn and B is kxk then

A*B takes O(n2k2) operations.

(applying with FFT takes O(N2log n)  )

• (A*B)*C = A*(B*C)

– If  B  and C are kxk then

(A*B)*C  takes O(2n2k2) operations

while  A*(B*C)  takes O(k4+4n2k2) operations.

• Separability

– In some cases it is possible to decompose B (kxk) into 

B=C*D  where C is 1xk and D is kx1.  

In such a case  A*B takes  O(n2k2)

while  (A*C)*D takes O(2n2k).
1   -1 *

1

-1
=

1   -1

-1   1



The Image averageThe Image average

W1 W2 W3B

A

A*B

sum(A*B(x)) = W1sum(A(x)) + W2sum(A(x)) + W3sum(A(x))

= (W1+ W2+ W3) sum(A(x))

To maintain the average - sum of elements of B must equal 1.

If  W1+W2+W3 =1  then  Av(A)=Av(A*B)

sum(A*B) = sum(A) x sum(B)In General:



Blurring Kernels (low pass)Blurring Kernels (low pass)

• Averaging kernels:

• Gaussian kernels (soft blurring):

• Both are separable kernels.
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Original image



Gaussian blur with σ=5



Gaussian blur with σ=9



Image De-noising by FilteringImage De-noising by Filtering

• Zero mean additive noise can be attenuated by smoothing 

the image.

• Trade off: Edges and high frequencies are smoothed as well.
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Noisy ImagesNoisy Images

Original

Gaussian noise

salt & pepper



Median filter

3x3 window
Gaussian blur

std=1.5

Salt & Pepper Noise:



Median filter

5x5 window
Gaussian blur

std=3

Gaussian Noise:



Edge Enhancement by FilteringEdge Enhancement by Filtering

A sharpening filter is applied in order to enhance edges and

fine details (high frequency) in an image:

A is a sharp image.

G is a Gaussian mask.

B = A * G is a blurred image.

Assume:

Sharpen B: Bsharp = A - B

Sharpened B =  B + Bsharp

Problem: A and G are unknown.



Edge Enhancement by FilteringEdge Enhancement by Filtering

A sharpening filter is applied in order to enhance edges and fine 

details (high frequency) in an image:

G = S(1) =

0   1/6   0

1/6  2/6 1/6

0   1/6   0

0    -1/6   0

-1/6 10/6 -1/6

0    -1/6   0

– Assume B is an image to be enhanced.

– Define: BBlur=B*G is a blurred image, where G is a blurring mask.

– Bsharp=B-BBlur=B*(δ - G) contains fine details of image B.

– B+λBsharp = B*(δ+λ(δ-G))=B*S(λ) amplifies fine details image. 

– The parameter λ controls the amount of amplification.



B*G

λ=0.5
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λ=3
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Gibbs ArtifactsGibbs Artifacts

δδδδ-G

- =

δδδδ GB

B*(δδδδ-G)
B+B*(δδδδ-G)



Sharpening - ExampleSharpening - Example

Original Blur

λ = 2 λ = 8 λ = 16



Adaptive FilteringAdaptive Filtering

• The convolution is a non-adaptive filtering in the sense 

that the convolution mask is space invariant.

• Adaptive filtering refers to image operations that adapt 

their performance based on the input signal. 

• Example for adaptive-filtering: The Bilateral Filter



slide from Darya Frolova and Denis Simakov
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Smooth edges

Gaussian FilterGaussian Filter



slide from Darya Frolova and Denis Simakov
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Preserves  discontinuities

Bilateral FilterBilateral Filter



Gaussian FilterGaussian Filter
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In convolution filtering neighboring pixels are weighted
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Bilateral FilterBilateral Filter
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In bilateral filtering the weights are determined according to 

spatial and photometric distances:
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Typical bilateral weighting functions:
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Slide from F. Durand



Gaussian Filtering:

∗

Slide from F. Durand



Bilateral Filtering:

Slide from F. Durand
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from P. Milinfar.

Bilateral weights:



Gaussian Smoothing:



Bilateral (edge-preserving) Smoothing:



Noisy Image



Gaussian Smoothing



Bilateral Smoothing



Noisy Lena



Median Lena



Dude Lena

Modern Denoising approach (DUDE)



How can we enhance such an image?



Solution: Image Representation
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. .

• Global phenomena becomes local 

• Spatial correction in possible in the new representation

• Stay tuned....
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