
O. Goldshmidt (Haifa U): Operating Systems

Process Scheduling

Operating Systems

Oleg Goldshmidt
ogoldshmidt@computer.org

Lecture 4, Part I

– p.1/19



O. Goldshmidt (Haifa U): Operating Systems

Scheduling Criteria
CPU utilization — percentage of time CPU is not idle
throughput — # of processes completed per time unit
turnaround time = completion − submission

includes loading, waiting in the ready queue, waiting
for I/O, execution

waiting time — only time in the ready queue (scheduling
does not affect execution or I/O)
response time = first response − submission

important for interactive processes
CPU keeps working while results are output
turnaround time is often I/O-limited

variance in response time (emphasizes predictability)
– p.2/19



O. Goldshmidt (Haifa U): Operating Systems

Scheduling Algorithms
First Come First Served (FCFS)
Shortest Job First
Priority Scheduling
Round Robin

– p.3/19



O. Goldshmidt (Haifa U): Operating Systems

FCFS Scheduling
by far the simplest (and non-preemptive)
easy to implement: a FIFO ready queue with
push back() and pop front() operations
big problem: average waiting time may be long

e.g., 3 processes arrive at t = 0 with burst times of
24, 3, and 3 ms

longest last: 〈twait〉 = (0 + 3 + 6)/3 = 3 ms

longest first: 〈twait〉 = (0 + 24 + 27)/3 = 17 ms

another big problem: “convoy effect”
1 CPU-bound process P, N I/O-bound processes
P holds the CPU, others finish I/O and wait
P waits for I/O, others finish bursts and wait

– p.4/19



O. Goldshmidt (Haifa U): Operating Systems

Shortest Job First Scheduling
shortest next CPU burst first, use FCFS to break ties
e.g., the processes in the ready queue have burst times
{6, 8, 7, 3}

FCFS: 〈twait〉 = (0 + 6 + 14 + 21)/4 = 10.25

SJF: 〈twait〉 = (0 + 3 + 9 + 16)/4 = 7

SJF is optimal in terms of average waiting time
how do we know the length of the next burst?

long-term scheduling of batch jobs — specified by
the users (who are unreliable)
prediction based on history (see “exponential
historical average” in Silberschatz & Galvin)

can be preemptive — shortest remaining time first

– p.5/19



O. Goldshmidt (Haifa U): Operating Systems

Shortest Remaining Time First
need to take arrival times into account
example: processes P1, P2, P3, and P4 arrive at times
{0, 1, 2, 3} with burst times {8, 4, 9, 5}

at t = 1 P1 is preempted, P2 runs
at t = 2 P2 runs, the queue is {P1(7), P3(9)}

at t = 3 P2 runs, the queue is {P4(5), P1(7), P3(9)}

P4 starts at t = 5

P1 restarts at t = 10

P3 starts at t = 17

〈twait〉 = ((10 − 1) + (1 − 1) + (17 − 2) + (5 − 3))/4 = 6.5

without preemption:
〈twait〉 = (0 + (8 − 1) + (12 − 2) + (21 − 3))/4 = 8.75

– p.6/19



O. Goldshmidt (Haifa U): Operating Systems

Priority Scheduling
processes have priorities, scheduler chooses a process
with the highest priority to run, uses FCFS to break ties

SJF is a special case: priority is the inverse of the
(predicted) burst length

priority is usually a number (from 0 to N )
need to know the convention: is 0 the highest or the
lowest (we assume the highest)

internal and external priorities
internal — derived from the process’ characteristics
external — whose process is it? how much has the
owner paid? will he grade my exam?

can preempt lower priority processes
avoid starvation — increase priority with age

– p.7/19



O. Goldshmidt (Haifa U): Operating Systems

Round-Robin Scheduling
designed for time-sharing systems
FCFS with preemption based on “time quanta”
scheduler sets a timer to interrupt after 1 time quantum
(∆(t)) and dispatches

if the burst is less than ∆(t) the process yields the
CPU
otherwise the process is preempted

long time quantum — FCFS (not very good)
short time quantum — context switch overhead
time quantum must be longer than context switch time
turnaround time depends on the time quantum

– p.8/19



O. Goldshmidt (Haifa U): Operating Systems

Linux Scheduler: Policies
preemptive multitasking scheduler; sources:
kernel/sched.c, include/linux/sched.h
each process has a scheduling policy

SCHED OTHER/SCHED NORMAL (normal) — do not
run if there are real-time processes ready (i.e., in
state TASK RUNNING)
SCHED FIFO (real-time) — can only be preempted
by a real-time process with a higher priority
SCHED RR (real-time) — round-robin scheduling
between processes of the same priority

see sched setscheduler(2),
sched getscheduler(2)

we shall only cover normal (SCHED OTHER) processes
– p.9/19



O. Goldshmidt (Haifa U): Operating Systems

Linux Scheduler: Basics
CPU time is divided into “epochs”
every process has a “time slice”
at the end of a time quantum the scheduler chooses a
process from the “runqueue”

must be ready, have the highest priority, have time
left in the allocated “slice”

during an epoch all ready processes are scheduled until
each either exhausts its time slice or goes to sleep
an epoch ends when there are no ready processes that
have not finished their time slices
at the end of an epoch a new epoch starts and every
ready process is allocated a new time slice

– p.10/19



O. Goldshmidt (Haifa U): Operating Systems

Linux Scheduler: Priorities I
static priority — inherited from parent

can be changed using nice(2)
a process is “nicer” if its priority is lower

also see getpriority(2), setpriority(2)
dynamic priority — modified according to what the
process is doing

“affirmative action” for processes that are likely to
wait in the medium to long term: increase their
priority short term — they won’t be in the way in the
future
I/O-bound processes are preferred over CPU-bound
processes of the same static priority in the short term

– p.11/19



O. Goldshmidt (Haifa U): Operating Systems

Linux Scheduler: Priorities II
priorities are integers from 0 to 139 (MAX PRIO-1)
real-time priorities are from 0 to 99 (MAX RT PRIO-1)
normal priorities are from 100 to 139

higher numbers mean lower priorities
default static priority for a normal process is 120
“niceness” = priority − 120

between -20 and 19 for normal processes
#define NICE_TO_PRIO(nice) \

((nice)+MAX_RT_PRIO+20)
#define PRIO_TO_NICE(prio) \

((prio)-MAX_RT_PRIO-20)
#define TASK_NICE(p) \

PRIO_TO_NICE((p)->static_prio)
– p.12/19



O. Goldshmidt (Haifa U): Operating Systems

Linux Scheduler: Timeslices
timeslices scale with process priority

minimal timeslice — 5 ms
default timeslice — 100 ms
maximal timeslice — 800 ms

even processes with the lowest priority get a timeslice
of 5 ms

– p.13/19



O. Goldshmidt (Haifa U): Operating Systems

Linux Scheduler: Runqueues
a (per CPU) runqueue contains “process descriptors” of
all running and ready processes

nr running: # of processes in the runqueue (not
counting the swapper)
curr: pointer to descriptor of the running process
idle: pointer to the swapper’s descriptor
“active” queue array: an array of queues of
processes in state TASK RUNNING and time left in
allocated slices
“expired” queue array: an array of queues of
processes in state TASK RUNNING that have
exhausted their slices
expired timestamp: when did the 1st process
move from “active” to “expired” during this epoch?

– p.14/19



O. Goldshmidt (Haifa U): Operating Systems

Linux Scheduler: Queue Arrays
the “active” and “expired” queue arrays contain:

nr active: # of processes in the queue
bitmap[]: bit vector of length MAX PRIO

bit m is on if there are processes of priority m in the
queue
the first process to run is the one with the highest
priority in the active queue
the bitmap allows very efficient computation (“O(1)
scheduler”)

the array of queues itself (of length MAX PRIO)
at the end of an epoch processes are allocated new
time slices and “active” and “expired” arrays are
swapped

– p.15/19



O. Goldshmidt (Haifa U): Operating Systems

Linux Scheduler: Process Descriptors
scheduling policy (SCHED OTHER)
prio: the priority of the process
static prio: the static priority of the process
sleep timestamp: when the context was last
switched from the process (i.e., when was the last time
it yielded the CPU)
sleep avg: average waiting time for the process
time slice: the remainder of the time slice in the
current epoch

– p.16/19



O. Goldshmidt (Haifa U): Operating Systems

Linux Scheduler: Dynamic Priorities I
every time a process goes to sleep [schedule() ] we
note the time (now = sched clock() is the current
time):
p->sleep_timestamp = now;
every time a process wakes up [activate task() ]
we update sleep avg [in recalc task prio() ]:
sleep_time = now - p->sleep_timestamp;
p->sleep_avg += sleep_time;
if (p->sleep_avg > MAX_SLEEP_AVG)

p->sleep_avg = MAX_SLEEP_AVG;
every clock tick [scheduler tick() ]:
if (p->sleep_avg)

p->sleep_avg--;

– p.17/19



O. Goldshmidt (Haifa U): Operating Systems

Linux Scheduler: Dynamic Priorities II
I/O-bound processes will have a high sleep avg

CPU-bound processes will have a low sleep avg

dynamic priority calculation [when time slice expires of
when we return from wait — effective prio() ]
bonus = 10*(sleep_avg/MAX_SLEEP_AVG)-5
/* bonus is limited: (-5 < bonus < 5) */
prio = static_prio-bonus;
if (prio < MAX_RT_PRIO)

prio = MAX_RT_PRIO;
if (prio > MAX_PRIO-1)

prio = MAX_PRIO-1;
what is “long wait”? DEF TIME SLICE*10

– p.18/19



O. Goldshmidt (Haifa U): Operating Systems

Linux Scheduler: Interactive Processes
especially long waits (for input from user)
special rights — additional time slices in the same
epoch (for fast response)
can lead to starvation of non-interactive processes:
they will finish their time slices and will be stuck

starvation of “expired” processes is limited — when
the limit is reached interactive processes do not get
additional time slices in this epoch
the limit is proportional to the number of processes
in the runqueue

if the load is high interactive processes get higher
priority compared to non-interactive ones

– p.19/19


	Scheduling Criteria
	Scheduling Algorithms
	FCFS Scheduling
	Shortest Job First Scheduling
	Shortest Remaining Time First
	Priority Scheduling
	Round-Robin Scheduling
	Linux Scheduler: Policies
	Linux Scheduler: Basics
	Linux Scheduler: Priorities I
	Linux Scheduler: Priorities II
	Linux Scheduler: Timeslices
	Linux Scheduler: Runqueues
	Linux Scheduler: Queue Arrays
	Linux Scheduler: Process Descriptors
	Linux Scheduler: Dynamic Priorities I
	Linux Scheduler: Dynamic Priorities II
	Linux Scheduler: Interactive Processes

