.

O. Goldshmidt (Haifa U): Operating Systems

Process Scheduling

Operating Systems

Oleg Goldshmidt

ogoldshmidt@computer.org

Lecture 4, Part |

—pA/

Scheduling Criteria
-

°

CPU utilization — percentage of time CPU is not idle

°

throughput — # of processes completed per time unit

turnaround time = completion — submission
s includes loading, waiting in the ready queue, waiting
for /0O, execution

waiting time — only time in the ready queue (scheduling
does not affect execution or 1/O)

response time = first response — submission
s Important for interactive processes
s CPU keeps working while results are output
s turnaround time is often I/O-limited

L # variance in response time (emphasizes predictability) J

O. Goldshmidt (Haifa U): Operating Systems —p.2/1!

Scheduling Algorithms

f # First Come First Served (FCFS) T
Shortest Job First
Priority Scheduling
Round Robin

o -

O. Goldshmidt (Haifa U): Operating Systems - p.3/1!

FCFS Scheduling

°

by far the simplest (and non-preemptive)

easy to implement: a FIFO ready queue with
push_back () and pop_front () operations
Dbig problem: average waiting time may be long

s €.g., 3 processes arrive at ¢t = 0 with burst times of
24, 3, and 3 ms

s longest last: (tyqit) = (04+3+6)/3 = 3ms
s longest first: (tyqit) = (0424 4+ 27)/3 = 17ms

another big problem: “convoy effect”
s 1 CPU-bound process P, N |/O-bound processes

o P holds the CPU, others finish I/O and wait
L o P waits for /O, others finish bursts and wait J

O. Goldshmidt (Haifa U): Operating Systems —p.4/1!

Shortest Job First Scheduling

o .

® shortest next CPU burst first, use FCFS to break ties

® e.g., the processes in the ready queue have burst times
{6,8,7,3}

s FCFS: (tuait) = (0+ 6+ 14 +21)/4 = 10.25
o SIF: (tuait) = (0+3+9+16)/4 =7

o SJF is optimal in terms of average waiting time

how do we know the length of the next burst?

s long-term scheduling of batch jobs — specified by
the users (who are unreliable)

s prediction based on history (see “exponential
historical average” in Silberschatz & Galvin)

L # can be preemptive — shortest remaining time first J

O. Goldshmidt (Haifa U): Operating Systems —p.5/1!

Shortest Remaining Time First

o .

#® need to take arrival times into account

® example: processes P, P», P3, and Py, arrive at times
{0,1,2,3} with burst times {8,4,9,5}
s att =1 P is preempted, P, runs

att =2 P, runs, the queue is {P;(7), P3(9)}

att =3 P runs, the queue is { P4(5), P1(7), P3(9)}

Pystartsatt =5

Py restarts at ¢t = 10

Ps starts att =17

® (tweit) =((10—-1)+(1—-1)+(17T—=2)+(5—3))/4=6.5
o without preemption:

(twait) = (04+ (8 = 1) + (12 — 2) + (21 — 3))/4 = 8.75
. o

© o o o o

O. Goldshmidt (Haifa U): Operating Systems — p.6/1!

.

Priority Scheduling
-

processes have priorities, scheduler chooses a process
with the highest priority to run, uses FCFS to break ties

s SJF is a special case: priority is the inverse of the
(predicted) burst length

priority is usually a number (from 0 to V)

» need to know the convention: is 0 the highest or the
lowest (we assume the highest)

iInternal and external priorities

s Internal — derived from the process’ characteristics

s external — whose process is it? how much has the
owner paid? will he grade my exam?

can preempt lower priority processes

avoid starvation — increase priority with age J

O. Goldshmidt (Haifa U): Operating Systems —p.7/1

Round-Robin Scheduling
-

°

designed for time-sharing systems

°

FCFS with preemption based on “time quanta”

scheduler sets a timer to interrupt after 1 time quantum
(A(t)) and dispatches

s If the burst is less than A(t) the process yields the
CPU

s otherwise the process is preempted

long time quantum — FCFS (not very good)

short time quantum — context switch overhead

time quantum must be longer than context switch time

© o o o

turnaround time depends on the time quantum

o -

O. Goldshmidt (Haifa U): Operating Systems —p.8/1!

Linux Scheduler: Policies

o .

preemptive multitasking scheduler; sources:
kernel/sched.c, include/linux/sched.h

each process has a scheduling policy

SCHED_OTHER/SCHED_NORMAL (normal) — do not
run if there are real-time processes ready (i.e., in
state TASK_RUNNING)

s SCHED_FIFO (real-time) — can only be preempted
by a real-time process with a higher priority

» SCHED_RR (real-time) — round-robin scheduling
between processes of the same priority

® See sched_setscheduler(2),
sched_getscheduler(2)

L’ we shall only cover normal (SCHED_OTHER) processes J

O. Goldshmidt (Haifa U): Operating Systems - p.9/1!

Linux Scheduler: Basics

=

°

CPU time is divided into “epochs”

°

every process has a “time slice”

at the end of a time quantum the scheduler chooses a

process from the “runqueue”

s must be ready, have the highest priority, have time
left in the allocated “slice”

during an epoch all ready processes are scheduled until
each either exhausts its time slice or goes to sleep

an epoch ends when there are no ready processes that
have not finished their time slices

at the end of an epoch a new epoch starts and every
ready process is allocated a new time slice

o -

O. Goldshmidt (Haifa U): Operating Systems —p.10/1

Linux Scheduler: Priorities I
f o static priority — inherited from parent T
s can be changed using nice(2)
s aprocess is “nicer” if its priority is lower
s also see getpriority(2), setpriority(2)
dynamic priority — modified according to what the
process is doing

s “affirmative action” for processes that are likely to
wait in the medium to long term: increase their

priority short term — they won't be in the way in the
future

s |/O-bound processes are preferred over CPU-bound
processes of the same static priority in the short term

o -

O. Goldshmidt (Haifa U): Operating Systems —p.11/1

Linux Scheduler: Priorities 11

=

priorities are integers from 0 to 139 (MAX_PRIO-1)
real-time priorities are from 0 to 99 (MAX_RT_PRIO-1)
normal priorities are from 100 to 139

higher numbers mean lower priorities

default static priority for a normal process is 120

© o o o o 0

“niceness” = priority — 120
s between -20 and 19 for normal processes
#define NICE_TO PRIO(nice) \
((nice)+MAX RT PRIO+20)
#define PRIO_TO_NICE(prio) \
((prio)-MAX_RT PRIO-20)
#define TASK_NICE(p) \
L__ PRIO_TO _NICE((p)—>static_prio) __J

O. Goldshmidt (Haifa U): Operating Systems —p.12/1

Linux Scheduler: Timeslices

o .

timeslices scale with process priority
s minimal timeslice — 5 ms
» default timeslice — 100 ms
» maximal timeslice — 800 ms

® even processes with the lowest priority get a timeslice
of 5 ms

o -

O. Goldshmidt (Haifa U): Operating Systems —p.13/1

-

Linux Scheduler: Runqueues

o a (per CPU) runqueue contains “process descriptors” of

all running and ready processes

>

.

nr_running: # of processes in the runqueue (not
counting the swapper)

curr. pointer to descriptor of the running process
idle: pointer to the swapper’s descriptor

“active” queue array: an array of queues of
processes in state TASK_RUNNING and time left in
allocated slices

“expired” queue array: an array of queues of
processes in state TASK_RUNNING that have
exhausted their slices

expired_timestamp: when did the 1st process
move from “active” to “expired” during this epoch?

O. Goldshmidt (Haifa U): Operating Systems

-

—p.14/1

Linux Scheduler: Queue Arrays

o .

o the “active” and “expired” queue arrays contain:
s nr_active: # of processes in the queue
s bitmap[]: bit vector of length MAX PRTO
s bit m is on if there are processes of priority m in the

queue
s the first process to run is the one with the highest

priority in the active queue
s the bitmap allows very efficient computation (“O(1)
scheduler”)

s the array of queues itself (of length MAX_PRTIO)

at the end of an epoch processes are allocated new
time slices and “active” and “expired” arrays are
swapped

o -

O. Goldshmidt (Haifa U): Operating Systems —p.15/1

Linux Scheduler: Process Descriptors
f scheduling policy (SCHED_OTHER) T
prio: the priority of the process
static_prio: the static priority of the process

© o o o

sleep_timestamp: when the context was last
switched from the process (i.e., when was the last time
it yielded the CPU)

sleep_avg: average waiting time for the process

°

°

time_s1lice: the remainder of the time slice in the
current epoch

o -

O. Goldshmidt (Haifa U): Operating Systems —p.16/1

Linux Scheduler: Dynamic Priorities I

o .

every time a process goes to sleep [schedule() | we
note the time (now = sched_clock () Is the current
time):
p—>sleep_timestamp = now;

® every time a process wakes up [activate_task()]
we update sleep_avg [in recalc_task_prio()]

sleep_time = now - p—->sleep_timestamp;
p—>sleep_avg += sleep_time;
if (p->sleep_avg > MAX_SLEEP_AVG)
p—>sleep_avg = MAX_ SLEEP_AVG;
® every clock tick [scheduler_tick()]
1f (p—->sleep_avqg)
p—->sleep_avg—-—;

o -

O. Goldshmidt (Haifa U): Operating Systems —p.17/1

Linux Scheduler: Dynamic Priorities 11

o .

1/O-bound processes will have a high sleep_avg
#® CPU-bound processes will have a low sleep_avg

dynamic priority calculation [when time slice expires of
when we return from wait — effective prio()]

bonus = 10x(sleep_avg/MAX_ SLEEP_AVG)-5
/* bonus is limited: (-5 < bonus < 5) «*/
prio = static_prio-bonus;
1f (prio < MAX_RT_PRIO)

prio = MAX_RT_PRIO;
if (prio > MAX_PRIO-1)

prio = MAX_PRIO-1;

what is “long wait”? DEF_TIME_SLICE=*10

o -

O. Goldshmidt (Haifa U): Operating Systems —p.18/1

Linux Scheduler: Interactive Processes

o .

especially long waits (for input from user)

special rights — additional time slices in the same
epoch (for fast response)

can lead to starvation of non-interactive processes:
they will finish their time slices and will be stuck

s starvation of “expired” processes is limited — when
the limit is reached interactive processes do not get
additional time slices in this epoch

s the limit is proportional to the number of processes
in the runqueue
s If the load is high interactive processes get higher
priority compared to non-interactive ones

o -

O. Goldshmidt (Haifa U): Operating Systems —p.19/1

	Scheduling Criteria
	Scheduling Algorithms
	FCFS Scheduling
	Shortest Job First Scheduling
	Shortest Remaining Time First
	Priority Scheduling
	Round-Robin Scheduling
	Linux Scheduler: Policies
	Linux Scheduler: Basics
	Linux Scheduler: Priorities I
	Linux Scheduler: Priorities II
	Linux Scheduler: Timeslices
	Linux Scheduler: Runqueues
	Linux Scheduler: Queue Arrays
	Linux Scheduler: Process Descriptors
	Linux Scheduler: Dynamic Priorities I
	Linux Scheduler: Dynamic Priorities II
	Linux Scheduler: Interactive Processes

