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Modeling projection

This is  the Camera Model viewed from the camera point 

of view, ie Camera Coordinates.
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Camera Parameters

camera calibration rotation translation

from world to camera 

coordinate frame

PXx =λ

intrinsic extrinsic



Recap: Homogeneous CoordinatesRecap: Homogeneous Coordinates

• Homogeneous Coordinates is a mapping from Rn to Rn+1:  

• Note:  (tx,ty,t) all correspond to the same non-

homogeneous point (x,y).    E.g. (2,3,1)≡(6,9,3) ≡(4,6,2).

• Inverse mapping:
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homogeneous image 
coordinates

homogeneous scene 
coordinates

Converting from homogeneous coordinates
















⇒

1

),( y

x

yx



















⇒

1

),,(
Z

Y

X

ZYX

),,( wZwYwX

w

Z

Y

X

⇒



















),( wywx

w

y

x

⇒

















Recap: Homogeneous CoordinatesRecap: Homogeneous Coordinates



Modeling Projection

yw

zw

xw

world

xv

yv

zv

Camera 

Coordinates

Extrinsic

Transformation

Intrinsic

Transformation





( )C
~

-X
~

RX
~

cam =

Camera Rotation and Translation

In general, the camera

coordinate frame will be 

related to the world

coordinate frame by a 

rotation and a translation

coords. of point 

in camera frame
coords. of camera center 

in world frame
coords. of a point

in world frame

Conversion from world to camera coordinate system 

(in non-homogeneous coordinates):
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This is  the Camera Model viewed from the camera point 

of view, ie Camera Coordinates.
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The Intrinsic Transformation

PXx =



Principal Point

px

py

• Principal point (p): point where principal axis intersects the 
image plane 

• Normalized coordinate system: origin of the image is at the 
principal point

• Image coordinate system: origin is in the corner

• How to go from normalized coordinate system to image 
coordinate system?
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Pixel Coordinates

• mx pixels per meter in horizontal direction, 

my pixels per meter in vertical direction

Pixel size: 

yx mm

11
×

pixels/m m pixels Intrinsic

Transformation
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Intrinsic (3x3):

From camera to image

PXx =

In practice: lots of coordinate transformations…

World to 
camera coord. 

trans. matrix
(4x4)

Perspective
projection matrix

(3x4)

Camera to 
pixel coord. 
trans. matrix 

(3x3)

=
2D

point
(3x1)

3D
point
(4x1)

Extrinsic (3x4):

from world to camera



Camera parameters

• Intrinsic parameters
• Principal point coordinates

• Focal length

• Pixel magnification factors

• Skew (non-rectangular pixels)

• Radial distortion
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Camera parameters

• Intrinsic parameters
• Principal point coordinates

• Focal length

• Pixel magnification factors

• Skew (non-rectangular pixels)

• Radial distortion

• Extrinsic parameters
• Rotation and translation relative to world coordinate system

[ ]tRKP =



Camera calibration
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Source: D. Hoiem



Camera calibration

• Given n points with known 3D coordinates Xi

and known image projections xi, estimate the 

camera parameters

? P

Xi

xi
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Richard Hartley and Andrew 
Zisserman,
Cambridge University Press, 
March 2004.



Multi-view geometry



Multi-view geometry problems

• Structure: Given projections of the same 3D point in two 

or more images, compute the 3D coordinates of that point

Camera 3

R3,t3
Slide credit: 

Noah Snavely

?

Camera 1
Camera 2

R1,t1 R2,t2



Multi-view geometry problems

• Stereo correspondence: Given a point in one of the 

images, where could its corresponding points be in the 

other images?

Camera 3

R3,t3

Camera 1
Camera 2

R1,t1 R2,t2
Slide credit: 

Noah Snavely



Multi-view geometry problems

• Motion: Given a set of corresponding points in two or 

more images, compute the camera parameters

Camera 1
Camera 2 Camera 3

R1,t1 R2,t2
R3,t3

? ? ? Slide credit: 

Noah Snavely



Two-view geometry



Triangulation

• Given projections of a 3D point in two or more 

images (with known camera matrices), find 

the coordinates of the point

O1
O2

x1

x2

X?



Triangulation: Linear approach

XPx

XPx
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Two independent equations each in terms of 

three unknown entries of X

Camera Matrices P are known:



Triangulation

• We want to intersect the two visual rays 

corresponding to x1 and x2, but because of 

noise and numerical errors, they don’t always 

meet exactly

O1
O2

x1

x2

X?



Triangulation: Geometric approach

• Find shortest segment connecting the two 

viewing rays and let X be the midpoint of that 

segment

O1
O2

x1

x2

X



Triangulation: Nonlinear approach

Find X that minimizes

O1
O2

x1

x2

X?

P1X

)()( 22
XP,xXP,x

2211
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P2X



Epipolar geometry
X

x x’

R , t



Epipolar geometry
X

x x’

• Baseline – line connecting the two camera centers



• Epipolar Plane – plane containing baseline (1D family)

• Epipoles
= intersections of baseline with image planes 
= projections of the other camera center
= vanishing points of the motion direction

• Baseline – line connecting the two camera centers

Epipolar geometry
X

x x’



The Epipole

Photo by Frank Dellaert



• Epipolar Plane – plane containing baseline (1D family)

• Epipoles
= intersections of baseline with image planes 
= projections of the other camera center
= vanishing points of the motion direction
• Epipolar Lines - intersections of epipolar plane with image
planes (always come in corresponding pairs)

• Baseline – line connecting the two camera centers

Epipolar geometry
X

x x’



Epipolar constraint

• If we observe a point x in one image, where 

can the corresponding point x’ be in the other 

image?

x x’

X



• Potential matches for x have to lie on the corresponding epipolar line l’.

• Potential matches for x’ have to lie on the corresponding epipolar line l.

Epipolar constraint

x x’

X

x’

X

x’

X



Example: Converging cameras



Example: Motion parallel to image plane



Example: Motion perpendicular to image plane



Example: Motion perpendicular to image plane

• Points move along lines radiating from the epipole: “focus of expansion”

• Epipole is the principal point



Example: Motion perpendicular to image plane

http://vimeo.com/48425421
Stanley Kubrick – Film creator1928-1999

(Clockwork Orange, 2001: A Space Odyssey, The Shining)



Another Epipolar constraint example



X

x x’

Epipolar constraint: Calibrated case

• Intrinsic and extrinsic parameters of the cameras are known, world 
coordinate system is set to that of the first camera 

• Then the projection matrices are given by K[I | 0] and K’[R | t]

• We can multiply image points by the inverse of the calibration matrices to 
get normalized image coordinates:

XtRxKxX,IxKx ][0][ pixel

1

normpixel

1

norm =′′=′== −−

x = K[I | 0]X     x’=K’[R | t]X
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x x’

Epipolar constraint: Calibrated case

R

t

The vectors are coplanar 



X

x x’

Epipolar constraint: Calibrated case

R

t

Transfer all vectors to 1st camera coordinate system.

x'R         x′
Transfer direction x’  to 1st camera coordinate system.

T
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x x’

Epipolar constraint: Calibrated case

R

t

Now the vectors x, t, and RTx’ are coplanar 

0][ =×⋅′ xtxR
T
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Matrix form of cross product
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In Matrix form:
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Epipolar constraint: Calibrated case

R

t

Now the vectors x, t, and RTx’ are coplanar 
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Epipolar constraint: Calibrated case

R

t

Now the vectors x, t, and RTx’ are coplanar 
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Essential Matrix
(Longuet-Higgins, 1981)

Epipolar constraint: Calibrated case

][0 ×==′ tREwithxEx T

X

x x’ 

0][ =′ xtRx x

T



X

x x’

Epipolar constraint: Calibrated case

• E x is the epipolar line associated with x (l' = E x)

• ETx' is the epipolar line associated with x' (l = ETx')

• E e = 0   and   ETe' = 0

• E is singular (rank two)

• E has five degrees of freedom 

][0 ×==′ tREwithxEx T
0][ =′ xtRx x

T



Epipolar constraint: Uncalibrated case

• The calibration matrices K and K’ of the two 
cameras are unknown

• We can write the epipolar constraint in terms 
of unknown normalized coordinates:

X

x x’

0ˆˆ =′ xEx
T xKxxKx ′′=′= −− 11 ˆ,ˆ



Epipolar constraint: Uncalibrated case

X

x x’

Fundamental Matrix
(Faugeras and Luong, 1992)
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Epipolar constraint: Uncalibrated case

• F x is the epipolar line associated with x (l' = F x)

• FTx' is the epipolar line associated with x' (l' = FTx')
• F e = 0   and   FTe' = 0

• F is singular (rank two)

• F has seven degrees of freedom

X

x x’

0ˆˆ =′ xEx T 1with0 −−′==′ KEKFxFx
TT



The eight-point algorithm

Minimize:

under the constraint
||F||2=1
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The eight-point algorithm

• Meaning of error

sum of squared algebraic distances between 

points x’i and epipolar lines Fxi (or points xi

and epipolar lines FTx’i) 

• Nonlinear approach: minimize sum of 

squared geometric distances
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Problem with eight-point algorithm
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Problem with eight-point algorithm

Poor numerical conditioning

Can be fixed by rescaling the data



The normalized eight-point algorithm

• Center the image data at the origin, and scale it so 

the mean squared distance between the origin and 

the data points is 2 pixels

• Use the eight-point algorithm to compute F from the 

normalized points

• Enforce the rank-2 constraint (for example, take SVD 

of F and throw out the smallest singular value)

• Transform fundamental matrix back to original units: 

if T and T’ are the normalizing transformations in the 

two images, than the fundamental matrix in original 

coordinates is T’T F T

(Hartley, 1995)



Comparison of estimation algorithms

8-point Normalized 8-point Nonlinear least squares

Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel

Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel



From epipolar geometry to camera calibration

• Estimating the fundamental matrix is known 

as “weak calibration”

• If we know the calibration matrices of the two 

cameras, we can estimate the essential 

matrix: E = K’TFK

• The essential matrix gives us the relative 

rotation and translation between the cameras, 

or their extrinsic parameters


