# Camera Calibration +

## Multiview Geometry





## Projective transformation:

# from world coordinates to image coordinates





$$(X,Y,Z)^T \mapsto (fX/Z,fY/Z)^T$$

This is the Camera Model viewed from the camera point of view, ie Camera Coordinates.









#### Camera Parameters



#### Recap: Homogeneous Coordinates

• Homogeneous Coordinates is a mapping from R<sup>n</sup> to R<sup>n+1</sup>:

$$(x, y) \rightarrow (X, Y, W) \equiv (tx, ty, t)$$

- Note: (tx,ty,t) all correspond to the same non-homogeneous point (x,y). E.g. (2,3,1)=(6,9,3)=(4,6,2).
- Inverse mapping:

$$(X,Y,W) \rightarrow \left(\frac{X}{W},\frac{Y}{W}\right) = (x,y)$$

#### Recap: Homogeneous Coordinates

$$(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

homogeneous image coordinates

$$(X,Y,Z) \Rightarrow \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

homogeneous scene coordinates

#### Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)$$

$$\begin{bmatrix} X \\ Y \\ Z \\ w \end{bmatrix} \Rightarrow (X/w, Y/w, Z/w)$$



#### **Extrinsic Transformation:**

# from world-coordinates to camera-coordinates

#### Camera Rotation and Translation



In general, the camera coordinate frame will be related to the world coordinate frame by a rotation and a translation

Conversion from world to camera coordinate system (in non-homogeneous coordinates):



#### Camera Rotation and Translation



In non-homogeneous coordinates:

$$\widetilde{\mathbf{X}}_{\mathrm{cam}} = \mathbf{R} \Big( \widetilde{\mathbf{X}} - \widetilde{\mathbf{C}} \Big)$$

$$X_{cam} = \begin{bmatrix} R & -R\widetilde{C} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \widetilde{X} \\ 1 \end{bmatrix} = \begin{bmatrix} R & t \\ \mathbf{0} & 1 \end{bmatrix} X$$
Extrinsic
Transformation

where  $t = -R\tilde{C}$ 

X is  $\tilde{X}$  in homogeneous coord.

#### Intrinsic Transformation:

# from camera coordinates to image coordinates



$$(X,Y,Z)^T \mapsto (fX/Z,fY/Z)^T$$

This is the Camera Model viewed from the camera point of view, ie Camera Coordinates.

#### The Intrinsic Transformation



$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} fX \\ fY \\ Z \end{pmatrix} = \begin{bmatrix} f & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} \qquad \mathbf{x} = \mathbf{PX}$$

#### **Principal Point**



- Principal point (p): point where principal axis intersects the image plane
- Normalized coordinate system: origin of the image is at the principal point
- Image coordinate system: origin is in the corner
- How to go from normalized coordinate system to image coordinate system?

#### Principal Point Offset



$$(X,Y,Z) \mapsto (fX/Z + p_x, fY/Z + p_y)$$

$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} fX + Zp_x \\ fY + Zp_y \\ Z \end{pmatrix} = \begin{bmatrix} f & p_x & 0 \\ f & p_y & 0 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

#### **Pixel Coordinates**





Pixel size: 
$$\frac{1}{m_x} \times \frac{1}{m_y}$$

•  $m_x$  pixels per meter in horizontal direction,  $m_y$  pixels per meter in vertical direction

$$\begin{bmatrix} m_x & & \\ & m_y & \\ & & 1 \end{bmatrix} \begin{bmatrix} f & p_x & 0 \\ & f & p_y & 0 \\ & & 1 & 0 \end{bmatrix} = \begin{bmatrix} \alpha_x & \beta_x & 0 \\ & \alpha_y & \beta_y & 0 \\ & & 1 & 0 \end{bmatrix} = \begin{bmatrix} K & \mathbf{0} \end{bmatrix}$$
pixels/m

m

pixels/m

pixels

Transformation

# The projective transformation:

intrinsic + extrinsic

#### From world to Image transformation

In practice: lots of coordinate transformations...

Intrinsic (3x3): From camera to image

$$X = PX$$

$$\begin{bmatrix} \alpha_x & \beta_x \\ \alpha_y & \beta_y \\ 1 \end{bmatrix}$$
Extrinsic (3x4): from world to camera
$$V = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} = K \begin{bmatrix} R & t \\ R & t \end{bmatrix}$$
where 
$$V = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} = K \begin{bmatrix} R & t \\ R & t \end{bmatrix}$$

#### Camera parameters

$$P = K[R t]$$

- Intrinsic parameters
  - Principal point coordinates
  - Focal length
  - Pixel magnification factors
  - Skew (non-rectangular pixels)
  - Radial distortion





#### Camera parameters

$$P = K[R t]$$

- Intrinsic parameters
  - Principal point coordinates
  - Focal length
  - Pixel magnification factors
  - Skew (non-rectangular pixels)
  - Radial distortion
- Extrinsic parameters
  - Rotation and translation relative to world coordinate system

#### Camera calibration

#### Camera calibration

• Given n points with known 3D coordinates  $X_i$  and known image projections  $X_i$ , estimate the camera parameters





# Multiview Geometry



## Multiview Geometry



Richard Hartley and Andrew Zisserman, Cambridge University Press, March 2004.

### Multi-view geometry







#### Multi-view geometry problems

• Structure: Given projections of the same 3D point in two or more images, compute the 3D coordinates of that point



#### Multi-view geometry problems

• Stereo correspondence: Given a point in one of the images, where could its corresponding points be in the other images?



#### Multi-view geometry problems

 Motion: Given a set of corresponding points in two or more images, compute the camera parameters



### Two-view geometry





#### Triangulation

 Given projections of a 3D point in two or more images (with known camera matrices), find the coordinates of the point



#### Triangulation: Linear approach

Camera Matrices P are known:

$$\lambda_1 \mathbf{x_1} = \mathbf{P_1} \mathbf{X}$$

$$\lambda_2 \mathbf{x_2} = \mathbf{P_2} \mathbf{X}$$

Two independent equations each in terms of three unknown entries of **X** 

#### Triangulation

 We want to intersect the two visual rays corresponding to x<sub>1</sub> and x<sub>2</sub>, but because of noise and numerical errors, they don't always meet exactly



#### Triangulation: Geometric approach

 Find shortest segment connecting the two viewing rays and let X be the midpoint of that segment



### Triangulation: Nonlinear approach

Find X that minimizes

$$d^{2}(\mathbf{x_{1}}, \mathbf{P_{1}}\mathbf{X}) + d^{2}(\mathbf{x_{2}}, \mathbf{P_{2}}\mathbf{X})$$







• Baseline – line connecting the two camera centers



- Baseline line connecting the two camera centers
- Epipolar Plane plane containing baseline (1D family)
- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center
- = vanishing points of the motion direction

## The Epipole





- Baseline line connecting the two camera centers
- Epipolar Plane plane containing baseline (1D family)
- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center
- = vanishing points of the motion direction
- **Epipolar Lines** intersections of epipolar plane with image planes (always come in corresponding pairs)

## Epipolar constraint



• If we observe a point x in one image, where can the corresponding point x be in the other image?

## Epipolar constraint



- Potential matches for **x** have to lie on the corresponding epipolar line **I**'.
- Potential matches for x' have to lie on the corresponding epipolar line I.

## Example: Converging cameras







## Example: Motion parallel to image plane







## Example: Motion perpendicular to image plane



## Example: Motion perpendicular to image plane



- Points move along lines radiating from the epipole: "focus of expansion"
- Epipole is the principal point

#### Example: Motion perpendicular to image plane



http://vimeo.com/48425421

Stanley Kubrick – Film creator1928-1999 (Clockwork Orange, 2001: A Space Odyssey, The Shining)

## Another Epipolar constraint example





- Intrinsic and extrinsic parameters of the cameras are known, world coordinate system is set to that of the first camera
- Then the projection matrices are given by  $K[I \mid 0]$  and  $K'[R \mid t]$

$$x = K[I \mid 0]X$$
  $x'=K'[R \mid t]X$ 

 We can multiply image points by the inverse of the calibration matrices to get normalized image coordinates:

$$x_{\text{norm}} = K^{-1}x_{\text{pixel}} = [I \ 0]X, \qquad x'_{\text{norm}} = K'^{-1}x'_{\text{pixel}} = [R \ t]X$$



The vectors  $\rightarrow$   $\rightarrow$  are coplanar



Transfer all vectors to 1<sup>st</sup> camera coordinate system.

Transfer direction x' to 1st camera coordinate system.

$$x' \longrightarrow R^T x'$$



Now the vectors x, t, and  $R^Tx$ , are coplanar

$$(\mathbf{R}^T \mathbf{x}') \cdot [\mathbf{t} \times \mathbf{x}] = 0$$

## Matrix form of cross product

a,b,c are coplanar



In Matrix form:

$$a \times b = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} b = \begin{bmatrix} a_x \end{bmatrix} b$$

$$c^{\mathsf{T}} [\mathbf{a}_x] b = 0$$



Now the vectors x, t, and  $R^Tx$ , are coplanar

$$(\mathbf{R}^T \mathbf{x}') \cdot [\mathbf{t} \times \mathbf{x}] = 0$$



Now the vectors x, t, and  $R^Tx$ , are coplanar

$$(\mathbf{R}^{T} \mathbf{x}')^{T} [\mathbf{t}_{x}] \mathbf{x} = 0$$
$$\mathbf{x}'^{T} \mathbf{R} [\mathbf{t}_{x}] \mathbf{x} = 0$$



**Essential Matrix** 

(Longuet-Higgins, 1981)



- E x is the epipolar line associated with x (I' = E x)
- $E^Tx'$  is the epipolar line associated with x' ( $I = E^Tx'$ )
- Ee = 0 and  $E^Te' = 0$
- **E** is singular (rank two)
- **E** has five degrees of freedom



- The calibration matrices K and K' of the two cameras are unknown
- We can write the epipolar constraint in terms of unknown normalized coordinates:

$$\hat{x}'^T E \hat{x} = 0$$
  $\hat{x} = K^{-1} x, \quad \hat{x}' = K'^{-1} x'$ 





- Fx is the epipolar line associated with x(I' = Fx)
- $\mathbf{F}^T \mathbf{x}'$  is the epipolar line associated with  $\mathbf{x}' (\mathbf{I}' = \mathbf{F}^T \mathbf{x}')$
- Fe = 0 and  $F^Te' = 0$
- **F** is singular (rank two)
- F has seven degrees of freedom

### The eight-point algorithm

$$\mathbf{x} = (u, v, 1)^{T}, \quad \mathbf{x}' = (u', v', 1)$$

$$\begin{bmatrix} u' & v' & 1 \end{bmatrix} \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = 0 \qquad \begin{bmatrix} u'u & u'v & u' & v'u & v'v & v' & u & v & 1 \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \\ f_{32} \\ f_{32} \end{bmatrix} = 0$$

#### Minimize:

$$\sum_{i=1}^{N} (\boldsymbol{x}_{i}^{\prime T} \boldsymbol{F} \, \boldsymbol{x}_{i})^{2}$$
under the constraint
$$\|\boldsymbol{F}\|^{2}=1$$

### The eight-point algorithm

- Meaning of error  $\sum_{i=1}^{N} (x_i^{\prime T} F x_i)^2$ :
  - sum of squared *algebraic* distances between points  $\mathbf{x}'_i$  and epipolar lines  $\mathbf{F}\mathbf{x}_i$  (or points  $\mathbf{x}_i$  and epipolar lines  $\mathbf{F}^T\mathbf{x}'_i$ )
- Nonlinear approach: minimize sum of squared geometric distances

$$\sum_{i=1}^{N} \left[ d^{2}(\boldsymbol{x}_{i}', \boldsymbol{F} \, \boldsymbol{x}_{i}) + d^{2}(\boldsymbol{x}_{i}, \boldsymbol{F}^{T} \, \boldsymbol{x}_{i}') \right]$$

## Problem with eight-point algorithm

$$\begin{bmatrix} u'u & u'v & u' & v'u & v'v & v' & u & v \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \end{bmatrix} = -1$$

### Problem with eight-point algorithm

| 250906.36 | 183269.57 | 921.81 | 200931.10 | 146766.13 | 738.21 | 272.19 | 198.81 |
|-----------|-----------|--------|-----------|-----------|--------|--------|--------|
| 2692.28   | 131633.03 | 176.27 | 6196.73   | 302975.59 | 405.71 | 15.27  | 746.79 |
| 416374.23 | 871684.30 | 935.47 | 408110.89 | 854384.92 | 916.90 | 445.10 | 931.81 |
| 191183.60 | 171759.40 | 410.27 | 416435.62 | 374125.90 | 893.65 | 465.99 | 418.65 |
| 48988.86  | 30401.76  | 57.89  | 298604.57 | 185309.58 | 352.87 | 846.22 | 525.15 |
| 164786.04 | 546559.67 | 813.17 | 1998.37   | 6628.15   | 9.86   | 202.65 | 672.14 |
| 116407.01 | 2727.75   | 138.89 | 169941.27 | 3982.21   | 202.77 | 838.12 | 19.64  |
| 135384.58 | 75411.13  | 198.72 | 411350.03 | 229127.78 | 603.79 | 681.28 | 379.48 |

$$\begin{bmatrix}
f_{11} \\
f_{12} \\
f_{13} \\
f_{21} \\
f_{22} \\
f_{23} \\
f_{31} \\
f_{32}
\end{bmatrix} = -1$$

Poor numerical conditioning

Can be fixed by rescaling the data

### The normalized eight-point algorithm

(Hartley, 1995)

- Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels
- Use the eight-point algorithm to compute F from the normalized points
- Enforce the rank-2 constraint (for example, take SVD of *F* and throw out the smallest singular value)
- Transform fundamental matrix back to original units:
   if *T* and *T'* are the normalizing transformations in the
   two images, than the fundamental matrix in original
   coordinates is *T'<sup>T</sup> F T*

## Comparison of estimation algorithms



|             | 8-point     | Normalized 8-point | Nonlinear least squares |
|-------------|-------------|--------------------|-------------------------|
| Av. Dist. 1 | 2.33 pixels | 0.92 pixel         | 0.86 pixel              |
| Av. Dist. 2 | 2.18 pixels | 0.85 pixel         | 0.80 pixel              |

#### From epipolar geometry to camera calibration

- Estimating the fundamental matrix is known as "weak calibration"
- If we know the calibration matrices of the two cameras, we can estimate the essential matrix:  $\mathbf{E} = \mathbf{K}^{T} \mathbf{F} \mathbf{K}$
- The essential matrix gives us the relative rotation and translation between the cameras, or their extrinsic parameters