Edge Detection

Origin of Edges surface normal discontinuity depth discontinuity surface color discontinuity illumination discontinuity Edges are caused by a variety of factors

Edge detection

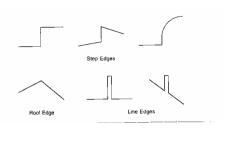
Convert a 2D image into a set of curves

- Extracts salient features of the scene
- More compact than pixels

Edge detection

How can you tell that a pixel is on an edge?

Profiles of image intensity edges



Edgel detection

- Difference operators
- Parametric-model matchers

Edge detection

- 1. Detection of short linear edge segments (edgels)
- 2. Aggregation of edgels into extended edges (maybe parametric description)

Edge is Where Change Occurs

Change is measured by derivative in 1D Biggest change, derivative has maximum magnitude Or 2nd derivative is zero.

Image gradient

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

The gradient points in the direction of most rapid change in intensity

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

· how does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The Sobel operator

Better approximations of the derivatives exist

• The Sobel operators below are very commonly used

$$\frac{1}{8} \begin{bmatrix}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{bmatrix}$$
Sy

- The standard defn. of the Sobel operator omits the 1/8 term
 - doesn't make a difference for edge detection
 - the 1/8 term \mathbf{is} needed to get the right gradient value, however

The discrete gradient

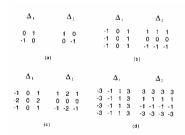
How can we differentiate a digital image f[x,y]?

- Option 1: reconstruct a continuous image, then take gradient
- Option 2: take discrete derivative (finite difference)

$$\frac{\partial f}{\partial x}[x,y] \approx f[x+1,y] - f[x,y]$$

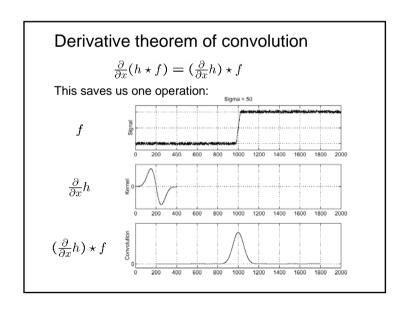
How would you implement this as a cross-correlation?

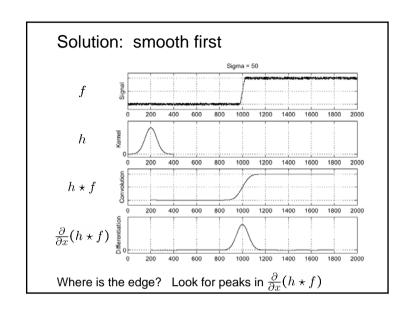
Gradient operators

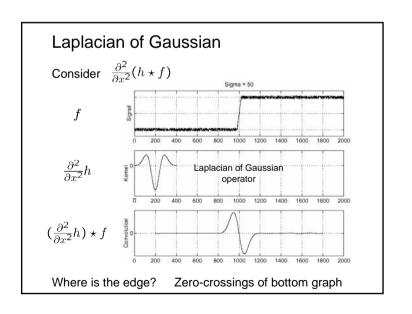


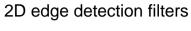
- (a): Roberts' cross operator (b): 3x3 Prewitt operator
- (c): Sobel operator (d) 4x4 Prewitt operator

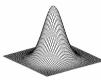
Effects of noise Consider a single row or column of the image • Plotting intensity as a function of position gives a signal $f(x) = \frac{d}{dx} f(x)$ Where is the edge?











Gaussian $v) = \frac{1}{2\pi^2} e^{-\frac{u^2 + v^2}{2\sigma^2}}$

derivative of Gaussian $\frac{\partial}{\partial x}h_{\sigma}(u,v)$

Laplacian of Gaussian

 ∇^2 is the **Laplacian** operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Optimal Edge Detection: Canny (continued)

Optimal Detector is approximately Derivative of Gaussian.

Detection/Localization trade-off

- · More smoothing improves detection
- · And hurts localization.

This is what you might guess from (detect change) + (remove noise)

Optimal Edge Detection: Canny

Assume:

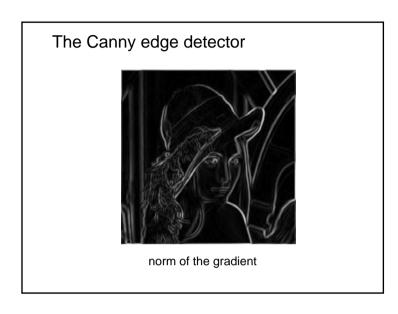
- · Linear filtering
- · Additive iid Gaussian noise

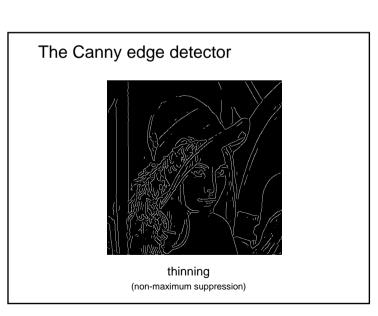
Edge detector should have:

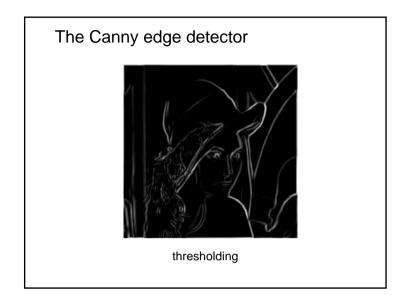
- Good Detection. Filter responds to edge, not noise.
- Good Localization: detected edge near true edge.
- Single Response: one per edge.

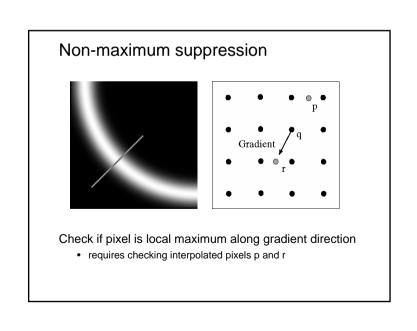
The Canny edge detector

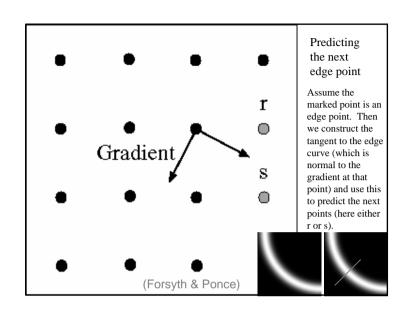
original image (Lena)

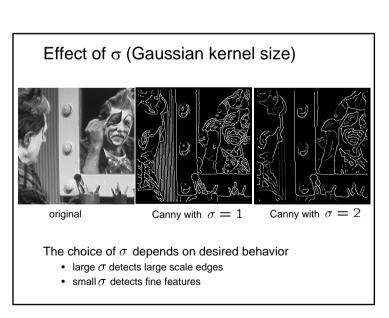


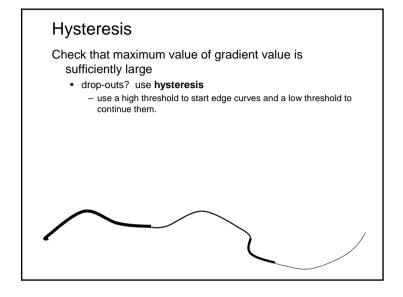


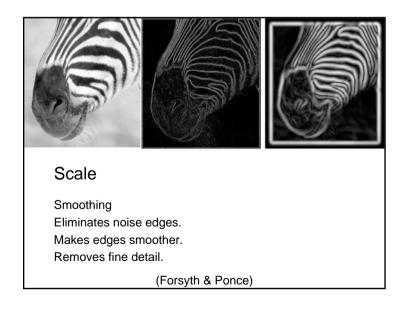


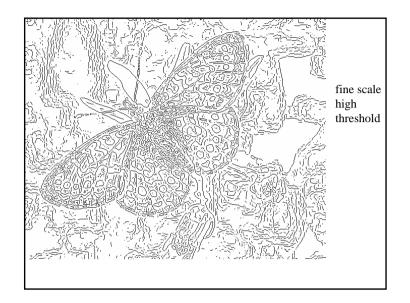


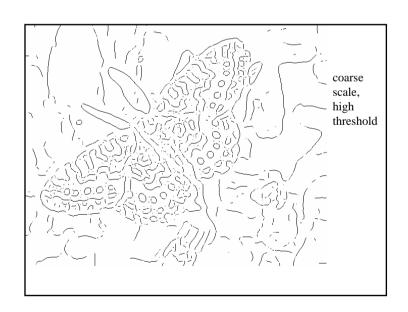


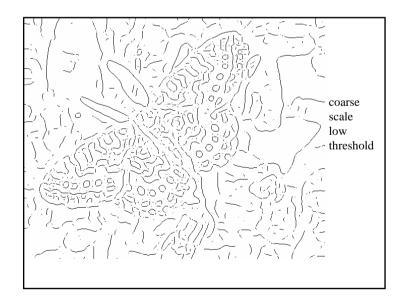


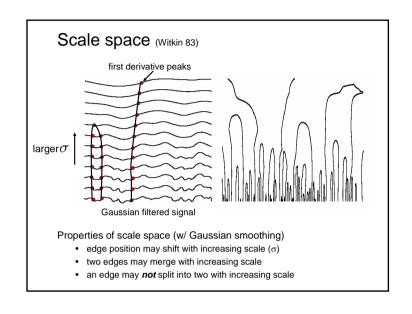


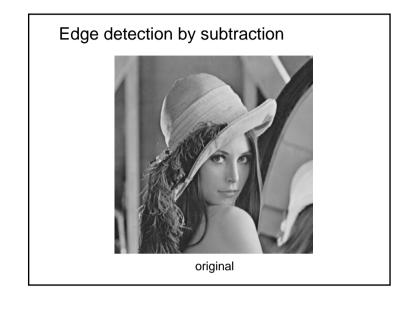




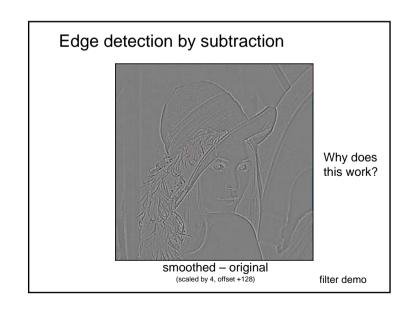


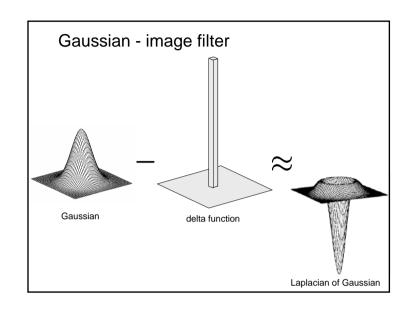


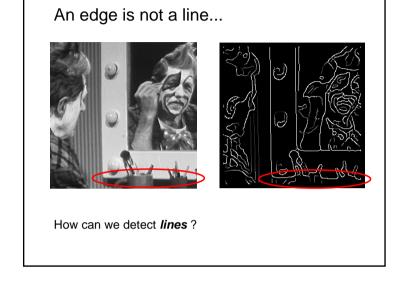












Finding lines in an image

Option 1:

- Search for the line at every possible position/orientation
- What is the cost of this operation?

Option 2:

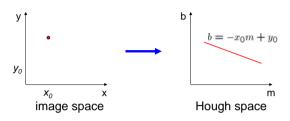
• Use a voting scheme: Hough transform

Finding lines in an image $y = m_0 x + b_0$ y

Connection between image (x,y) and Hough (m,b) spaces

- A line in the image corresponds to a point in Hough space
- To go from image space to Hough space:
 - given a set of points (x,y), find all (m,b) such that y = mx + b

Finding lines in an image



Connection between image (x,y) and Hough (m,b) spaces

- A line in the image corresponds to a point in Hough space
- · To go from image space to Hough space:
 - given a set of points (x,y), find all (m,b) such that y = mx + b
- What does a point (x₀, y₀) in the image space map to?
 - A: the solutions of $b = -x_0 m + y_0$
 - this is a line in Hough space

Hough transform algorithm

Typically use a different parameterization

$$d = x cos\theta + y sin\theta$$

- · d is the perpendicular distance from the line to the origin
- θ is the angle this perpendicular makes with the x axis
- Why?

Basic Hough transform algorithm

- 1. Initialize H[d, θ]=0
- 2. for each edge point I[x,y] in the image

for
$$\theta = 0$$
 to 180
 $d = x\cos\theta + y\sin\theta$
H[d, θ] += 1

- 3. Find the value(s) of (d, θ) where H[d, θ] is maximum
- 4. The detected line in the image is given by $d = x\cos\theta + y\sin\theta$

What's the running time (measured in # votes)?

Hough transform algorithm

Typically use a different parameterization

$$d = x cos\theta + y sin\theta$$

- d is the perpendicular distance from the line to the origin
- θ is the angle this perpendicular makes with the x axis
- Why?

Extensions

Extension 1: Use the image gradient

- same
- 2. for each edge point I[x,y] in the image

compute unique (d, θ) based on image gradient at (x,y)H[d, θ] += 1

- 3. same
- 4. same

What's the running time measured in votes?

Extensions

Extension 1: Use the image gradient

- 1. same
- 2. for each edge point I[x,y] in the image

compute unique (d, θ) based on image gradient at (x,y)

$$H[d, \theta] += 1$$

- 3. same
- 4. same

What's the running time measured in votes?

Extension 2

• give more votes for stronger edges

Extension 3

• change the sampling of (d, θ) to give more/less resolution

Extension 4

The same procedure can be used with circles, squares, or any other shape

Hough Transform for Curves

The H.T. can be generalized to detect any curve that can be expressed in parametric form:

- Y = f(x, a1, a2, ...ap)
- a1, a2, ... ap are the parameters
- The parameter space is p-dimensional
- · The accumulating array is LARGE!

Hough demos

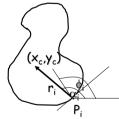
Line: http://www/dai.ed.ac.uk/HIPR2/houghdemo.html

http://www.dis.uniroma1.it/~iocchi/slides/icra2001/java/hough.html

Circle: http://www.markschulze.net/java/hough/

Generalizing the H.T.

The H.T. can be used even if the curve has not a simple analytic form!

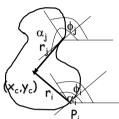


- $x_c = x_i + r_i cos(\alpha_i)$
- $y_c = y_i + r_i sin(\alpha_i)$

- 1. Pick a reference point (x_c, y_c)
- 2. For i = 1,...,n:
 - 1. Draw segment to P; on the boundary.
 - 2. Measure its length r_i , and its orientation α_i .
 - 3. Write the coordinates of (x_c, y_c) as a function of r_i and α_i
 - 4. Record the gradient orientation ϕ_i at P_i
- 3. Build a table with the data, indexed by ϕ_i .

Generalizing the H.T.

Suppose, there were m *different* gradient orientations: $(m \le n)$



$$x_c = x_i + r_i cos(\alpha_i)$$

$$y_c = y_i + r_i sin(\alpha_i)$$

φ ₁	$(r_{1}^{1},\alpha_{1}^{1}),(r_{2}^{1},\alpha_{2}^{1}),,(r_{n1}^{1},\alpha_{n1}^{1})$
φ ₂	$(r_{1}^{2},\alpha_{1}^{2}),(r_{2}^{2},\alpha_{2}^{1}),,(r_{n2}^{2},\alpha_{n2}^{1})$
	•
	•
	•
φ _m	$(r^{m}_{1},\alpha^{m}_{1}),(r^{m}_{2},\alpha^{m}_{2}),,(r^{m}_{nm},\alpha^{m}_{nm})$

H.T. table

H.T. Summary

H.T. is a "voting" scheme

• points vote for a set of parameters describing a line or curve.

The more votes for a particular set

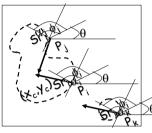
• the more evidence that the corresponding curve is present in the image.

Can detect MULTIPLE curves in one shot.

Computational cost increases with the number of parameters describing the curve.

Generalized H.T. Algorithm:

Finds a rotated, scaled, and translated version of the curve:



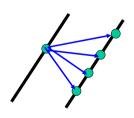
- $x_c = x_i + r_i cos(\alpha_i)$
- $y_c = y_i + r_i sin(\alpha_i)$

- Form an A accumulator array of possible reference points (x_c,y_c), scaling factor S and Rotation angle 0.
- 2. For each edge (x,y) in the image:
 - 1. Compute $\phi(x,y)$
 - For each (r,α) corresponding to φ(x,y) do:
 - 1. For each S and θ :
 - 1. $x_c = x_i + r(\phi) S cos[\alpha(\phi) + \theta]$
 - 2. $y_c = y_i + r(\phi) S \sin[\alpha(\phi) + \theta]$
 - 3. $A(x_c,y_c,5,\theta) ++$
 - 3. Find maxima of A.

Corner detection

Corners contain more edges than lines.

A point on a line is hard to match.



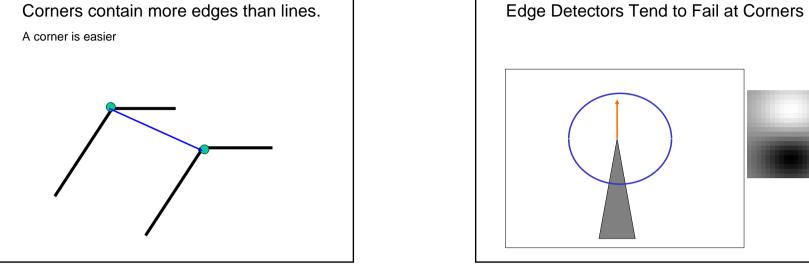
Corners contain more edges than lines. A corner is easier

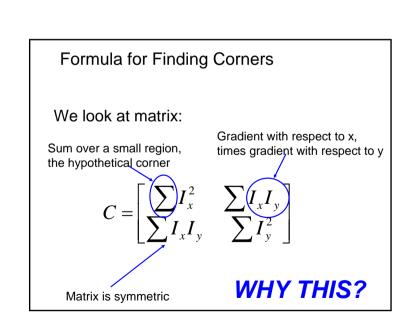
• Right at corner, gradient is ill defined. • Near corner, gradient has two different

Finding Corners

Intuition:

values.





First, consider case where:

$$C = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

This means all gradients in neighborhood are:

(k,0) or (0,c) or (0,0) (or off-diagonals cancel).

What is region like if:

- 1. $\lambda 1 = 0$?
- 2. $\lambda 2 = 0$?
- 3. $\lambda 1 = 0$ and $\lambda 2 = 0$?
- 4. $\lambda 1 > 0$ and $\lambda 2 > 0$?

So, to detect corners

Filter image.

Compute magnitude of the gradient everywhere.

We construct C in a window.

Use Linear Algebra to find $\lambda 1$ and $\lambda 2$.

If they are both big, we have a corner.

General Case:

From Linear Algebra, it follows that because C is symmetric:

$$C = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

With R a rotation matrix.

So every case is like one on last slide.