The Image Histogram

Image Characteristics

Image Mean

Changing the image mean

Image Contrast

- The contrast definition of the entire image is ambiguous
- In general it is said that the image contrast is high if the image gray-levels fill the entire range

Low contrast

High contrast

Global Contrast

Global Contrast – Definition 1

$$\max\{I(x, y)\} - \min\{I(x, y)\}$$

Global Contrast – Definition 2 $var{I(x, y)} = mean{(I(x, y) - I_{av})^2}$

Global Contrast – Definition 3

 $std\{ |(\mathbf{x},\mathbf{y})\} = \sqrt{var\{ |(\mathbf{x},\mathbf{y})\}}$

Local Image Contrast

• The **local contrast** at an image point denotes the (relative) difference between the intensity of the point and the intensity of its neighborhood:

$$C = \frac{I_p - I_n}{I_n}$$

Q: How can we maximize the image contrast using linear operation on the image values? $I_{NEW}(x,y)=\alpha \cdot I(x,y)+\beta$

The Image Histogram

- H(k) specifies the # of pixels with gray-value k
- Let N be the number of pixels: $N = \sum H(k)$
- P(k) = H(k)/N defines the normalized histogram
- $C(k) = \sum_{i=1}^{k} H(i)$ defines the accumulated histogram

Histogram

Normalized Histogram

Accumulated Histogram

Examples

The image histogram does not fully represent the image

Original image

Image Statistics

• The image mean: $E\{I\} = \frac{1}{N} \sum_{i,j} I(i,j) = \frac{1}{N} \sum_{k} k H(k) = \sum_{k} k P(k)$

 σ

• The image s.t.d. :

$$(I) = \sqrt{E\{(I - E\{I\})^2\}} = \sqrt{E(I^2) - E^2(I)}$$

where $E\{I^2\} = \sum_k k^2 P(k)$

Image Entropy

$$Entropy(I) = -\sum_{k} P(k) \log P(k)$$

- The image entropy specifies the uncertainty in the image values.
- Measures the averaged amount of information required to encode the image values.

- An infrequent event provides more information than a frequent event
- Entropy is a measure of histogram dispersion

Adaptive Histogram

- In many cases histograms are needed for local areas in an image
- Examples:
 - Pattern detection
 - adaptive enhancement
 - adaptive thresholding
 - tracking

Implementation: Integral Histogram

- Integral histogram: H(x,y) represent the histogram of a window whose right-bottom corner is (x,y)
- Construct by scan order:

H(x,y) = H(x,y-1) + H(x-1,y) - H(x-1,y-1)

 Using integral histogram we can calculate local histograms of any window H(x₁:x₂,y₁:y₂)

Histogram Usage

- Digitizing parameters
- Measuring image properties:
 - Average
 - Variance
 - Entropy
 - Contrast
 - Area (for a given gray-level range)
- Threshold selection
- Image distance
- Image Enhancement
 - Histogram equalization
 - Histogram stretching
 - Histogram matching

Example: Auto-Focus

- In some optical equipment (e.g. slide projectors) inappropriate lens position creates a blurred ("out-offocus") image
- We would like to automatically adjust the lens
- How can we measure the amount of blurring?

- Image mean is not affected by blurring
- Image s.t.d. (entropy) is decreased by blurring
- <u>Algorithm</u>: Adjust lens according the changes in the histogram s.t.d.

Thresholding

Threshold Selection

Original Image

Threshold too low

Binary Image

Threshold too high

Segmentation using Thresholding

Original

Threshold = 50

Threshold = 75

Segmentation using Thresholding

Original

Histogram

Threshold = 21

Adaptive Thresholding

- Thresholding is space variant.
- How can we choose the local threshold values?

Histogram based image distance

- **Problem**: Given two images A and B whose (normalized) histogram are P_A and P_B define the distance D(A,B) between the images.
- Example Usage:
 - Tracking
 - Image retrieval
 - Registration
 - Detection
 - Many more ...

input

target

similarity

Porkili 05

Option 1: Minkowski Distance

$$D_p(A,B) = \left[\sum_k \left|P_A(k) - P_B(k)\right|^p\right]^{1/p}$$

• **Problem**: distance may not reflect the perceived dissimilarity:

Option 2: Kullback-Leibler (KL) Distance

$$D_{KL}(A \parallel B) = \sum_{k} P_{A}(k) \log \frac{P_{A}(k)}{P_{B}(k)}$$

- Measures the amount of added information needed to encode image A based on the histogram of image B.
- Non-symmetric: $D_{KL}(A||B) \neq D_{KL}(B||A)$
- Suffers from the same drawback of the Minkowski distance.

- Suggested by Rubner & Tomasi 98
- Defines as the minimum amount of "work" needed to transform histogram H_A towards H_B
- The term d_{ij} defines the "ground distance" between graylevels i and j.
- The term $F = \{f_{ij}\}$ is an admissible flow from $H_A(i)$ to $H_B(j)$

$$D_{EMD}(A,B) = \min_{F} \sum_{i} \sum_{j} f_{ij} \cdot d_{ij}$$

s.t. $f_{ij} \ge 0$; $P_B(k) = \sum_{i} f_{ik}$; $P_A(k) \ge \sum_{i} f_{ki}$

- Constraints:
 - Move earth only from A to B
 - After move P_A will be equal to P_B
 - Cannot send more "earth" than there is
- Can be solved using Linear Programming
- Can be applied in high dim. histograms (color).

Special case: EMD in 1D

 Define C_A and C_B as the accumulated histograms of image A and B respectively:

Special case: EMD in 3D

Color Based Image Retrieval

Rubner & Tomasi 98