
O. Goldshmidt (Haifa U): Operating Systems

Protection and Security

Operating Systems

Oleg Goldshmidt
ogoldshmidt@computer.org

Lecture 11

– p.1/38

O. Goldshmidt (Haifa U): Operating Systems

Basic Notions I
system resources

physical (hardware) resources: CPU, memory,
devices, etc.
logical (software) resources: files, programs, data
structures, objects

protection: internal mechanisms for controlling the
access of processes and/or users to the system
resources according to predefined rules and policies

specification of controls
enforcement

– p.2/38

O. Goldshmidt (Haifa U): Operating Systems

Basic Notions II
security: protection against unauthorized access to,
destruction, alteration, or excessive consumption of the
system resources

malice
incompetence
stupidity

common wisdom: “never attribute to malice what can be
adequately explained by stupidity”
security: does not believe in absense of malice
security is a broader topic than protection

– p.3/38

O. Goldshmidt (Haifa U): Operating Systems

Protection Goals
no one is trustworthy

users don’t trust each other
the OS does not trust anybody
neither the OS nor the users trust the rest of the
universe

resources must be shared in a multiprogramming
environment
it is essential to reconcile these two notions to increase
reliability

prevent hostile attacks or mischief
prevent, detect, fix errors

– p.4/38

O. Goldshmidt (Haifa U): Operating Systems

Mechanisms and Policies
protection deals with mechanisms for enforcement of
policies
mechanism: how
policy: what
establishing control policies

fixed in the system design
configured by the system administrator
configured by users to protect their own resources
application-dependent policies

protection system must be sufficiently flexible to support
a variety of policies that may change over time

– p.5/38

O. Goldshmidt (Haifa U): Operating Systems

Processes and Objects
computer system: processes and objects

hardware objects: CPU, memory segments, devices
software objects: files, programs, functions,
semaphores, etc.

objects have names and operations — abstract data
types
operations are object-dependent

CPU — execute
memory segment — read and write
tape — read, write, rewind
data files — create, open, read, write, delete
program file — also execute, etc.

– p.6/38

O. Goldshmidt (Haifa U): Operating Systems

The Need-To-Know Principle
a process should be able to access only those
resources it currently requires — the need-to-know
principle
useful to limit potential damage if anything goes wrong

Murphy’s law works!
when a process calls function foo() the latter should
access its arguments and its local variables

what about globals?
what if the process is a compiler?

what files can the compiler access?
who can access the compiler?

– p.7/38

O. Goldshmidt (Haifa U): Operating Systems

Protection Domains
a process operates within a protection domain
a domain defines a set of objects and the allowed
operations on each object
the ability to execute an operation on an object is called
an access right
an access right is an ordered pair:
<object-id,rights-set>

example: <file foo, {read,write}>

a domain is a collection of access rights
domains may overlap

– p.8/38

O. Goldshmidt (Haifa U): Operating Systems

Processes and Protection Domains
static association

relatively simple, but it is easy to violate the
need-to-know principle
e.g., a process executes in two phases, needs read
access to an object in phase 1, write in phase 2
static solution: give the process both read and write
access rights — violates the need-to-know principle

dynamic association
a mechanism must be provided to switch a process
from one domain to another
and/or change the contents of a domain
if the latter is not possible we can always create a
new domain and switch

– p.9/38

O. Goldshmidt (Haifa U): Operating Systems

Domain Realization
each user may be a domain

the set of objects and rights depends on the user id
domain switching occurs when the user id is
changed

one user logs out, another logs in
an “effective user id” is changed

each process may be a domain
domain switching corresponds to one process
sending a message to another process and waiting
for a response

each procedure may be a domain
object set — local variables and arguments
domain switching on procedure call

– p.10/38

O. Goldshmidt (Haifa U): Operating Systems

UNIX Protection Domains
userid-based
file permissions (rwx)

everything is a file!
including devices, sockets, etc.

setuid bit
-rwsr-xr-x 1 root root 23332 Oct 11 2004 /bin/traceroute

directory permissions
r--, --x, r-x, rwx, etc.

setgid bit
drwxr-sr-x 2 olegg os 768 Jan 7 21:14 Lectures

drwxrwsr-x 2 olegg os 1112 Jan 8 22:36 Drills

must be very careful with executables
– p.11/38

O. Goldshmidt (Haifa U): Operating Systems

Changing User ID
real, effective, and saved user IDs

real are set on login, can only be changed by
administrator
effective are used for file access permissions
effective user IDs are set by the exec() functions if
the SUID bit is set for the executable

the code should revoke any extra privileges as
soon as they are no longer needed!

if effective user ID is changed, exec() saves the
value in a saved user ID, to restore later

setuid(), setgid()
superuser can change all the IDs, a regular user can
only change the effective ID

– p.12/38

O. Goldshmidt (Haifa U): Operating Systems

Alternative User Domains
special directory for privileged programs

change effective userid when running a program in
that directory
effective uid — the directory owner
less flexible

not allowing changes of user id (TOPS-20)
special facilities for access to privileged facilities

start system daemons on boot with privileged user
id
regular users send requests to the daemons

– p.13/38

O. Goldshmidt (Haifa U): Operating Systems

Access Matrix
Aij defines the set of operations (access rights)
permitted in domain Di on object Oj

objects file1 file2 file3 printer
D1 read read
D2 print
D3 read execute
D4 read read

write write

process-domain association is decided by the OS
the contents of the matrix are decided by users

– p.14/38

O. Goldshmidt (Haifa U): Operating Systems

Domain Switching
add domains to Aij as objects, define a switch operation

objects F1 F2 F3 P1 D1 D2 D3 D4

D1 R R S

D2 P S S

D3 R X

D4 RW RW S

how to change Aij? is it an object? is every entry an
object?
need additional operations: copy, owner, and control

– p.15/38

O. Goldshmidt (Haifa U): Operating Systems

Copy And Owner Rights

objects F1 F2 F3

D1 X Wc

D2 X Rc X

D3 X

objects F1 F2 F3

D1 X Wc

D2 X Rc X

D3 X R

variants: copy, transfer, limited copy

obj F1 F2 F3

D1 OX W

D2 RcO RcOWc

D3 X

obj F1 F2 F3

D1 OX W

D2 ORcWc RcOWc

D3 W W

– p.16/38

O. Goldshmidt (Haifa U): Operating Systems

Control Rights
copy and owner allow modifying entries in a column
control allows modifying entries in a row

applicable only to domain objects

objects F1 F2 F3 P1 D1 D2 D3 D4

D1 R R S

D2 P S SC

D3 R X

D4 W W S

confinement problem: information held by an object can
leak outside of its execution environment

– p.17/38

O. Goldshmidt (Haifa U): Operating Systems

Implementation Of Access Matrix I
global table: ordered triples
<domain,object,rights>

large, often cannot be held in memory, needs
additional I/O
e.g., an object is globally readable

needs an entry for every domain
access list for objects: describes columns of the matrix,
ordered pair <domain,rights> for each object

can add a default set of rights, check it before
searching the list

– p.18/38

O. Goldshmidt (Haifa U): Operating Systems

Implementation Of Access Matrix II
capability list for domains: describes rows of the matrix,
ordered pair <object,rights> per domain

capability list itself is a protected object, maintained
by the OS and inaccessible to processes
protection can be achieved, e.g., by using
segmentation

lock-key mechanism
each object has a list of unique bit patterns (“locks”)
each domain has a list of unique bit patterns (“keys”)
a process running in a domain can access an object
only if it has a key that matches one of the locks
the key lists must be protected, managed by OS

– p.19/38

O. Goldshmidt (Haifa U): Operating Systems

Comparison Of The Implementations I
access lists

correspond directly to the needs of users
domain rights are difficult to determine
every access requires a search

capability lists
useful for localizing information for a particular
process
the protection system must only verify that the
capability is valid
revocation may be inefficient

– p.20/38

O. Goldshmidt (Haifa U): Operating Systems

Implementation Comparison II
compromise: lock-key scheme

can be effective and flexible, depending on the
length of the keys
revocation is simple: change the locks

combination of access lists and capabilities is usually
used

file access list is checked when the file is opened
after that all operations are indexed into the file table

– p.21/38

O. Goldshmidt (Haifa U): Operating Systems

Revocation Of Access Rights I
types of revocation

immediate or delayed?
selective or general?
partial or total?
temporary or permanent?

simple for access lists
immediate
all the other variations are possible

– p.22/38

O. Goldshmidt (Haifa U): Operating Systems

Revocation Of Access Rights II
capabilities are more difficult to revoke

distributed through the system — must find them first
reacquisition — delete capabilities from each domain
periodically, make the processes try to reacquire
back-pointers from objects to all associated
capabilities — costly
indirection — capabilities point to table entries,
revoke by deleting the entry from the table — does
not allow selective revocation
keys — unique per capability bit pattern, compared
to a per object “master key” — revoke by changing
master keys

lists of keys to allow selective revocation

– p.23/38

O. Goldshmidt (Haifa U): Operating Systems

Language-Based Protection
protection must be available as a tool for application
programming
typing variables, prototyping functions

can be stated portably
can be more flexible than kernel-based protection
sometimes conformance can be checked at compile
time
casting spoils the picture
know thy compiler, use its warning options

– p.24/38

O. Goldshmidt (Haifa U): Operating Systems

Security: Basic Notions I
prevents misuse, destruction, destabilization, etc.
security violations may be intentional or accidental

starts with a security problem (“hole”)
one or more “exploits” are developed

may be released “into the wild”, made available to
everybody, including bored kids, professional
criminals, terrorists, political and military enemies,
etc.

actual security violations occur
types of exploits

local or remote
can be classified according to (maximal) severity of
potential damage

– p.25/38

O. Goldshmidt (Haifa U): Operating Systems

Security: Basic Notions II
types of violations

unauthorized access to data: read, write, create,
delete
unauthorized access to programs: execute
denial of service

physical security
physical access to a machine usually means that
one can do anything to it

humans are the weakest link,
can be negligent, “socially engineered”, etc.

authentication: best combining “something you know”
with “something you have”

– p.26/38

O. Goldshmidt (Haifa U): Operating Systems

Passwords
must be protected
must be non-obvious
must be practically impossible to brute-force (“dictionary
attacks”)
the user must be able to remember them
policies

revocation (and/or locking)
expiration
change policies

how many different passwords can you keep in mind?
single sign-on, “wallets”

UNIX-type passwords (“one-way functions”)
– p.27/38

O. Goldshmidt (Haifa U): Operating Systems

Passwords And Secrets
problem with passwords: humans divulge them all the
time

e.g., never give your password to a sysadmin — a
real sysadmin never needs it

how to authenticate non-interactively?
passing secrets using an untrusted messenger

sender puts the message in a strongbox, locks it,
gives to the messenger
recipient cannot open the box, but can lock it with his
own lock and send back
sender opens his lock, sends the box again
recipient thanks the messenger, unlocks the box

– p.28/38

O. Goldshmidt (Haifa U): Operating Systems

Public Key Infrastructure
generate a pair of keys, keep one private, exchange
public keys with persons or systems you wish to
exchange information with securely

encrypt with recipient’s public key — the message
can be decrypted only if the other side has the
corresponding private key
digital signatures: encrypt with one’s private key,
then with recipient’s public key — recipient decrypts
with her private key and then with the sender’s public
key
how to exchange keys securely?
need to keep private keys secure forever

various programs use PKI — ssh and SSL are
well-known examples

– p.29/38

O. Goldshmidt (Haifa U): Operating Systems

Trojans And Backdoors I
normal situation: a program is written by one person
(team, company, government, etc.), executed by
another person (team, company, government, etc.)
the program writer(s) can have a lot of fun (and
occasionally profit) with “side effects”
very difficult to protect against — comprehensive code
audits can only be done by professionals, are very
costly
usually there is nothing to inspect — no source code is
provided at all
trust (or carelessness?) is involved — what do you
install on your computer?

– p.30/38

O. Goldshmidt (Haifa U): Operating Systems

Trojans And Backdoors II
backdoors may be intentional or left for debugging and
tracing purposes
leaves the system open to the creator of the backdoor

design a killer satellite and take control of it (“Under
Siege 2”)
skim rounding errors off a large number of bank
accounts (numerous fictional and real life examples)

even “innocent” backdoors can be exploited
do you trust your compiler?

“Reflections on Trusting Trust” by Ken Thompson —
http://www.acm.org/classics/sep95/

– p.31/38

http://www.acm.org/classics/sep95/

O. Goldshmidt (Haifa U): Operating Systems

Smashing Stacks For Fun And Profit
imagine a program that accepts input, puts it in a buffer
imagine that the size of the input is not checked
the buffer may overflow, overwriting other memory
e.g., the return address on the stack may be overwritten

by carefully crafted input data!
the function will execute, jump to a wrong address on
return
that address may contain a command to execute code

that was a part of the input to begin with
some common functions that don’t check the size of
input: strcpy(3), gets(3), sprintf(3),
vsprintf(3)

– p.32/38

O. Goldshmidt (Haifa U): Operating Systems

Worms
infect a target machine with a “vector”
“vector” connects to originating machine to download
the worm
worm searches for other machines to propagate to
the original Morris worm (1988) propagated via rsh

rsh allowed users to specify “trusted” machines
from which passwordless connections were possible
(good for scripting, bad for security)

plus buffer overflows in finger

plus exploited debugging code in sendmail to mail
copies of itself
plus launched a dictionary attack on system passwords

– p.33/38

O. Goldshmidt (Haifa U): Operating Systems

Morris’s Worm Replication
for each new machine looks for copies of itself
if an active copy found, exits, except every 7th instance
would probably not be detected if exited always
proceeding on every 7th duplication could be intended
to fool the defenses
brought down a significant fraction of Sun and VAX
machines in the net
didn’t do real damage (but could)
Morris got 3 years probation, 400 hours of community
service, $10,000 fine, probably $100,000 in legal costs
(more than 15 years ago)
went on to develop Yahoo! Stores with Paul Graham

– p.34/38

O. Goldshmidt (Haifa U): Operating Systems

Viruses I
exploit security holes (e.g., buffer overflows) in systems
and applications
applications that are integrated with the system too
tightly (e.g., for performance reasons) may do serious
damage
systems that do not distinguish between regular users
and administrators are especially vulnerable

in particular single-user personal systems — why
have different accounts for one person?
single-user personal systems are not administered
professionally

– p.35/38

O. Goldshmidt (Haifa U): Operating Systems

Viruses II
any application may be vulnerable and exploitable:
Office, image libraries, sound applications, compression
software, etc.
be careful what you install
be careful where you go on the net
keep your systems current!
use AV software, keep that current!

– p.36/38

O. Goldshmidt (Haifa U): Operating Systems

Networks, Firewalls, VPNs
it is useful to have company computers connected
it is useful to connect the company to the net
it is useful to allow others (e.g., customers) to access
certain services
solution: firewalls and DMZ
configuring a firewall

mostly open: allow everything, close undesirable
services
mostly closed: close everything, open the necessary
services
shall we allow all connections originating inside the
company?

VPN — protocols for secure remote communications
– p.37/38

O. Goldshmidt (Haifa U): Operating Systems

Encryption
open algorithms, secure keys
cannot implement good security through obscurity!
based on one-way functions

e.g., multiplication is easy, but factoring large
numbers may be prohibitively different

random numbers play an essential role
anything slightly non-random can be exploited to
assist decryption

– p.38/38

	Basic Notions I
	Basic Notions II
	Protection Goals
	Mechanisms and Policies
	Processes and Objects
	The Need-To-Know Principle
	Protection Domains
	Processes and Protection Domains
	Domain Realization
	UNIX Protection Domains
	Changing User ID
	Alternative User Domains
	Access Matrix
	Domain Switching
	Copy And Owner Rights
	Control Rights
	Implementation Of Access Matrix I
	Implementation Of Access Matrix II
	Comparison Of The Implementations I
	Implementation Comparison II
	Revocation Of Access Rights I
	Revocation Of Access Rights II
	Language-Based Protection
	Security: Basic Notions I
	Security: Basic Notions II
	Passwords
	Passwords And Secrets
	Public Key Infrastructure
	Trojans And Backdoors I
	Trojans And Backdoors II
	Smashing Stacks For Fun And Profit
	Worms
	Morris's Worm Replication
	Viruses I
	Viruses II
	Networks, Firewalls, VPNs
	Encryption

