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Feature Based Registration -
Image Alignment

Many slides from Alexei Efros http://graphics.cs.cmu.edu/courses/15-463/2007_fall/463.html
D.Frolova, D. Simakov - http://www.wisdom.weizmann.ac.il/~deniss/2004
03_invariant_features/InvariantFeatures.ppt

Image RegistrationImage Registration

Image registration is the process of estimating
an optimal transformation between two or 
more images.

Image RegistrationImage Registration

Motion Estimation and Optical Flow 

Assumes:
Constant Brightness assumption
Small Motion
Spatial Coherence.

Affected by:
Window Size, Image Noise,
numerical convergence

Example: Example: MosiacingMosiacing (Panorama)(Panorama)

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003
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Example Example –– 3D Reconstruction3D Reconstruction

Source: http://www.photogrammetry.ethz.ch/general/persons/fabio/fabio_spie0102.pdf

Image RegistrationImage Registration

How do we align two images automatically?
Two broad approaches:
• Feature-based registration

– Find a few matching features in both images
– compute alignment

• Direct (appearance-based) registration
– Search for alignment where most pixels agree

Direct Method (brute force)Direct Method (brute force)
The simplest approach is a brute force search
• Need to define image distance function:

SSD, Normalized Correlation, Mutual Information, etc.
• Search over all parameters within a reasonable range:

e.g. for translation:

for ∆x=x0:step:x1,
for ∆y=y0:step:y1,

calculate Dist(image1(x,y),image2(x+∆x,y+∆y))
end;

end;

Direct Method (brute force)Direct Method (brute force)
What if we want to search for more complicated 
transformation, e.g. projective?

for a=a0:astep:a1,
for b=b0:bstep:b1,
for c=c0:cstep:c1,
for d=d0:dstep:d1,
for e=e0:estep:e1,
for f=f0:fstep:f1, 

for g=g0:gstep:g1,
for h=h0:hstep:h1,

calculate Dist(image1 , H(image2))
end; end; end; end; end; end; end; end;
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Problems with brute forceProblems with brute force

• Not realistic for large number of parameters. 

• Alternatives:
– Reduce parameter range using pyramids. 
– Gradient decent on the error function.

Direct Direct v.sv.s. Feature Registration. Feature Registration

• Direct methods:
– Can be applied locally (OF, video coding)
– Can handle complicated motions
– Gradient methods need good initial guess

• Feature based
– Fast
– No need for initial guess
– Can handle only global motion models

FeatureFeature--based registrationbased registration
• Detect feature points in both images

FeatureFeature--based registrationbased registration
• Detect feature points in both images

• Find corresponding pairs
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• Detect feature points in both images

• Find corresponding pairs

• Compute image transformation

FeatureFeature--based registrationbased registration Features: Issues to be addressedFeatures: Issues to be addressed

• What are “good” features to extract?
–Distinctive
–Invariant to different acquisition conditions

–Different view-points, different   
illuminations, different cameras, etc.

• How can we find corresponding features 
in both images?

no chance to match!

Given an image point in left image, what is the corresponding point in the right
image, which is the projection of the same 3-D point.   

Feature Correspondence Feature Correspondence --ExampleExample Image FeaturesImage Features

• Feature Detectors - where
• Feature Descriptors - what

• Methods:
– Harris Corner Detector (multi-scale Harris)
– SIFT (Scale Invariant Features Transform)
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Invariant Feature DescriptorsInvariant Feature Descriptors
• Schmid & Mohr 1997, Lowe 1999, Baumberg 2000, 

Tuytelaars & Van Gool 2000, Mikolajczyk & Schmid
2001, Brown & Lowe 2002, Matas et. al. 2002, 
Schaffalitzky & Zisserman 2002 

Harris Corner Detector Harris Corner Detector 
C.HarrisC.Harris, , M.StephensM.Stephens. . ““A Combined Corner and Edge DetectorA Combined Corner and Edge Detector””. 1988. 1988

• We should easily recognize a corner by 
looking through a small window

• Shifting a window in any direction should 
give a large change in intensity

Harris Detector: Basic IdeaHarris Detector: Basic Idea

“flat” region:
no change in 
all directions

“edge”:
no change along 
the edge direction

“corner”:
significant change 
in all directions

Harris Detector: MathematicsHarris Detector: Mathematics
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Change of intensity for shift in [u,v] direction:

IntensityShifted 
intensity

Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside
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Harris Detector: MathematicsHarris Detector: Mathematics
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Harris Detector: MathematicsHarris Detector: Mathematics
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where M is a 2×2 matrix computed from image derivatives:

Harris Detector: MathematicsHarris Detector: Mathematics

Denote by ei the ith eigen-vector of M  whose eigen-value is λi:

Conclusions:

0>= ii
T
i M λee

( ) ( ) max1, ,maxarg e== vuEvu

( ) maxmax λ=eE

Harris Detector: MathematicsHarris Detector: Mathematics
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Intensity change in shifting window: eigenvalue analysis

λ1, λ2 – eigenvalues of M

direction of the 
slowest change

direction of the 
fastest change

(λmax)-1/2

(λmin)-1/2

Ellipse E(u,v) = const
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Harris Detector: MathematicsHarris Detector: Mathematics

λ1

λ2

“Corner”
λ1 and λ2 are large,
λ1 ~ λ2;
E increases in all 
directions

λ1 and λ2 are small;
E is almost constant 
in all directions

“Edge”
λ1 >> λ2

“Edge”
λ2 >> λ1

“Flat”
region

Classification of 
image points using 
eigenvalues of M:

Harris Detector: MathematicsHarris Detector: Mathematics

Measure of corner response (without calculating the e.v.):

1 2

1 2
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R is associated with the smallest eigen-vector (why?)
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Harris Corner DetectorHarris Corner Detector

• The Algorithm:
– Find points with large corner response 

function  R (R > threshold)

– Take the points of local maxima of R

Harris Detector: WorkflowHarris Detector: Workflow
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Compute corner response R
Harris Detector: WorkflowHarris Detector: Workflow

Find points with large corner response: R>threshold
Harris Detector: WorkflowHarris Detector: Workflow

Take only the points of local maxima of R
Harris Detector: WorkflowHarris Detector: Workflow Harris Detector: WorkflowHarris Detector: Workflow
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Harris Detector: ExampleHarris Detector: Example Harris Detector: Some PropertiesHarris Detector: Some Properties

• Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) 
remains the same

Corner response R is invariant to image rotation

Harris Detector: Some PropertiesHarris Detector: Some Properties

Partial invariance to affine intensity change

 Only derivatives are used =>   invariance to intensity
shift I → I + b

 Intensity scale: I → a I

g

x (image coordinate)

threshold

g

x (image coordinate)

Harris Detector: Some PropertiesHarris Detector: Some Properties

• But: non-invariant to spatial scale!

All points will be 
classified as edges

Corner !
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Scale Invariant DetectionScale Invariant Detection

• Consider regions (e.g. circles) of different 
sizes around a point

• Regions of corresponding sizes will look 
the same in both images

Scale Invariant DetectionScale Invariant Detection
• The problem: how do we choose corresponding circles 

independently in each image?

• Solution: choose the scale of the “best” corner.

– Design a function on regions (circle).

Example: average intensity. For corresponding 
regions (even of different sizes) it will be the same.

– For a point in an image, we can consider it as 
a function of region size (circle radius) 

f

region size

Scale Invariant DetectionScale Invariant Detection Scale Invariant DetectionScale Invariant Detection
• Common approach:

scale = 1/2
f

region size

Image 1 f

region size

Image 2

Take a local maximum of this function

Observation: region size, for which the maximum 
is achieved, should be equivariant to image scale.

s1 s2

Important: this scale invariant region size is 
found in each image independently!
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• A “good” function for scale detection: has 
one stable sharp peak

f

region size

bad

f

region size

bad

f

region size

Good !

• For usual images: a good function would be one that  
responds to contrast (sharp local intensity change)

Scale Invariant DetectionScale Invariant Detection HarrisHarris--LaplacianLaplacian Point DetectorPoint Detector

• Harris-Laplacian
Find local maximum of:  Harris corner detector 
for a set of Laplacian images.

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
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Harris Harris -- LaplacianLaplacian DetectorDetector
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SIFT SIFT –– Scale Invariant Feature TransformScale Invariant Feature Transform

David G. Lowe, “Distinctive image features from scale-invariant keypoints”, 
International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

- Find local maximum of Laplacian in 
space and scale

scale

x

y

← Laplacian →

←
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SIFT SIFT -- Point DetectionPoint Detection
• Construct scale-space:

σ increasing

First octave Second octave

( ) IG *σ

( ) IkG *σ
( ) IkG *2σ

( ) IG *2σ

( ) IkG *2 σ

( ) IkG *2 2σ

SIFT SIFT –– Scale SpaceScale Space

• Scale Space extrema detection.
• Choose all extrema within 3x3x3 neighborhood.

( )σD

( )σkD

( )σ2kD

SIFT SIFT –– point detectionpoint detection
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SIFT SIFT –– point detectionpoint detection

832 SIFT extrema233x189 image

SIFT SIFT –– point detectionpoint detection

Scale Invariant Detection: SummaryScale Invariant Detection: Summary

• Given: two images of the same scene with a large 
scale difference between them

• Goal: find the same interest points independently in 
each image

• Solution: search for maxima of suitable functions in 
scale and in space (over the image)

Methods: 
1. Harris-Laplacian [Mikolajczyk, Schmid]: maximize Laplacian over 

scale, Harris’ measure of corner response over the image

2. SIFT [Lowe]: maximize Laplacian over scale and space

One More thingOne More thing……. Feature selection. Feature selection
• Want feature points to be distributed approx 

evenly over the image.
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Adaptive NonAdaptive Non--maximal Suppressionmaximal Suppression
Desired: Fixed # of features per image

– Want evenly distributed spatially…
– Sort points by non-maximal suppression radius

[Brown, Szeliski, Winder, CVPR’05]

Feature descriptorsFeature descriptors
• We know how to detect points
• Next question: How to match them?
• Solution: Generate point descriptors

?
Point descriptor should be:

1. Invariant 2.  Distinctive

Invariant Point DescriptorsInvariant Point Descriptors
Image content is transformed into local feature 
coordinates that are invariant to translation, rotation, 
scale, and other imaging parameters

Features Descriptors

Descriptors Invariant to Scale + Rotation + ContrastDescriptors Invariant to Scale + Rotation + Contrast

• Local scale is given by the feature 
detection procedure.

• Local orientation - find dominant direction 
of gradient. Compute image 
descriptors/features relative to this orientation 
(e.g. derivatives)

• Normalize image descriptors/features relative to 
scale and orientation and relative to patch contrast. 

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004
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Descriptors Invariant to Rotation, Scale, Descriptors Invariant to Rotation, Scale, 
IntensityIntensity

• SIFT Feature point is associated with: location, Orientation, Scale.
• SIFT Descriptor is a vector of 128 values   each between [0 -1]

SIFT = Scale Invariant Feature Transform

David G. Lowe,
“Distinctive image features from scale-invariant keypoints”, 
International Journal of Computer Vision, 60, 2 (2004), pp. 91-110

• DOG (laplacian Pyramid): take differences.

SIFT SIFT -- Step 1: Interest Point DetectionStep 1: Interest Point Detection

• Scale Space extrema detection.
• Choose all extrema within 3x3x3 

neighborhood.

( )σD

( )σkD

( )σ2kD

SIFT SIFT -- Step 1: Interest Point DetectionStep 1: Interest Point Detection
Detections at multiple scalesDetections at multiple scales

SIFT SIFT -- Step 1: Interest Point DetectionStep 1: Interest Point Detection

Some of the detected SIFT frames. 

http://www.vlfeat.org/overview/sift.html
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Interest PointsInterest Points

832 DOG extrema233x189 image

1) Improve localization of Interest points.

SIFT SIFT -- Step 2: Interest Localization & FilteringStep 2: Interest Localization & Filtering

x

Detected Extrema

True Extrema

For each maximum, fit quadratic function. Compute center with sub-pixel
accuracy by setting first derivative to zero

SIFT SIFT -- Step 2: Interest Localization & FilteringStep 2: Interest Localization & Filtering

2) Remove bad Interest points:
a) Remove points with low contrast
b) Remove Edge points (Eigenvalues of    

Hessian Matrix must BOTH be large).

(c) 729 left after peak value threshold (from 832)
(d) 536 left after testing ratio of principle curvatures

Interest PointsInterest Points
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SIFT SIFT –– Descriptor VectorDescriptor Vector

0 2π

• Each SIFT interest point is associated with 
location (x,y) and scale (σ)

• Compute gradient magnitude and orientation for 
each SIFT point:

– Create histogram of local gradient 
directions computed at selected 
scale

– Assign canonical orientation at 
peak of smoothed histogram

STEP 3: Select canonical orientation  
SIFT SIFT –– Descriptor VectorDescriptor Vector
STEP 3: Select canonical orientation  

• Compute SIFT feature - a vector of 128 entries.

• Each SIFT interest point is associated 
with location (x,y), scale (σ), gradient 
magnitude and orientation (m, θ).

• Gradients determined in 16x16 window at SIFT point in 
scale space.

• Histogram is computed for gradients of each 4x4 sub 
window in 8 relative directions.

• A 4x4x8 = 128 dimensional feature vector is produced.

SIFT SIFT –– Descriptor VectorDescriptor Vector

Image from: Jonas Hurrelmann

SIFT SIFT –– Descriptor VectorDescriptor Vector
STEP 4: Compute feature vector  
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SIFT SIFT –– Scale Invariant Feature TransformScale Invariant Feature Transform
• Empirically found2 to show very good performance, 

invariant to image rotation, scale, intensity change, 
and to moderate affine transformations

1 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004
2 K.Mikolajczyk, C.Schmid. “A Performance Evaluation of Local Descriptors”. CVPR 2003

Scale = 2.5
Rotation = 450

3D Object Recognition3D Object Recognition

• Only 3 keys are 
needed for recognition, 
so extra keys provide 
robustness

Recognition under occlusionRecognition under occlusion Test of illumination RobustnessTest of illumination Robustness

• Same image under differing illumination

273 keys verified in final match
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Cases where SIFT didnCases where SIFT didn’’t workt work

• Same object under differing illumination
• 43 keypoints in left image and the corresponding 

closest keypoints on the right (1 for each)

Feature matchingFeature matching

?

Feature matchingFeature matching

• Exhaustive search
– for each feature in one image, look at all the 

other features in the other image(s)
• Hashing

– compute a short descriptor from each 
feature vector, or hash longer descriptors 
(randomly)

• Nearest neighbor techniques
– kd-trees and their variants

?

What about outliers?What about outliers?
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All red points are outliers

Matching featuresMatching features

What do we do about the “bad” matches?

RANSACRANSAC

• RANSAC = Random Sample Consensus

• An algorithm for robust fitting of models in the 
presence of many data outliers

• Given N data points {xi}, assume that mjority of 
them are generated from a model with 
parameters Θ, try to recover Θ

Example: line fittingExample: line fitting
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n=2

Example: line fittingExample: line fitting Model fittingModel fitting

Measure distancesMeasure distances Count inliersCount inliers

c=3
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Another trialAnother trial

c=3

The best modelThe best model

c=15

Matching featuresMatching features

Ground Truth

RANSACRANSAC

Select one match, count inliers
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Least squares fitLeast squares fit

Find “average” translation vector

RANSAC algorithmRANSAC algorithm

Run k times:
(1) draw n samples randomly
(2) fit parameters Θ with these n samples
(3) for each of other N-n points, calculate   

their distance to the fitted model, count the   
number of inlier points, c

Output Θ with the largest c

How many times?

How big? 
Smaller is better

How to define?
Depends on the problem.

How to determine n ?How to determine n ?

• Minimum n value depends on Model.
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How to determine kHow to determine k
• p: probability of real inliers
• P: probability of success after k trials

knpP )1(1 −−=
n samples are all inliers

a failure

failure after k trials

)1log(
)1log(

np
Pk

−
−

=

2930.56
970.66
350.53
kpn

for P=0.99
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RANSAC for estimating RANSAC for estimating homographyhomography

RANSAC loop:
1. Select four feature pairs (at random)
2. Compute homography H (exact)
3. Compute inliers where  SSD(pi’, H pi) < ε
4. Keep largest set of inliers
5. Re-compute least-squares H estimate on all of the 

inliers

RANSACRANSAC

RANSAC for RANSAC for HomographyHomography RANSAC for RANSAC for HomographyHomography
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RANSAC for RANSAC for HomographyHomography Example Application Example Application -- MosaicingMosaicing

• 1D Rotations (θ)
– Ordering ⇒ matching images

2D Rotations (θ, φ)
• Ordering ⇒ matching images

Finding the panoramasFinding the panoramas Finding the panoramasFinding the panoramas
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Finding the panoramasFinding the panoramas Finding the panoramasFinding the panoramas

ResultsResults Next LecturesNext Lectures

• How to build Panoramas
• How to compose seamlessly image parts 
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Feature Based Image RegistrationFeature Based Image Registration

• Detect feature points in both images

• Find corresponding pairs

• Compute image transformation

• Harris Corner Detection

• Sift Feature Detector

• RANSAC - Random Sample Consensus


