
O. Goldshmidt (Haifa U): Operating Systems

Process Management II

Operating Systems

Oleg Goldshmidt
ogoldshmidt@computer.org

Lecture 3

– p.1/34



O. Goldshmidt (Haifa U): Operating Systems

Threads
a thread (a.k.a. “lightweight process”) is a basic unit of
CPU utilization
a thread consists of

program counter
register set
stack

a thread must belong to exactly one task (or process)
threads in one task share all resources except CPU:

code section
data section
OS resources

a traditional process is a task with one thread
– p.2/34



O. Goldshmidt (Haifa U): Operating Systems

Multiple Threads in a Process

– p.3/34



O. Goldshmidt (Haifa U): Operating Systems

Threads vs. Processes: Similarities
both share the CPU

only one thread (of one process) may be running
same (similar) states

ready, blocked, running, terminated
can create children
block on system calls

if one thread is blocked another can run

– p.4/34



O. Goldshmidt (Haifa U): Operating Systems

Threads vs. Processes: Differences
threads have access to all the memory space of the
task

can read from and write to each other’s stacks
do not have — or require — mutual protection

processes are useful to parallelize unrelated,
independent tasks
threads are useful to parallelize operations on shared
resources

cooperation of multiple threads in the same task
leads to higher throughput, improved performance
applications that require sharing common data (e.g.,
the buffer in producer-consumer) benefit from
threads

– p.5/34



O. Goldshmidt (Haifa U): Operating Systems

Implementing Threads
user-level threads

fast switching
write your own scheduler

but the OS can take the CPU away from the task
unfair scheduling since the OS allocates the CPU
to tasks regardless of the number of threads

will not work with single-threaded kernels
imagine a thread executing a system call

kernel supported threads
more expensive switching
fair scheduling is possible
a process can execute concurrent system calls

hybrid (user-level and kernel-level) — Solaris 2
– p.6/34



O. Goldshmidt (Haifa U): Operating Systems

Solaris Threads

– p.7/34



O. Goldshmidt (Haifa U): Operating Systems

Cooperating Processes
independent and cooperating processes

independent processes cannot affect each other’s
execution
cooperating processes can affect or be affected by
the execution of another process

what for?
information sharing
speedup

overlap CPU and I/O
use several processors

modularity
convenience

– p.8/34



O. Goldshmidt (Haifa U): Operating Systems

Cooperating Processes: Classic Models
producer-consumer: one process produces information
that it consumed by another

bounded-buffer — a buffer of fixed size is assumed
unbounded-buffer — no practical limit is placed on
the buffer size

reader-writer: a number of processes read from and
write to a shared location in memory
environment

shared memory
read and write atomicity
serial consistency: read returns the value stored
by the latest write

message passing (distributed environments)

– p.9/34



O. Goldshmidt (Haifa U): Operating Systems

Shared Memory Bounded-Buffer
/* shared data */
item_t buffer[LENGTH];
/* in - next free position;

out - first full */
int in, out /* from 0 to LENGTH */
/* circular buffer implementation */
int empty(void) { return (in == out); }
int full(void) {

return (((in+1) % LENGTH) == out);
}
/* assume the following are defined */
void produce(item_t *next);
void consume(const item_t *next);
void copy_item(item_t *dst, const item_t *src);

– p.10/34



O. Goldshmidt (Haifa U): Operating Systems

Circular Buffer Producer-Consumer
void producer(void) {

item_t next;
while (1) {

produce(&next);
while (full()) /* wait */;
copy_item(&(buffer[in]),&next);
in = (in+1) % LENGTH; } }

void consumer(void) {
item_t next;
while (1) {

while (empty()) /* wait */;
copy_item(&next,&(buffer[out]));
out = (out+1) % LENGTH;
consume(&next); } }

– p.11/34



O. Goldshmidt (Haifa U): Operating Systems

Critical Sections
parts of the program in which shared variables are
manipulated
mutual exclusion is used to avoid races
a variety of algorithms and hardware support
conditions for a good solution

no assumption about speed or number of CPUs
no two processes can simultaneously be inside their
critical section (exclusion)
no process running outside its critical section may
block other processes and the selection of who
enters can’t be postponed indefinitely (progress)
no process should have to wait forever to enter its
critical section (bounded waiting or no starvation)

– p.12/34



O. Goldshmidt (Haifa U): Operating Systems

Mutual Exclusion with Busy Waiting
brute force solution: disable interrupts

cannot be used in userspace
does not work with more than one CPU

lock variables do not prevent races

...
while (lock == 1); /* busy-wait */
lock = 1;
critical_section();
lock = 0;
noncritical_section();
...

– p.13/34



O. Goldshmidt (Haifa U): Operating Systems

Busy Waiting: Strict Alternation
process 0:
while (1) {

while (turn != 0) /* wait */;
critical_section();
turn = 1;
noncritical_section(); }

process 1:
while (1) {

while (turn != 1) /* wait */;
critical_section();
turn = 0;
noncritical_section(); }

if one of the processes is slower than the other the progress
condition is violated

– p.14/34



O. Goldshmidt (Haifa U): Operating Systems

Busy Waiting: Peterson’s Solution
#define N 2
int turn, interested[N]

void enter_critical_region(int process) {
int other = 1 - process;
interested[process] = TRUE;
turn = other;
while (turn == other &&

interested[other] == TRUE);
}

void leave_critical_region(int process) {
interested[process] = FALSE;

}

– p.15/34



O. Goldshmidt (Haifa U): Operating Systems

Hardware Support: Test and Set Lock
atomic TSL instruction

tsl register,lock
copies lock to register and stores a non-zero
value in lock

fictitious assembly code:

enter_region:
tsl register,lock // test and set to 1
cmp register,#0 // is the lock zero?
jnz enter_region // loop if non-zero
ret // return to caller

leave_region:
mov lock,#0 // set lock to zero
ret // return to caller

– p.16/34



O. Goldshmidt (Haifa U): Operating Systems

Synchronization Hazards
busy-waiting wastes CPU cycles
race conditions — see above
priority inversion

a low priority process L grabs a lock and enters a
critical section
a high priority process H busy-waits on the lock
a medium priority process M grabs the CPU while L
is in the critical section
net result: M runs most of the time, sometimes L
runs, H is stuck...

deadlocks...

– p.17/34



O. Goldshmidt (Haifa U): Operating Systems

Deadlocks
Process 1: Process 2:
acquire(lock1); acquire(lock2);
acquire(lock2); acquire(lock1);
... ...
release(lock1); release(lock2);
release(lock2); release(lock1);

necessary conditions for deadlock:
at least one exclusive resource is held
a process is holding a resource and waiting for
another resource held by another process
no preemption: resources can only be released
voluntarily
circular wait

– p.18/34



O. Goldshmidt (Haifa U): Operating Systems

Dealing with Deadlocks
protocols ensuring the system will never enter a
deadlock state

deadlock prevention — ensure that (some of) the
necessary conditions do not hold
deadlock avoidance — require additional info about
resource requests, analyze dynamically

detecting and recovering from deadlocks
may involve killing some processes

ignore, pretend deadlocks do not exist
this is what most OS do, including UNIX/Linux
OS is about mechanisms, not policies
users’ responsibility

– p.19/34



O. Goldshmidt (Haifa U): Operating Systems

Avoiding Busy-Wait: Sleep/Wakeup I
#define N 100 /* buffer size */
int count = 0; /* tracks items in buffer */

void producer(void)
{
item_t item;
while (1) {
produce_item(&item);
if (count == N) sleep(); /* buffer full */
put_item(&item);
count++;
if (count == 1) wakeup(consumer);

}
}

– p.20/34



O. Goldshmidt (Haifa U): Operating Systems

Avoiding Busy-Wait: Sleep/Wakeup II
void consumer(void)
{
item_t item;
while (1) {
if (count == 0) sleep(); /*buffer empty*/
get_item(&item); /* removes from buffer*/
count--;
if (count == N-1) wakeup(producer);
consume_item(&item);

}
}

can you see a race here?

– p.21/34



O. Goldshmidt (Haifa U): Operating Systems

Sleep/Wakeup Synchronyzation
race condition on count — “lost wakeup”

the buffer is empty — consumer reads count == 0
scheduler switches to producer
producer puts an item into the buffer, increments
count, wakes consumer
consumer thinks count == 0 and goes to sleep!
producer fills the buffer and goes to sleep, too!

quick fix — “wakeup waiting bit”
set when wakeup is sent to a process that is not
sleeping
sleep() will test the bit, turn it off, remain awake
for more than 2 processes more than 1 bit is needed,
the problem exists in principle

– p.22/34



O. Goldshmidt (Haifa U): Operating Systems

Semaphores
Dijkstra (1965) — generalization of sleep/wakeup
two atomic operations — up() and down() (P and V,
according to Dijkstra)
a counter that controls a shared resource
down() checks the value

if positive, the process can use the resource, the
semaphore is decremented (indicates that the
process is using a “unit” of the resource)
if 0, the process goes to sleep

when the process is done with the resource, up()
increments the value, processes waiting for the
semaphore are awakened
binary semaphores — 0 or 1

– p.23/34



O. Goldshmidt (Haifa U): Operating Systems

Semaphore Implementation
up() and down() must be atomic — kernel support is
needed
typically implemented via system calls that disable
interrupts briefly
for multiple CPUs a (busy-wait) lock is needed to
ensure that only one CPU at a time can access the
semaphore — TSL will help here
note that this busy-wait is only for the duration of up()
and down(), not for the duration of the critical section
POSIX and SysV semaphores — the latter are much
more complicated (more details during the drill session)

– p.24/34



O. Goldshmidt (Haifa U): Operating Systems

Semaphore Usage
mutual exclusion

guarantees that protected resource will not be
corrupted by simultaneous access

synchronization
guarantees that certain events will or will not occur

producer stops running when the buffer is full
consumer stops running when the buffer is empty

very important: as any lock, semaphores protect data,
not code!

never ask what parts of code are critical — always
ask what data items must be protected or
synchronized, and the critical sections will become
obvious

– p.25/34



O. Goldshmidt (Haifa U): Operating Systems

Producer/Consumer with Semaphores
semaphore mutex = 1, empty = N, full = 0;

void producer(void) void consumer(void)
{ {
item_t item; item_t item;
while (1) { while (1) {
produce(&item); down(&full) ;
down(&empty); down(&mutex);
down(&mutex); get_item(&item);
put_item(&item); up(&mutex);
up(&mutex); up(&empty);
up(&full); consume(&item);

} }
} }

– p.26/34



O. Goldshmidt (Haifa U): Operating Systems

Mutexes
a viariable with two states: locked (0) and unlocked (1)
basic operations

mutex lock(&mutex)
mutex unlock(&mutex)

mutex lock() is like enter critical region()
but does not busy-wait
if it fails to acquire the mutex it gives up the CPU
(using sched yield(2) or similar)

featuritis: mutex trylock(&mutex)
acquires the mutex or returnes an error code
lets the caller decide whether to yield the CPU or do
something else

– p.27/34



O. Goldshmidt (Haifa U): Operating Systems

Semaphore and Mutex Hazards
both semaphores and mutexes are very prone to
programming errors
many subtle timing issues
very difficult to avoid

enough for one process to be buggy, and everybody
suffers

very difficult to debug (“heisenbugs”)
some trivial examples

up() called before down() — no exclusion
two down()’s — deadlock
either up() or down() is not called

– p.28/34



O. Goldshmidt (Haifa U): Operating Systems

Reader/Writer Problem
a multiprocess (multithreaded) application where
processes can read and write the same data

several can read simultaneously
only one can write at a time

practical importance: transaction systems, filesystems,
etc.
two types of locks: shared for readers, exclusive for
writers

when an exclusive lock is held, no one else can
acquire access in any form
when a shared lock is held, others can acquire the
shared lock, but no one can acquire an exclusive
lock

– p.29/34



O. Goldshmidt (Haifa U): Operating Systems

Reader/Writer Flavours
reader preferred

if a reader runs and no one is currently writing, the
reader proceeds even if there are writers waiting for
access

writer preferred
if a new writer runs in can proceed as soon as
possible

both solutions suffer from possible starvation

– p.30/34



O. Goldshmidt (Haifa U): Operating Systems

Synchronization Performance
busy-waiting (“spinning” — we’ll discuss spinlocks later)

wastes cycles, but if the resource is available or will
be available soon avoids a context switch

blocking (semaphores and mutexes)
let other processes run while we wait
incurs the overhead of one or more context switches

hybrid, “adaptive mutexes”
start spinning, if the resource is not available spin for
a limited time, then go to sleep
check if the thread holding the lock is running — it
may be likely to release the lock soon (never on UP!)

reader/writer locks are efficient if reads are much more
frequent than writes

– p.31/34



O. Goldshmidt (Haifa U): Operating Systems

Scheduling: Basic Concepts
all resources, not just CPU, are scheduled
a process will run happily until it has to wait for I/O

we cannot allow the CPU to sit idle
multiprogramming: keep several processes in
memory, when one has to wait switch to another
one, increasing utilization

CPU “bursts” — periods of CPU activity between I/O
waits

many more short bursts than long ones
I/O-bound processes — lots of short CPU bursts
CPU-bound process — a few long CPU bursts

the (short-term) scheduler selects a process to run from
a ready queue (not necessarily a FIFO)

– p.32/34



O. Goldshmidt (Haifa U): Operating Systems

Scheduling Policies: Preemption
scheduling decisions

running→ waiting (I/O request, wait())
running→ ready (interrupt)
waiting→ ready (completion of I/O)
termination

when a process switches to the “ready” state we need
to decide whether to “preempt”
non-preemptive scheduling — the running process
keeps the CPU until it waits or terminates

a must for certain hardware (e.g., no timers)
preemptive scheduling — the CPU may be taken away

a must for real-time, high performance computing

– p.33/34



O. Goldshmidt (Haifa U): Operating Systems

Preemption Tradeoffs
need to protect shared data

a process is updating a shared item, is preempted,
another process tries to read the inconsistent data
similar to multiprocessor systems — discuss later

kernel preemption
the kernel may be updating critical data (e.g., I/O
queues) on behalf of a process (during a system call)
if preempted, may need to read/modify the same
data on behalf of another process — chaos
OS may wait for the system call to complete (or an
I/O block) before switching context — simpler
need to preempt for real time, high performance
code affected by interrupts cannot be preempted

– p.34/34


	Threads
	Multiple Threads in a Process
	Threads vs Processes: Similarities
	Threads vs Processes: Differences
	Implementing Threads
	Solaris Threads
	Cooperating Processes
	Cooperating Processes: Classic Models
	Shared Memory Bounded-Buffer
	Circular Buffer Producer-Consumer
	Critical Sections
	Mutual Exclusion with Busy Waiting
	Busy Waiting: Strict Alternation
	Busy Waiting: Peterson's Solution
	Hardware Support: Test and Set Lock
	Synchronization Hazards
	Deadlocks
	Dealing with Deadlocks
	Avoiding Busy-Wait: Sleep/Wakeup I
	Avoiding Busy-Wait: Sleep/Wakeup II
	Sleep/Wakeup Synchronyzation
	Semaphores
	Semaphore Implementation
	Semaphore Usage
	Producer/Consumer with Semaphores
	Mutexes
	Semaphore and Mutex Hazards
	Reader/Writer Problem
	Reader/Writer Flavours
	Synchronization Performance
	Scheduling: Basic Concepts
	Scheduling Policies: Preemption
	Preemption Tradeoffs

