
The Verilog Language
COMS W4995-02

Prof. Stephen A. Edwards
Fall 2002

Columbia University
Department of Computer Science

The Verilog Language

Originally a modeling language for a very efficient
event-driven digital logic simulator

Later pushed into use as a specification language for logic
synthesis

Now, one of the two most commonly-used languages in
digital hardware design (VHDL is the other)

Virtually every chip (FPGA, ASIC, etc.) is designed in part
using one of these two languages

Combines structural and behavioral modeling styles

Multiplexer Built From Primitives
module mux(f, a, b, sel); Verilog programs

built from modulesoutput f;
input a, b, sel;

Each module has
an interface

and g1(f1, a, nsel),
g2(f2, b, sel);

or g3(f, f1, f2);
not g4(nsel, sel); Module may contain

structure: instances of
primitives and other
modules

endmodule

g1
g4

g2

g3

a

b

sel

f
nsel

f1

f2

Multiplexer Built with Always
module mux(f, a, b, sel);
output f;
input a, b, sel;
reg f;

always

Modules may
contain one or more
always blocks

@(a or b or sel) Sensitivity list
contains signals
whose change
makes the block
execute

if (sel) f = a;
else f = b;

endmodule

a

b

sel

f

Multiplexer Built with Always
module mux(f, a, b, sel);
output f;
input a, b, sel;
reg f;

A reg behaves like
memory: holds its value
until imperatively
assigned otherwise

always @(a or b or sel)
if (sel) f = a;
else f = b;

Body of an always block
contains traditional
imperative code

endmodule

a

b

sel

f

Mux with Continuous Assignment
module mux(f, a, b, sel);
output f;
input a, b, sel;

assign
LHS is always set to
the value on the RHS

Any change on the right
causes reevaluation

f = sel ? a : b;

endmodule

a

b

sel

f

Mux with User-Defined Primitive
primitive mux(f, a, b, sel);
output f;
input a, b, sel;

table
1?0 : 1;

Behavior defined using
a truth table that
includes “don’t cares”

0?0 : 0;
?11 : 1;
?01 : 0;
11? : 1;

This is a less pessimistic than
others: when a & b match, sel is
ignored; others produce X

00? : 0;
endtable
endprimitive

a

b

sel

f

How Are Simulators Used?

Testbench generates stimulus and checks response

Coupled to model of the system

Pair is run simultaneously

Testbench System Model

Stimulus

Response
Result checker

Structural Modeling

When Verilog was first developed (1984) most logic
simulators operated on netlists

Netlist: list of gates and how they’re connected

A natural representation of a digital logic circuit

Not the most convenient way to express test benches

Behavioral Modeling

A much easier way to write testbenches

Also good for more abstract models of circuits

• Easier to write

• Simulates faster

More flexible

Provides sequencing

Verilog succeeded in part because it allowed both the
model and the testbench to be described together

How Verilog Is Used

Virtually every ASIC is designed using either Verilog or
VHDL (a similar language)

Behavioral modeling with some structural elements

“Synthesis subset” can be translated using Synopsys’
Design Compiler or others into a netlist

Design written in Verilog

Simulated to death to check functionality

Synthesized (netlist generated)

Static timing analysis to check timing

Two Main Components of Verilog:
Behavioral

Concurrent, event-triggered processes (behavioral)

Initial and Always blocks

Imperative code that can perform standard data
manipulation tasks (assignment, if-then, case)

Processes run until they delay for a period of time or wait
for a triggering event

Two Main Components of Verilog:
Structural

Structure (Plumbing)

Verilog program build from modules with I/O interfaces

Modules may contain instances of other modules

Modules contain local signals, etc.

Module configuration is static and all run concurrently

Two Main Data Types: Nets

Nets represent connections between things

Do not hold their value

Take their value from a driver such as a gate or other
module

Cannot be assigned in an initial or always block

Two Main Data Types: Regs

Regs represent data storage

Behave exactly like memory in a computer

Hold their value until explicitly assigned in an initial or
always block

Never connected to something

Can be used to model latches, flip-flops, etc., but do not
correspond exactly

Actually shared variables with all their attendant problems

Discrete-event Simulation

Basic idea: only do work when something changes

Centered around an event queue that contains events
labeled with the simulated time at which they are to be
executed

Basic simulation paradigm

• Execute every event for the current simulated time

• Doing this changes system state and may schedule
events in the future

• When there are no events left at the current time
instance, advance simulated time soonest event in the
queue

Four-valued Data

Verilog’s nets and registers hold four-valued data

0, 1: Obvious

Z: Output of an undriven tri-state driver. Models case
where nothing is setting a wire’s value

X: Models when the simulator can’t decide the value

• Initial state of registers

• When a wire is being driven to 0 and 1 simultaneously

• Output of a gate with Z inputs

Four-valued Logic

Logical operators work on three-valued logic

0 1 X Z

0 0 0 0 0
Outputs 0 if either
input is 0

1 0 1 X X

X 0 X X X Outputs X if both
inputs are gibberishZ 0 X X X

Structural Modeling

Nets and Registers

Wires and registers can be bits, vectors, and arrays

wire a; // Simple wire

tri [15:0] dbus; // 16-bit tristate bus

tri #(5,4,8) b; // Wire with delay

reg [-1:4] vec; // Six-bit register

trireg (small) q; // Wire stores a small charge

integer imem[0:1023]; // Array of 1024 integers

reg [31:0] dcache[0:63]; // A 32-bit memory

Modules and Instances

Basic structure of a Verilog module:

module mymod(out1, out2,

Verilog convention
lists outputs first

in1, in2);

output out1;

output [3:0] out2;

input in1;

input [2:0] in2;

endmodule

Instantiating a Module

Instances of

module mymod(y, a, b);

look like

mymod mm1(y1, a1, b1); // Connect-by-position

mymod (y2, a1, b1),

(y3, a2, b2); // Instance names omitted

// Connect-by-name

mymod mm2(.a(a2), .b(b2), .y(c2));

Gate-level Primitives

Verilog provides the following:

and nand logical AND/NAND

or nor logical OR/NOR

xor xnor logical XOR/XNOR

buf not buffer/inverter

bufif0 notif0 Tristate with low enable

bifif1 notif1 Tristate with high enable

Delays on Primitive Instances

Instances of primitives may include delays

buf b1(a, b); // Zero delay

buf #3 b2(c, d); // Delay of 3

buf #(4,5) b3(e, f); // Rise=4, fall=5

buf #(3:4:5) b4(g, h); // Min-typ-max

Switch-level Primitives

Verilog also provides mechanisms for modeling CMOS
transistors that behave like switches

A more detailed modeling scheme that can catch some
additional electrical problems when transistors are used in
this way

Now, little-used because circuits generally aren’t built this
way

More seriously, model is not detailed enough to catch
many of the problems

These circuits are usually simulated using SPICE-like
simulators based on nonlinear differential equation solvers

User-Defined Primitives

Way to define gates and sequential elements using a truth
table

Often simulate faster than using expressions, collections
of primitive gates, etc.

Gives more control over behavior with X inputs

Most often used for specifying custom gate libraries

A Carry Primitive

primitive carry(out, a, b, c);

output out;
Always has exactly
one output

input a, b, c;

table

00? : 0;

0?0 : 0;

?00 : 0;

Truth table may include
don’t-care (?) entries

11? : 1;

1?1 : 1;

?11 : 1;

endtable

endprimitive

A Sequential Primitive
Primitive dff(q, clk, data);

output q; reg q;

input clk, data;

table

// clk data q new-q

(01) 0 : ? : 0; // Latch a 0
(01) 1 : ? : 1; // Latch a 1
(0x) 1 : 1 : 1; // Hold when d and q both 1
(0x) 0 : 0 : 0; // Hold when d and q both 0
(?0) ? : ? : -; // Hold when clk falls
? (??) : ? : -; // Hold when clk stable
endtable

endprimitive

Continuous Assignment

Another way to describe combinational function

Convenient for logical or datapath specifications

wire [8:0] sum; Define bus widths

wire [7:0] a, b;

wire carryin;

assign sum = a + b + carryin;

Continuous
assignment:
permanently
sets the value of
sum to be
a+b+carryin.
Recomputed
when a, b, or
carryin changes

Behavioral Modeling

Initial and Always Blocks

initial
begin
// imperative statements

end

Runs when simulation starts

Terminates when control
reaches the end

Good for providing stimulus

always
begin
// imperative statements

end

Runs when simulation starts

Restarts when control
reaches the end

Good for modeling or
specifying hardware

Initial and Always

Run until they encounter a delay

initial begin
#10 a = 1; b = 0;
#10 a = 0; b = 1;

end

or a wait for an event

always @(posedge clk) q = d;

always begin
wait(i);
a = 0;
wait(˜i);
a = 1;

end

Procedural Assignment

Inside an initial or always block:

sum = a + b + cin;

Just like in C: RHS evaluated and assigned to LHS before
next statement executes

RHS may contain wires and/or regs

LHS must be a reg

(only primitives or continuous assignment may set wire
values)

Imperative Statements

if (select == 1) y = a;

else y = b;

case (op)

2’b00: y = a + b;

2’b01: y = a - b;

2’b10: y = a ˆ b;

default: y = ’hxxxx;

endcase

For Loops

Example generates an increasing sequence of values on
an output

reg [3:0] i, output;

for (i = 0 ; i <= 15 ; i = i + 1) begin

output = i;

#10;

end

While Loops

A increasing sequence of values on an output

reg [3:0] i, output;

i = 0;

while (i <= 15) begin

output = i;

#10 i = i + 1;

end

Modeling A Flip-Flop With Always

Very basic: an edge-sensitive flip-flop

reg q;

always @(posedge clk)

q = d;

q = d assignment runs when clock rises: exactly the
behavior you expect

Blocking vs. Nonblocking

Verilog has two types of procedural assignment

Fundamental problem:

• In a synchronous system, all flip-flops sample
simultaneously

• In Verilog, always @(posedge clk) blocks run in
some undefined sequence

A Flawed Shift Register

This does not work as you would expect:

reg d1, d2, d3, d4;

always @(posedge clk) d2 = d1;

always @(posedge clk) d3 = d2;

always @(posedge clk) d4 = d3;

These run in some order, but you don’t know which

Non-blocking Assignments

This version does work:

reg d1, d2, d3, d4;

always @(posedge clk) d2 <= d1;

Nonblocking rule:
RHS evaluated
when assignment
runs

always @(posedge clk) d3 <= d2;

always @(posedge clk) d4

LHS updated only
after all events for
the current instant
have run

<= d3;

Nonblocking Can Behave Oddly

A sequence of nonblocking assignments don’t
communicate

a = 1;

b = a;

c = b;

Blocking assignment:
a = b = c = 1

a <= 1;

b <= a;

c <= b;

Nonblocking assignment:
a = 1
b = old value of a
c = old value of b

Nonblocking Looks Like Latches

RHS of nonblocking taken from latches

RHS of blocking taken from wires

a = 1;

b = a;

c = b;
“1 c

a b ”

a <= 1;

b <= a;

c <= b;
“

1

c

a

b
”

Building Behavioral Models

Modeling FSMs Behaviorally

There are many ways to do it:

• Define the next-state logic combinationally and define
the state-holding latches explicitly

• Define the behavior in a single always @(posedge

clk) block

• Variations on these themes

FSM with Combinational Logic
module FSM(o, a, b, reset);
output o;
reg o;

Output o is declared a reg
because it is assigned
procedurally, not because it
holds state

input a, b, reset;
reg [1:0] state, nextState;

always @(a or b or state)
case (state)

2’b00: begin
o = a & b;
nextState = a ? 2’b00 : 2’b01;

end
2’b01: begin

o = 0; nextState = 2’b10;
end

endcase

always @(posedge clk or reset)
if (reset)
state <= 2’b00;

else
state <= nextState;

endmodule

FSM with Combinational Logic
module FSM(o, a, b, reset);
output o;
reg o;
input a, b, reset;
reg [1:0] state, nextState;

always @(a or b or state)

Combinational block must be
sensitive to any change on any
of its inputs (Implies
state-holding elements
otherwise)

case (state)
2’b00: begin

o = a & b;
nextState = a ? 2’b00 : 2’b01;

end
2’b01: begin

o = 0; nextState = 2’b10;
end

endcase

always @(posedge clk or reset)

Latch implied by
sensitivity to the clock
or reset only

if (reset)
state <= 2’b00;

else
state <= nextState;

endmodule

FSM from a Single Always Block
module FSM(o, a, b);
output o; reg o;
input a, b;
reg [1:0] state;

always @(posedge clk or reset)

Expresses Moore
machine behavior:
Outputs are latched.
Inputs only sampled
at clock edgesif (reset) state <= 2’b00;

else case (state)
2’b00: begin

state <= a ? 2’b00 : 2’b01;
o <= a & b;

end
2’b01: begin

state <= 2’b10;
o <= 0;

Nonblocking assignments
used throughout to ensure
coherency. RHS refers to
values calculated in
previous clock cycle

end
endcase

Writing Testbenches
module test;
reg a, b, sel;

Inputs to device
under test

mux m(y, a, b, sel);

Device under test

initial begin
$monitor

$monitor is a built-in even-driven “printf”

($time,,"a=%b b=%b sel=%b y=%b",
a, b, sel, y);

a = 0; b= 0; sel = 0;
#10 a = 1;
#10 sel = 1;

Stimulus generated by
sequence of
assignments and
delays

#10 b = 1;
end

Simulating Verilog

Simulation Behavior

Scheduled using an event queue

Non-preemptive, no priorities

A process must explicitly request a context switch

Events at a particular time unordered

Scheduler runs each event at the current time, possibly
scheduling more as a result

Two Types of Events

Evaluation events compute functions of inputs

Update events change outputs

Split necessary for delays, nonblocking assignments, etc.

Update event writes
new value of a and
schedules any
evaluation events
that are sensitive to
a change on a

a <= b + c
Evaluation event
reads values of b
and c, adds them,
and schedules an
update event

Simulation Behavior

Concurrent processes (initial, always) run until they stop
at one of the following

• #42

Schedule process to resume 42 time units from now

• wait(cf & of)

Resume when expression “cf & of” becomes true

• @(a or b or y)

Resume when a, b, or y changes

• @(posedge clk)

Resume when clk changes from 0 to 1

Simulation Behavior

Infinite loops are possible and the simulator does not
check for them This runs forever: no context switch
allowed, so ready can never change

while (˜ready)

count = count + 1;

Instead, use

wait(ready);

Simulation Behavior

Race conditions abound in Verilog

These can execute in either order: final value of a
undefined:

always @(posedge clk) a = 0;

always @(posedge clk) a = 1;

Simulation Behavior

Semantics of the language closely tied to simulator
implementation

Context switching behavior convenient for simulation, not
always best way to model

Undefined execution order convenient for implementing
event queue

Compiled-Code Discrete-Event Sim.

Most modern simulators use this approach

Verilog program compiled into C

Each concurrent process (e.g., continuous assignment,
always block) becomes one or more C functions

Initial and always blocks split into multiple functions, one
per segment of code between a delay, a wait, or event
control (@)

Central, dynamic event queue invokes these functions and
advances simulation time

Verilog and Logic Synthesis

Logic Synthesis

Verilog is used in two ways

Model for discrete-event simulation

Specification for a logic synthesis system

Logic synthesis converts a subset of the Verilog language
into an efficient netlist

One of the major breakthroughs in designing logic chips in
the last 20 years

Most chips are designed using at least some logic
synthesis

Logic Synthesis Tools
Mostly commercial tools

• Very difficult, complicated programs to write well

• Limited market

• Commercial products in $10k – $100k price range

Major vendors

• Synopsys Design Compiler, FPGA Express

• Cadence BuildGates

• Synplicity (FPGAs)

• Exemplar (FPGAs)

Academic tools

• SIS (UC Berkeley)

Logic Synthesis

Takes place in two stages:

1. Translation of Verilog (or VHDL) source to a netlist

Register inference performed here

2. Optimization of the resulting netlist to improve speed
and area

Most critical part of the process

Algorithms very complicated and beyond the scope of
this class: Take Prof. Nowick’s class for details

Logic Optimization

Netlist optimization the critical enabling technology

Takes a slow or large netlist and transforms it into one that
implements the same function more cheaply

Typical operations:

• Constant propagation

• Common subexpression elimination

• Function factoring

Time-consuming operation. Can take hours for large chips

Translating Verilog into Gates

Parts of the language easy to translate

Structural descriptions with primitives is already a netlist

Continuous assignment expressions turn into little
datapaths

Behavioral statements the bigger challenge

What Can Be Translated

Every structural definition

Behavioral blocks

• Depends on sensitivity list

• Only when they have reasonable interpretation as
combinational logic, edge, or level-sensitive latches

• Blocks sensitive to both edges of the clock, changes on
unrelated signals, changing sensitivity lists, etc. cannot be
synthesized

User-defined primitives

• Primitives defined with truth tables

• Some sequential UDPs can’t be translated (not latches or
flip-flops)

What Is Not Translated

Initial blocks

• Used to set up initial state or describe finite testbench stimuli

• Don’t have obvious hardware component

Delays

• May be in the Verilog source, but are simply ignored

A variety of other obscure language features

• In general, things heavily dependent on discrete-event
simulation semantics

• Certain “disable” statements

• Pure events

Register Inference

The main trick

A reg is not always a latch or flip-flop

Rule: Combinational if outputs always depend exclusively
on sensitivity list

Sequential if outputs may also depend on previous values

Register Inference

Combinational:
reg y;

always @(a or b or sel)

Sensitive to
changes on all the
variable it reads

if (sel) y = a;

else y = b; y is always assigned

Sequential:
reg q;

always @(d or clk)

if (clk) q = d;
q only assigned
when clk is 1

Register Inference

A common mistake is not completely specifying a case

statement

This implies a latch:

always @(a or b)

case ({a, b})

2’b00 : f = 0;

2’b01 : f = 1;

2’b10 : f = 1;

endcase
f is not assigned when
{a,b}= 2’b11

Register Inference

The solution is to always have a default case

always @(a or b)

case ({a, b})

2’b00 : f = 0;

2’b01 : f = 1;

2’b10 : f = 1;

default : f = 0; f is always assigned

endcase

Inferring Latches with Reset

Latches and Flip-flops often have reset inputs

Can be synchronous or asynchronous

Asynchronous positive reset:

always @(posedge clk or posedge reset)

if (reset)

q <= 0;

else q <= d;

Simulation-synthesis Mismatches

Many possible sources of conflict

• Synthesis ignores delays (e.g., #10), but simulation
behavior can be affected by them

• Simulator models X explicitly, synthesis does not

• Behaviors resulting from shared-variable-like behavior
of regs is not synthesized:

always @(posedge clk) a = 1;

New value of a may be seen by other @(posedge clk)
statements in simulation, never in synthesis

Summary

Summary of Verilog

Systems described hierarchically

• Modules with interfaces

• Modules contain instances of primitives, other
modules

• Modules contain initial and always blocks

Based on discrete-event simulation semantics

• Concurrent processes with sensitivity lists

• Scheduler runs parts of these processes in response
to changes

Modeling Tools

Switch-level primitives: CMOS transistors as switches that
move around charge

Gate-level primitives: Boolean logic gates

User-defined primitives: Gates and sequential elements
defined with truth tables

Continuous assignment: Modeling combinational logic
with expressions

Initial and always blocks: Procedural modeling of behavior

Language Features
Nets (wires) for modeling interconnection

• Non state-holding

• Values set continuously

Regs for behavioral modeling

• Behave exactly like memory for imperative modeling

• Do not always correspond to memory elements in
synthesized netlist

Blocking vs. nonblocking assignment

• Blocking behaves like normal “C-like” assignment

• Nonblocking delays update, modeling synchronous
behavior

Language Uses

Event-driven simulation

• Event queue containing things to do at particular
simulated times

• Evaluate and update events

• Compiled-code event-driven simulation for speed

Logic synthesis

• Translating Verilog (structural and behavioral) into
netlists

• Register inference: whether output is always updated

• Logic optimization for cleaning up the result

Little-used Language Features

Switch-level modeling

• Much slower than gate or behavioral-level models

• Insufficient detail for modeling most electrical
problems

• Delicate electrical problems simulated with a
SPICE-like differential equation simulator

Little-used Language Features

Delays

• Simulating circuits with delays does not improve
confidence enough

• Hard to get timing models accurate enough

• Never sure you have simulated the worst case

• Static timing analysis has taken its place

Compared to VHDL

Verilog and VHDL are comparable languages

VHDL has a slightly wider scope

• System-level modeling

• Exposes even more discrete-event machinery

VHDL is better-behaved: Fewer sources of
nondeterminism (e.g., no shared variables)

VHDL is harder to simulate quickly

VHDL has fewer built-in facilities for hardware modeling

VHDL is a much more verbose language: Most examples
don’t fit on slides

In Conclusion

Verilog is a deeply flawed language

• Nondeterministic

• Often weird behavior due to discrete-event semantics

• Vaguely defined synthesis subset

• Many possible sources of simulation/synthesis
mismatch

In Conclusion

Verilog is widely used because it solves a problem

• Good simulation speed that continues to improve

• Designers use a well-behaved subset of the language

• Makes a reasonable specification language for logic
synthesis

• Logic synthesis one of the great design automation
success stories

