Camera Calibration $+$

Multiview Geometry

slides are courtesy of Svetlana Lazebnik

Projective transformation:

 from world coordinates to image coordinates

Modeling projection

This is the Camera Model viewed from the camera point of view, ie Camera Coordinates.

Modeling Projection

Modeling Projection

Modeling Projection

Camera Parameters

$\lambda x=P X$

Recap: Homogeneous Coordinates

- Homogeneous Coordinates is a mapping from R^{n} to $\mathrm{R}^{\mathrm{n+1}}$:

$$
(x, y) \rightarrow(X, Y, W) \equiv(t x, t y, t)
$$

- Note: $(t x, t y, t)$ all correspond to the same nonhomogeneous point (x, y). E.g. $(2,3,1) \equiv(6,9,3) \equiv(4,6,2)$.
- Inverse mapping:

$$
(X, Y, W) \rightarrow\left(\frac{X}{W}, \frac{Y}{W}\right)=(\mathrm{x}, \mathrm{y})
$$

Recap: Homogeneous Coordinates

$$
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

homogeneous image
coordinates

$$
\begin{aligned}
& \qquad(X, Y, Z) \Rightarrow\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] \\
& \text { homogeneous scene } \\
& \text { coordinates }
\end{aligned}
$$

Converting from homogeneous coordinates

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w)
$$

$$
\left[\begin{array}{l}
X \\
Y \\
Z \\
w
\end{array}\right] \Rightarrow(X / w, Y / w, Z / w)
$$

Modeling Projection

Extrinsic Transformation:

from world-coordinates
to
camera-coordinates

Camera Rotation and Translation

In general, the camera coordinate frame will be related to the world coordinate frame by a rotation and a translation

Conversion from world to camera coordinate system (in non-homogeneous coordinates):

in world frame

Camera Rotation and Translation

Intrinsic Transformation:

from camera coordinates
to
image coordinates

Modeling projection

This is the Camera Model viewed from the camera point of view, ie Camera Coordinates.

The Intrinsic Transformation

$$
\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right) \mapsto\left(\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right)=\left[\begin{array}{lllll}
f & & & 0 \\
& f & & 0 \\
& & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right) \quad \mathbf{X}=\mathrm{PX}
$$

Principal Point

- Principal point (p): point where principal axis intersects the image plane
- Normalized coordinate system: origin of the image is at the principal point
- Image coordinate system: origin is in the corner
- How to go from normalized coordinate system to image coordinate system?

Principal Point Offset

principal point: $\left(p_{x}, p_{y}\right)$

$$
(X, Y, Z) \mapsto\left(f X / Z+p_{x}, f Y / Z+p_{y}\right)
$$

Pixel Coordinates

Pixel size: $\frac{1}{m_{x}} \times \frac{1}{m_{y}}$

- m_{x} pixels per meter in horizontal direction, m_{y} pixels per meter in vertical direction

The projective transfiormation:

intrinsic + extrinsic

From world to Image transformation

In practice: lots of coordinate transformations...

Intrinsic (3x3):
From camera to image
$\mathrm{x}=\mathrm{PX}$
where $\quad P=\left[\begin{array}{ll}K & \mathbf{0}\end{array}\right]\left[\begin{array}{ll}R & t \\ \mathbf{0} & 1\end{array}\right]=K\left[\begin{array}{ll}R & t\end{array}\right]$

Camera parameters

- Intrinsic parameters
- Principal point coordinates
- Focal length
- Pixel magnification factors

$$
\mathbf{K}=\left[\begin{array}{lll}
m_{x} & & \\
& m_{y} & \\
& & 1
\end{array}\right]\left[\begin{array}{ccc}
f & & p_{x} \\
& f & p_{y} \\
& & 1
\end{array}\right]=\left[\begin{array}{ccc}
\alpha_{x} & & \beta_{x} \\
& \alpha_{y} & \beta_{y} \\
& & 1
\end{array}\right]
$$

- Skew (non-rectangular pixels)
- Radial distortion

radial distortion

linear image

Camera parameters $\mathbf{P}=\mathbf{K}\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}\end{array}\right]$

- Intrinsic parameters
- Principal point coordinates
- Focal length
- Pixel magnification factors
- Skew (non-rectangular pixels)
- Radial distortion
- Extrinsic parameters
- Rotation and translation relative to world coordinate system

Camera calibration

$$
\begin{gathered}
\mathbf{x}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \mathbf{X} \\
{\left[\begin{array}{c}
\lambda x \\
\lambda y \\
\lambda y \\
\lambda
\end{array}\right]=\left[\begin{array}{lll}
* & * & * \\
\cdots & * & * \\
* & * & * \\
* & * & *
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]}
\end{gathered}
$$

Camera calibration

- Given n points with known 3D coordinates \boldsymbol{X}_{i} and known image projections \boldsymbol{x}_{i}, estimate the camera parameters

Multiview Geometry

slides are courtesy of Svetlana Lazebnik

Multiview Geometry

Richard Hartley and Andrew Zisserman, Cambridge University Press, March 2004.

Multi-view geometry

Multi-view geometry problems

- Structure: Given projections of the same 3D point in two or more images, compute the 3D coordinates of that point

Multi-view geometry problems

- Stereo correspondence: Given a point in one of the images, where could its corresponding points be in the other images?

Camera 3
$\mathbf{R}_{3}, \mathbf{t}_{3}$

Multi-view geometry problems

- Motion: Given a set of corresponding points in two or more images, compute the camera parameters

$? \begin{gathered}\text { Camera } 3 \\ \mathbf{R}_{3}, \mathbf{t}_{3}\end{gathered}$

Two-view geometry

Triangulation

- Given projections of a 3D point in two or more images (with known camera matrices), find the coordinates of the point

Triangulation: Linear approach

Camera Matrices P are known:

$$
\begin{aligned}
& \lambda_{1} \mathbf{x}_{1}=\mathbf{P}_{\mathbf{1}} \mathbf{X} \\
& \lambda_{2} \mathbf{x}_{2}=\mathbf{P}_{\mathbf{2}} \mathbf{X}
\end{aligned}
$$

Two independent equations each in terms of three unknown entries of \mathbf{X}

Triangulation

- We want to intersect the two visual rays corresponding to \mathbf{x}_{1} and \mathbf{x}_{2}, but because of noise and numerical errors, they don't always meet exactly

Triangulation: Geometric approach

- Find shortest segment connecting the two viewing rays and let \mathbf{X} be the midpoint of that segment

Triangulation: Nonlinear approach

Find X that minimizes

$$
d^{2}\left(\mathbf{x}_{\mathbf{1}}, \mathbf{P}_{\mathbf{1}} \mathbf{X}\right)+d^{2}\left(\mathbf{x}_{\mathbf{2}}, \mathbf{P}_{\mathbf{2}} \mathbf{X}\right)
$$

Epipolar geometry

Epipolar geometry

- Baseline - line connecting the two camera centers

Epipolar geometry

- Epipolar Plane - plane containing baseline (1D family)
- Epipoles
= intersections of baseline with image planes
= projections of the other camera center
= vanishing points of the motion direction

The Epipole

Photo by Frank Dellaert

Epipolar geometry

- Baseline - line connecting the two camera centers
- Epipolar Plane - plane containing baseline (1D family)
- Epipoles
= intersections of baseline with image planes
= projections of the other camera center
= vanishing points of the motion direction
- Epipolar Lines - intersections of epipolar plane with image planes (always come in corresponding pairs)

Epipolar constraint

- If we observe a point \boldsymbol{x} in one image, where can the corresponding point \boldsymbol{x} ' be in the other image?

Epipolar constraint

- Potential matches for \boldsymbol{x} have to lie on the corresponding epipolar line I'.
- Potential matches for \boldsymbol{x} ' have to lie on the corresponding epipolar line \boldsymbol{I}.

Example: Converging cameras

Example: Motion parallel to image plane

Example: Motion perpendicular to image plane

Example: Motion perpendicular to image plane

- Points move along lines radiating from the epipole: "focus of expansion"
- Epipole is the principal point

Example: Motion perpendicular to image plane

(1) Kubrick // One-Point Perspective
 from kogonada

http://vimeo.com/48425421
Stanley Kubrick - Film creator1928-1999
(Clockwork Orange, 2001: A Space Odyssey, The Shining)

Another Epipolar constraint example

Epipolar constraint: Calibrated case

- Intrinsic and extrinsic parameters of the cameras are known, world coordinate system is set to that of the first camera
- Then the projection matrices are given by $K[\mathbf{I} \mid \mathbf{0}]$ and $K^{\prime}[\boldsymbol{R} \mid t]$

$$
x=K[I \mid 0] \mathrm{X} \quad \mathrm{x}^{\prime}=K^{\prime}[R \mid t] \mathrm{X}
$$

- We can multiply image points by the inverse of the calibration matrices to get normalized image coordinates:

$$
\boldsymbol{x}_{\text {norm }}=\boldsymbol{K}^{-1} \boldsymbol{x}_{\text {pixel }}=\left[\begin{array}{lll}
\boldsymbol{I} & 0
\end{array}\right] \boldsymbol{X}, \quad \boldsymbol{x}_{\text {norm }}^{\prime}=\boldsymbol{K}^{\prime-1} \boldsymbol{x}_{\text {pixel }}^{\prime}=\left[\begin{array}{ll}
\boldsymbol{R} & \boldsymbol{t}
\end{array}\right] \boldsymbol{X}
$$

Epipolar constraint: Calibrated case

The vectors $\rightarrow \rightarrow \rightarrow$ are coplanar

Epipolar constraint: Calibrated case

Transfer all vectors to $1^{\text {st }}$ camera coordinate system.
Transfer direction x^{\prime} to $1^{\text {st }}$ camera coordinate system.

$$
\boldsymbol{x}^{\prime} \longrightarrow \boldsymbol{R}^{\top} \boldsymbol{x}^{\prime}
$$

Epipolar constraint: Calibrated case

Now the vectors x, t, and $R^{T} x^{\prime}$ are coplanar

$$
\left(\boldsymbol{R}^{T} \boldsymbol{x}^{\prime}\right) \cdot[\boldsymbol{t} \times \boldsymbol{x}]=0
$$

Matrix form of cross product

Epipolar constraint: Calibrated case

Now the vectors x, t, and $R^{T} x^{\prime}$ are coplanar

$$
\left(\boldsymbol{R}^{T} \boldsymbol{x}^{\prime}\right) \cdot[\boldsymbol{t} \times \boldsymbol{x}]=0
$$

Epipolar constraint: Calibrated case

Now the vectors x, t, and $R^{T} x^{\prime}$ are coplanar

$$
\begin{gathered}
\left(\boldsymbol{R}^{T} \boldsymbol{x}^{\prime}\right)^{\mathrm{T}}\left[\boldsymbol{t}_{\boldsymbol{x}}\right] \boldsymbol{x}=0 \\
\boldsymbol{x}^{\prime \mathrm{T}} \boldsymbol{R}\left[\boldsymbol{t}_{\boldsymbol{x}}\right] \boldsymbol{x}=0
\end{gathered}
$$

Epipolar constraint: Calibrated case

Epipolar constraint: Calibrated case

- $\boldsymbol{E} \boldsymbol{x}$ is the epipolar line associated with $\boldsymbol{x}\left(I^{\prime}=\boldsymbol{E} \boldsymbol{x}\right)$
- $\boldsymbol{E}^{\top} \boldsymbol{X}^{\prime}$ is the epipolar line associated with $\boldsymbol{x}^{\prime}\left(\boldsymbol{I}=\boldsymbol{E}^{\top} \boldsymbol{x}\right)$
- $\boldsymbol{E} \boldsymbol{e}=0$ and $\boldsymbol{E}^{\top} \boldsymbol{e}^{\prime}=0$
- \boldsymbol{E} is singular (rank two)
- \boldsymbol{E} has five degrees of freedom

Epipolar constraint: Uncalibrated case

- The calibration matrices \boldsymbol{K} and \boldsymbol{K} ' of the two cameras are unknown
- We can write the epipolar constraint in terms of unknown normalized coordinates:

$$
\hat{\boldsymbol{x}}^{\prime T} \boldsymbol{E} \hat{\boldsymbol{x}}=0 \quad \hat{\boldsymbol{x}}=\boldsymbol{K}^{-1} \boldsymbol{x}, \quad \hat{\boldsymbol{x}}^{\prime}=\boldsymbol{K}^{\prime-1} \boldsymbol{x}^{\prime}
$$

Epipolar constraint: Uncalibrated case

Epipolar constraint: Uncalibrated case

- $\boldsymbol{F} \boldsymbol{x}$ is the epipolar line associated with $\boldsymbol{x}\left(\boldsymbol{I}^{\prime}=\boldsymbol{F} \boldsymbol{x}\right)$
- $\boldsymbol{F}^{\top} \boldsymbol{X}^{\prime}$ is the epipolar line associated with $\boldsymbol{x}^{\prime}\left(\boldsymbol{I}^{\prime}=\boldsymbol{F}^{\top} \boldsymbol{X}\right)$
- $\boldsymbol{F e}=0$ and $\boldsymbol{F}^{\top} \boldsymbol{e}^{\prime}=0$
- \boldsymbol{F} is singular (rank two)
- \boldsymbol{F} has seven degrees of freedom

The eight-point algorithm

$$
\begin{aligned}
& \boldsymbol{x}=(u, v, 1)^{T}, \quad \boldsymbol{x}^{\prime}=\left(u^{\prime}, v^{\prime}, 1\right) \\
& {\left[\begin{array}{lll}
u^{\prime} & v^{\prime} & 1
\end{array}\right]\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=0} \\
& \text { Minimize: } \\
& \sum_{i=1}^{N}\left(\boldsymbol{x}_{i}^{\prime T} \boldsymbol{F} \boldsymbol{x}_{i}\right)^{2} \\
& \text { under the constraint } \\
& \|F\|^{2}=1
\end{aligned}
$$

The eight-point algorithm

- Meaning of error $\sum_{i=1}^{N}\left(\boldsymbol{x}_{i}^{\prime T} \boldsymbol{F} \boldsymbol{x}_{i}\right)^{2}$:
sum of squared algebraic distances between points $\boldsymbol{x}_{i}^{\prime}$ and epipolar lines $\boldsymbol{F} \boldsymbol{x}_{i}$ (or points \boldsymbol{x}_{i} and epipolar lines $\boldsymbol{F}^{\top} \boldsymbol{X}_{\boldsymbol{i}}^{\prime}$)
- Nonlinear approach: minimize sum of squared geometric distances

$$
\sum_{i=1}^{N}\left[\mathrm{~d}^{2}\left(\boldsymbol{x}_{i}^{\prime}, \boldsymbol{F} \boldsymbol{x}_{i}\right)+\mathrm{d}^{2}\left(\boldsymbol{x}_{i}, \boldsymbol{F}^{T} \boldsymbol{x}_{i}^{\prime}\right)\right]
$$

Problem with eight-point algorithm

$$
\left[\begin{array}{llllllll}
u^{\prime} u & u^{\prime} v & u^{\prime} & v^{\prime} u & v^{\prime} v & v^{\prime} & u & v
\end{array}\right]\left[\begin{array}{l}
f_{11} \\
f_{12} \\
f_{13} \\
f_{21} \\
f_{22} \\
f_{23} \\
f_{31} \\
f_{32}
\end{array}\right]=-1
$$

Problem with eight-point algorithm

The normalized eight-point algorithm

(Hartley, 1995)

- Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels
- Use the eight-point algorithm to compute \boldsymbol{F} from the normalized points
- Enforce the rank-2 constraint (for example, take SVD of F and throw out the smallest singular value)
- Transform fundamental matrix back to original units: if \boldsymbol{T} and \boldsymbol{T} ' are the normalizing transformations in the two images, than the fundamental matrix in original coordinates is $\boldsymbol{T}^{\boldsymbol{\top}} \boldsymbol{F} \boldsymbol{T}$

Comparison of estimation algorithms

	8-point	Normalized 8-point	Nonlinear least squares
Av. Dist. 1	2.33 pixels	0.92 pixel	0.86 pixel
Av. Dist. 2	2.18 pixels	0.85 pixel	0.80 pixel

From epipolar geometry to camera calibration

- Estimating the fundamental matrix is known as "weak calibration"
- If we know the calibration matrices of the two cameras, we can estimate the essential matrix: $\boldsymbol{E}=\boldsymbol{K}^{\cdot \top} \boldsymbol{F} \boldsymbol{K}$
- The essential matrix gives us the relative rotation and translation between the cameras, or their extrinsic parameters

