
Edge Detection

Edge detection

Convert a 2D image into a set of curves
• Extracts salient features of the scene
• More compact than pixels

Origin of Edges

Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Edge detection

How can you tell that a pixel is on an edge?

Profiles of image intensity edges

Edge detection
1. Detection of short linear edge segments (edgels)

2. Aggregation of edgels into extended edges
(maybe parametric description)

Edgel detection

• Difference operators

• Parametric-model matchers

Edge is Where Change Occurs
Change is measured by derivative in 1D
Biggest change, derivative has maximum magnitude
Or 2nd derivative is zero.

Image gradient
The gradient of an image:

The gradient points in the direction of most rapid change in intensity

The gradient direction is given by:

• how does this relate to the direction of the edge?
The edge strength is given by the gradient magnitude

The discrete gradient
How can we differentiate a digital image f[x,y]?

• Option 1: reconstruct a continuous image, then take gradient
• Option 2: take discrete derivative (finite difference)

How would you implement this as a cross-correlation?

The Sobel operator
Better approximations of the derivatives exist

• The Sobel operators below are very commonly used

10-1
20-2

10-1

-1-2-1
000

121

• The standard defn. of the Sobel operator omits the 1/8 term
– doesn’t make a difference for edge detection
– the 1/8 term is needed to get the right gradient value, however

Gradient operators

(a): Roberts’ cross operator (b): 3x3 Prewitt operator
(c): Sobel operator (d) 4x4 Prewitt operator

Effects of noise
Consider a single row or column of the image

• Plotting intensity as a function of position gives a signal

Where is the edge?

Where is the edge?

Solution: smooth first

Look for peaks in

Derivative theorem of convolution

This saves us one operation:

Laplacian of Gaussian

Consider

Laplacian of Gaussian
operator

Where is the edge? Zero-crossings of bottom graph

2D edge detection filters

is the Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian

Optimal Edge Detection: Canny

Assume:
• Linear filtering
• Additive iid Gaussian noise

Edge detector should have:
• Good Detection. Filter responds to edge, not noise.
• Good Localization: detected edge near true edge.
• Single Response: one per edge.

Optimal Edge Detection: Canny (continued)
Optimal Detector is approximately Derivative of

Gaussian.
Detection/Localization trade-off

• More smoothing improves detection
• And hurts localization.

This is what you might guess from (detect change) +
(remove noise)

The Canny edge detector

original image (Lena)

The Canny edge detector

norm of the gradient

The Canny edge detector

thresholding

The Canny edge detector

thinning
(non-maximum suppression)

Non-maximum suppression

Check if pixel is local maximum along gradient direction
• requires checking interpolated pixels p and r

Predicting
the next
edge point

Assume the
marked point is an
edge point. Then
we construct the
tangent to the edge
curve (which is
normal to the
gradient at that
point) and use this
to predict the next
points (here either
r or s).

(Forsyth & Ponce)

Hysteresis
Check that maximum value of gradient value is

sufficiently large
• drop-outs? use hysteresis

– use a high threshold to start edge curves and a low threshold to
continue them.

Effect of σ (Gaussian kernel size)

Canny with Canny with original

The choice of depends on desired behavior
• large detects large scale edges
• small detects fine features

(Forsyth & Ponce)

Scale

Smoothing
Eliminates noise edges.
Makes edges smoother.
Removes fine detail.

fine scale
high
threshold

coarse
scale,
high
threshold

coarse
scale
low
threshold

Scale space (Witkin 83)

Properties of scale space (w/ Gaussian smoothing)
• edge position may shift with increasing scale (σ)
• two edges may merge with increasing scale
• an edge may not split into two with increasing scale

larger

Gaussian filtered signal

first derivative peaks

Edge detection by subtraction

original

Edge detection by subtraction

smoothed (5x5 Gaussian)

Edge detection by subtraction

smoothed – original
(scaled by 4, offset +128)

Why does
this work?

filter demo

Gaussian - image filter

Laplacian of Gaussian

Gaussian delta function

An edge is not a line...

How can we detect lines ?

Finding lines in an image
Option 1:

• Search for the line at every possible position/orientation
• What is the cost of this operation?

Option 2:
• Use a voting scheme: Hough transform

Finding lines in an image

Connection between image (x,y) and Hough (m,b) spaces
• A line in the image corresponds to a point in Hough space
• To go from image space to Hough space:

– given a set of points (x,y), find all (m,b) such that y = mx + b

x

y

m

b

m0

b0

image space Hough space

Finding lines in an image

Connection between image (x,y) and Hough (m,b) spaces
• A line in the image corresponds to a point in Hough space
• To go from image space to Hough space:

– given a set of points (x,y), find all (m,b) such that y = mx + b
• What does a point (x0, y0) in the image space map to?

x

y

m

b

image space Hough space

– A: the solutions of b = -x0m + y0

– this is a line in Hough space

x0

y0

Hough transform algorithm
Typically use a different parameterization

• d is the perpendicular distance from the line to the origin
• θ is the angle this perpendicular makes with the x axis
• Why?

Hough transform algorithm
Typically use a different parameterization

• d is the perpendicular distance from the line to the origin
• θ is the angle this perpendicular makes with the x axis
• Why?

Basic Hough transform algorithm
1. Initialize H[d, θ]=0
2. for each edge point I[x,y] in the image

for θ = 0 to 180

H[d, θ] += 1
3. Find the value(s) of (d, θ) where H[d, θ] is maximum
4. The detected line in the image is given by

What’s the running time (measured in # votes)?

Extensions
Extension 1: Use the image gradient

1. same
2. for each edge point I[x,y] in the image

compute unique (d, θ) based on image gradient at (x,y)
H[d, θ] += 1

3. same
4. same

What’s the running time measured in votes?

Extension 2
• give more votes for stronger edges

Extension 3
• change the sampling of (d, θ) to give more/less resolution

Extension 4
• The same procedure can be used with circles, squares, or any

other shape

Extensions
Extension 1: Use the image gradient

1. same
2. for each edge point I[x,y] in the image

compute unique (d, θ) based on image gradient at (x,y)
H[d, θ] += 1

3. same
4. same

What’s the running time measured in votes?

Extension 2
• give more votes for stronger edges

Extension 3
• change the sampling of (d, θ) to give more/less resolution

Extension 4
• The same procedure can be used with circles, squares, or any

other shape

Hough demos

Line : http://www/dai.ed.ac.uk/HIPR2/houghdemo.html
http://www.dis.uniroma1.it/~iocchi/slides/icra2001/java/hough.html

Circle : http://www.markschulze.net/java/hough/

Hough Transform for Curves
The H.T. can be generalized to detect any curve that

can be expressed in parametric form:
• Y = f(x, a1,a2,…ap)
• a1, a2, … ap are the parameters
• The parameter space is p-dimensional
• The accumulating array is LARGE!

Generalizing the H.T.
The H.T. can be used even if the curve has not a The H.T. can be used even if the curve has not a
simple analytic form!simple analytic form!

1.1. Pick a reference point (Pick a reference point (xxcc,,yycc))
2.2. For i = 1,…,n :For i = 1,…,n :

1.1. Draw segment to PDraw segment to Pii on the boundary.on the boundary.
2.2. Measure its length Measure its length rrii, and its , and its

orientation orientation ααii..
3.3. Write the coordinates of (Write the coordinates of (xxcc,,yycc) as a) as a

function of function of rrii and and ααii
4.4. Record the gradient orientation Record the gradient orientation φφii at Pat Pi.i.

3.3. Build a table with the data, indexed by Build a table with the data, indexed by φφii ..

((xxcc,,yycc))

φφiirrii

PPii

ααii

xxcc = = xxii + + rriicoscos((ααii))

yycc = = yyii + + rriisinsin((ααii))

Generalizing the H.T.

((xxcc,,yycc))

PPii

φφiirrii ααii

xxcc = = xxii + + rriicoscos((ααii))

yycc = = yyii + + rriisinsin((ααii))

Suppose, there were m Suppose, there were m differentdifferent gradient orientations:gradient orientations:
(m <= n)(m <= n)

φφ11

φφ22

..

..

..

φφmm

(r(r11
11,,αα11

11),(r),(r11
22,,αα11

22),…,(r),…,(r11
n1n1,,αα11

n1n1))

(r(r22
11,,αα22

11),(r),(r22
22,,αα11

22),…,(r),…,(r22
n2n2,,αα11

n2n2))

..

..

..

(r(rmm
11,,ααmm

11),(r),(rmm
22,,ααmm

22),…,(),…,(rrmm
nmnm,,ααmm

nmnm))

φφjj

rrjj

ααjj

H.T. tableH.T. table

Generalized H.T. Algorithm:

xxcc = = xxii + + rriicoscos((ααii))

yycc = = yyii + + rriisinsin((ααii))

Finds a rotated, scaled, and translated version of the curve:Finds a rotated, scaled, and translated version of the curve:

((xx cc,,yy cc)) PP ii

φφ ii
SrSr ii αα ii θθ

PP jj

φφ jj
SrSr jjαα jj θθ

PP kk

φφ ii
SrSr kkαα kk θθ

1.1. Form an A accumulator array of possible Form an A accumulator array of possible
reference points (reference points (xxcc,,yycc), scaling factor S), scaling factor S
and Rotation angle and Rotation angle θθ..

2.2. For each edge (x,y) in the image:For each edge (x,y) in the image:
1.1. Compute Compute φφ(x,y)(x,y)
2.2. For each (r,For each (r,αα) corresponding to) corresponding to

φφ(x,y) do:(x,y) do:
1.1. For each S and For each S and θθ::

1.1. xxcc = = xxii + r(+ r(φφ) S) S coscos[[αα((φφ) +) + θθ]]
2.2. yycc = = yyii + r(+ r(φφ) S sin[) S sin[αα((φφ) +) + θθ]]
3.3. A(A(xxcc,,yycc,S,,S,θθ) ++) ++

3.3. Find Find maxima maxima of A.of A.

H.T. Summary
H.T. is a “voting” scheme

• points vote for a set of parameters describing a line or curve.

The more votes for a particular set
• the more evidence that the corresponding curve is present

in the image.

Can detect MULTIPLE curves in one shot.
Computational cost increases with the number of

parameters describing the curve.

Corners contain more edges than lines.

A point on a line is hard to match.

Corner detection

Corners contain more edges than lines.
A corner is easier

Edge Detectors Tend to Fail at Corners

Finding Corners

Intuition:

• Right at corner, gradient is ill defined.

• Near corner, gradient has two different
values.

Formula for Finding Corners

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

∑∑
∑∑

2

2

yyx

yxx

III
III

C

We look at matrix:

Sum over a small region,
the hypothetical corner

Gradient with respect to x,
times gradient with respect to y

Matrix is symmetric WHY THIS?

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

∑∑
∑∑

2

1
2

2

0
0
λ

λ

yyx

yxx

III
III

C

First, consider case where:

This means all gradients in neighborhood are:

(k,0) or (0, c) or (0, 0) (or off-diagonals cancel).

What is region like if:

1. λ1 = 0?

2. λ2 = 0?

3. λ1 = 0 and λ2 = 0?

4. λ1 > 0 and λ2 > 0?

General Case:

From Linear Algebra, it follows that because C is
symmetric:

RRC ⎥
⎦

⎤
⎢
⎣

⎡
= −

2

11

0
0
λ

λ

With R a rotation matrix.

So every case is like one on last slide.

So, to detect corners
Filter image.
Compute magnitude of the gradient everywhere.
We construct C in a window.
Use Linear Algebra to find λ1 and λ2.
If they are both big, we have a corner.

