Spatial Operations

1

Spatial Operations

$f'(x, y) = M(\lbrace f(i, j) | (i, j) \in N(x, y) \rbrace)$

Very simple Examples: Min/Max filters

- Min filter: $f'(x, y) = \min(\{f(m, n)\})_{(m,n) \in N(x,y)}$
- Max filter $f'(x, y) = \max(\{f(m, n)\}\})_{(m,n) \in N(x,y)}$

Original Image

Salt & Pepper Noise

$$f_n(x, y) = \begin{cases} f(x, y) & \text{with probabilit y } p \\ 255 & \text{with probabilit y } (1-p)/2 \\ 0 & \text{with probabilit y } (1-p)/2 \end{cases}$$

Min(f_n)

2x2 neighborhood

 $Max(f_n)$

2x2 neighborhood

$MaxMin(f_n)$

$MinMax(f_n)$

Noisy Image F_n

$MaxMin(MinMax(f_n))$

Complexity Min/Max Filters

- Naïve: Calculating the min/max filter for nxn image and for kxk neighborhood size requires k²n² operations.
- **Separabilty**: Min/max filters are separable, thus calculations can be applied with 2kn² operations:

Min(f,k,k)=min(min(f,1,k),k,1)

• Linear time algorithm is available.

 Linear time min/max filter requires 3n comparisons at each axis (Werman & Gil 1992)

 The median minimizes the sum of absolute differences (SAD) of {f(m,n)}:

$$\operatorname{med}(\{I(m,n)\}) = \min_{u} \sum_{(m,n)\in N} |I(m,n) - u|$$

- Is median filter separable?
- What about complexity?

Noisy Image

median (f)

3x3 neighborhood

Degraded Image

3x3 median filter

5x5 median filter

5x5 median filt

The Average Filter

$$f'(x, y) = \operatorname{mean}\left(\{f(m, n)\}\right)_{(m, n) \in N(x, y)} = \frac{1}{|N|} \sum_{(m, n) \in N(x, y)} I(m, n)$$

 The average minimizes the sum of squared differences (SSD) of {f(m,n)}:

$$mean(\{I(m,n)\}) = \min_{u} \sum_{(m,n)\in N} (I(m,n) - u)^2$$

- Is average filter separable?
- What about complexity?

Average filter for Noise Reduction

Noisy image

3x3 average

5x5 average

7x7 average

median

The Convolution

- The average filter is a particular example of a more general operation: **Image Convolution.**
- Let **A**, **B** be images. B is typically smaller than A.
- B is typically called the **mask** or the **kernel**.
- The convolution for 1D signal

$$(A * B)(x) = \sum_{i} A(i)B(x-i)$$

1D Convolution

$$(A * B)(x) = \sum_{i} A(i)B(x-i)$$

What happens near the edges?

• <u>Option 1</u>: Zero padding

• Option 2: Wrap around

• Option 3: Reflection

What is the length of the result?

• <u>Option 1</u>: "same" (size A)

• Option 2: "full" (size A + size B + 1)

• Option 3: "valid" (size A – size B +1)

Examples

• Why should we flip the mask before the convolution?

• Reflection is needed so that convolution is commutative:

Correlation

$$(A \circ B)(x) = \sum_{i} A(i)B(i-x)$$

Convolution: 1D continuous case

2D convolution

$$(A^*B)(x,y) = \sum_{i,j} A(i,j) B(x-i,y-j)$$

В

*

x-reflection

xy-reflection

1	0	0	0	0	0
1	10		20	R	
1		5	20	20	20
	10	5	20	20	20
	10	5	20	20	20
	10	5	20	20	20

-10	5	-15	0	0
-10	15	-10	20	20
-10	15	-10	20	20
-10	15	-10	20	20
-10	15	-10	20	20

(zero padding)

2D Convolution in Matlab

C = CONV2(A, B)

performs the 2-D convolution of matrices A and B. If [ma,na] = size(A) and [mb,nb] = size(B), then size(C) = [ma+mb-1,na+nb-1].

C = CONV2(HCOL, HROW, A)

convolves A separable with HCOL in the column direction and HROW in the row direction. HCOL and HROW should both be vectors.

C = CONV2(... ,'shape')

returns a subsection of the 2-D convolution with size specified by 'shape':
'full' - (default) returns the full 2-D convolution,
'same' - returns the central part of the convolution that is the same size as A.
'valid' - returns only those parts of the convolution that are computed without the zero-padded edges, size(C) = [ma-mb+1,na-nb+1] when size(A) > size(B).

CONV2 is fastest when size(A) > size(B).

2D Convolution in Matlab – Output size

Grayscale Convolution – Examples The Delta Kernel

$$\delta(\mathbf{x} - \mathbf{x}_0) = \begin{cases} 1 & \text{if } \mathbf{x} = \mathbf{x}_0 \\ 0 & \text{otherwise} \end{cases}$$

$$\delta(x) = 0 1 0$$

$$\mathsf{A}(\mathsf{x})^*\delta(\mathsf{x}) = \mathsf{A}(\mathsf{x})$$

$$\delta(x - x_0, y - y_0) = \begin{cases} 1 & if \ x = x_0 & y = y_0 \\ 0 & otherwise \end{cases}$$

$$\delta(x, y) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathsf{A}(\mathsf{x},\mathsf{y})^*\delta(\mathsf{x},\mathsf{y})=\mathsf{A}(\mathsf{x},\mathsf{y})$$

• Due to shift-invariance:

$$A(x,y)^*\delta(x-x_0,y-y_0) = A(x-x_0,y-y_0)$$

*

=

(Zero padding)

(Wrap around)

Grayscale Convolution - Example

A * B

Grayscale Convolution - Examples

*

Convolution Examples - Oriented Filters

Convolution Properties

• Commutative:

 $A^*B = B^*A$

• Associative:

 $(A^*B)^*C = A^*(B^*C)$

• Linear:

 $\mathsf{A}^{*}(\alpha\mathsf{B}+\beta\mathsf{C})=\alpha\mathsf{A}^{*}\mathsf{B}+\beta\mathsf{A}^{*}\mathsf{C}$

• Shift-Invariant

 $A^*B(x-x_0,y-y_0) = (A^*B)(x-x_0,y-y_0)$

Convolution Complexity

- Assume A is nxn and B is kxk then A*B takes O(n²k²) operations.
 (applying with FFT takes O(N²log n))
- $(A^*B)^*C = A^*(B^*C)$
 - If B and C are kxk then
 (A*B)*C takes O(2n²k²) operations
 while A*(B*C) takes O(k⁴+4n²k²) operations.
- Separability
 - In some cases it is possible to decompose B (kxk) into B=C*D where C is 1xk and D is kx1.

=

In such a case A*B takes $O(n^2k^2)$ while (A*C)*D takes $O(2n^2k)$.
The Image average

 $sum(A^*B(x)) = W_1sum(A(x)) + W_2sum(A(x)) + W_3sum(A(x))$

 $= (\mathbf{W}_1 + \mathbf{W}_2 + \mathbf{W}_3) \operatorname{sum}(\mathbf{A}(\mathbf{x}))$

If $W_1+W_2+W_3=1$ then $Av(A)=Av(A^*B)$

To maintain the average - sum of elements of B must equal 1.

In General: $sum(A^*B) = sum(A) \times sum(B)$

Blurring Kernels (low pass)

• Averaging kernels:

1/9	1/9	1/9				
1/9	1/9	1/9				
1/9	1/9	1/9				
3 X 3						

1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25

5 X 5

• Gaussian kernels (soft blurring):

1/81 x	1	2	ვ	2	1
	2	4	6	4	2
	3	6	9	6	3
	2	4	6	4	2
	1	2	3	2	1

• Both are separable kernels.

Original image

Gaussian blur with σ =5

Gaussian blur with σ =9

Image De-noising by Filtering

- Zero mean additive noise can be attenuated by smoothing the image.
- Trade off: Edges and high frequencies are smoothed as well.

Noisy Images

Original

Gaussian noise

salt & pepper

Salt & Pepper Noise:

Median filter 3x3 window

Gaussian blur std=1.5

Gaussian Noise:

Median filter 5x5 window

Gaussian blur std=3

Edge Enhancement by Filtering

A sharpening filter is applied in order to enhance edges and fine details (high frequency) in an image:

Assume: A is a sharp image.

G is a Gaussian mask.

B = A * G is a blurred image.

Sharpen B: $B_{sharp} = A - B$

Sharpened $B = B + B_{sharp}$

Problem: A and G are unknown.

Edge Enhancement by Filtering

A sharpening filter is applied in order to enhance edges and fine details (high frequency) in an image:

- Assume B is an image to be enhanced.
- Define: $B_{Blur} = B^*G$ is a blurred image, where G is a blurring mask.
- B_{sharp} =B- B_{Blur} =B*(δ G) contains fine details of image B.
- $B+\lambda B_{sharp} = B^*(\delta+\lambda(\delta-G)) = B^*S(\lambda)$ amplifies fine details image.
- The parameter λ controls the amount of amplification.

$$G = \begin{bmatrix} 0 & 1/6 & 0 \\ 1/6 & 2/6 & 1/6 \\ 0 & 1/6 & 0 \end{bmatrix} \qquad S(1) = \begin{bmatrix} 0 & -1/6 & 0 \\ -1/6 & 10/6 & -1/6 \\ 0 & -1/6 & 0 \end{bmatrix}$$

B*G

 $\lambda = 3$

Gibbs Artifacts

Sharpening - Example

Original

Blur

 $\lambda = 2$

 $\lambda = 16$

Adaptive Filtering

- The convolution is a *non-adaptive* filtering in the sense that the convolution mask is space invariant.
- *Adaptive* filtering refers to image operations that adapt their performance based on the input signal.
- Example for adaptive-filtering: The Bilateral Filter

Gaussian Filter

Bilateral Filter

slide from Darya Frolova and Denis Simakov

In convolution filtering neighboring pixels are weighted according to their spatial distance:

$$\hat{I}(x) = \sum_{j \in N_{p}} W_{s}(x-j) I(j)$$

$$W_{s}(x-j) = e^{-\left(\frac{x-j}{\sigma_{sp}}\right)^{2}}$$

Bilateral Filter

In bilateral filtering the weights are determined according to spatial and photometric distances:

$$\hat{I}(x) = \frac{\sum_{j \in N_p} W_s(x-j) W_p(I(x) - I(j)) I(j)}{\sum_{j \in N_p} W_s(x-j) W_p(I(x) - I(j))}$$

$$W_{s}(x-j) = e^{-\left(\frac{x-j}{\sigma_{sp}}\right)^{2}} \qquad W_{p}(I(x)-I(j)) = e^{-\left(\frac{I(x)-I(j)}{\sigma_{ph}}\right)^{2}}$$

Typical bilateral weighting functions:

$$W_{s}(p-q) = e^{-\left(\frac{p-q}{2\sigma_{s}}\right)^{2}}$$
$$W_{p}(f_{p}-f_{q}) = e^{-\left(\frac{f_{p}-f_{q}}{2\sigma_{p}}\right)^{2}}$$

Slide from F. Durand

Gaussian Filtering:

*

Slide from F. Durand

Bilateral Filtering:

Bilateral weights:

from P. Milinfar.

Gaussian Smoothing:

Bilateral (edge-preserving) Smoothing:

Noisy Lena

Median Lena

Modern Denoising approach (DUDE)

Dude Lena

How can we enhance such an image?

Solution: Image Representation

+

- Global phenomena becomes local
- Spatial correction in possible in the new representation
- Stay tuned....

THE END

