Process Management 11

Operating Systems

Oleg Goldshmidt

ogoldshmidt@computer.org

Lecture 3

o -

O. Goldshmidt (Haifa U): Operating Systems - p.1/3



Threads
-

# athread (a.k.a. “lightweight process”) is a basic unit of
CPU utilization
# athread consists of
# program counter
s register set
s stack

# a thread must belong to exactly one task (or process)

o threads in one task share all resources except CPU:
» code section
s data section
s OS resources

L # atraditional process is a task with one thread J

O. Goldshmidt (Haifa U): Operating Systems —p.2/3



Multiple Threads in a Process

o .

threads

éj

text segment

task

data segment
0.G : i —p.3/3:



Threads vs. Processes: Similarities

f # Dboth share the CPU T
s only one thread (of one process) may be running

# same (similar) states
s ready, blocked, running, terminated

® can create children

# block on system calls
o If one thread is blocked another can run

o -

O. Goldshmidt (Haifa U): Operating Systems — p.4/3:



Threads vs. Processes: Differences

=

# threads have access to all the memory space of the
task

o can read from and write to each other’s stacks
s do not have — or require — mutual protection

® processes are useful to parallelize unrelated,
iIndependent tasks

# threads are useful to parallelize operations on shared
resources

s cooperation of multiple threads in the same task
leads to higher throughput, improved performance

s applications that require sharing common data (e.g.,
the buffer in producer-consumer) benefit from

L threads J

O. Goldshmidt (Haifa U): Operating Systems — p.5/3



Implementing Threads

o .

® user-level threads
s fast switching

s write your own scheduler
s but the OS can take the CPU away from the task
s unfair scheduling since the OS allocates the CPU
to tasks regardless of the number of threads

s will not work with single-threaded kernels
s Imagine a thread executing a system call
# kernel supported threads
s more expensive switching
s fair scheduling is possible
» a process can execute concurrent system calls

~» hybrid (user-level and kernel-level) — Solaris 2 .

O. Goldshmidt (Haifa U): Operating Systems — p.6/3



Solaris Threads

— user-level thread

- lightweight process

kernel thread

O. Goldshmidt (Haifa U): Operating Systems - p.7/3



Cooperating Processes

o .

# independent and cooperating processes

s Independent processes cannot affect each other’s
execution

» cooperating processes can affect or be affected by
the execution of another process
# what for?
s Information sharing

s Speedup
s overlap CPU and I/O
s use several processors

s modularity
# convenience

o -

O. Goldshmidt (Haifa U): Operating Systems — p.8/3



Cooperating Processes: Classic Models

o .

# producer-consumer: one process produces information
that it consumed by another

s bounded-buffer — a buffer of fixed size is assumed
s unbounded-buffer — no practical limit is placed on
the buffer size

# reader-writer: a number of processes read from and
write to a shared location in memory
#® environment

» shared memory
s read and write atomicity
s serial consistency: read returns the value stored
by the latest write

L s message passing (distributed environments) J

O. Goldshmidt (Haifa U): Operating Systems - p.9/3



Shared Memory Bounded-Buffer
-

T_>* shared data =*/
ltem_t buffer[LENGTH];
/* in — next free position;
out — first full =/
int in, out /+ from O to LENGTH =/
/* circular buffer implementation =*/

int empty(void) { return (in == out); }
int full(void) {
return (((in+1l) % LENGTH) == out);

}

/* assume the following are defined =/

vold produce(iltem_t =xnext);

vold consume(const item_t #*next);

vold copy_1ltem(item_t =*dst, const item_t =src);

o -

O. Goldshmidt (Haifa U): Operating Systems —p.10/3



Circular Buffer Producer-Consumer

o .

vold producer (void) {
ltem_t next;
while (1) {
produce (&next) ;

while (full()) /* wait =*/;
copy_1tem(&(buffer[in]), &next);
in = (in+1l) % LENGTH; } }

vold consumer (void) {
item t next;
while (1) {
while (empty()) /* wait =*/;
copy_1item(&next, & (bufferfout]));
out = (out+1l) % LENGTH;

L__ consume(&next); } } __J

O. Goldshmidt (Haifa U): Operating Systems —p.11/3



Critical Sections

o .

# parts of the program in which shared variables are
manipulated

mutual exclusion is used to avoid races
a variety of algorithms and hardware support

o o

# conditions for a good solution
» No assumption about speed or number of CPUs

s No two processes can simultaneously be inside their
critical section (exclusion)

» NO process running outside its critical section may
block other processes and the selection of who
enters can't be postponed indefinitely (progress)

» Nno process should have to wait forever to enter its
o critical section (bounded waiting or no starvation)

O. Goldshmidt (Haifa U): Operating Systems —p.12/3



Mutual Exclusion with Busy Waiting
- o

# Dbrute force solution: disable interrupts
s cannot be used in userspace
s does not work with more than one CPU

# |ock variables do not prevent races

while (lock == 1); /+* busy-wait =/
lock = 1;

critical section();

lock = 0;

noncritical section();

o -

O. Goldshmidt (Haifa U): Operating Systems —p.13/3



Busy Waiting: Strict Alternation

fproc:ess 0: T
while (1) {
while (turn != 0) /% wait =*/;
critical section();
turn = 1;
noncritical_section(); }
process 1:
while (1) {
while (turn != 1) /*x wait =*/;
critical section();
turn = 0;

noncritical section(); }

if one of the processes is slower than the other the progress
ondition is violated

O. Goldshmidt (Haifa U): Operating Systems —p.14/3



Busy Waiting: Peterson’s Solution

F__#define N 2 __T

int turn, 1nterested[N]

volid enter_critical_region(int process) {
int other = 1 - process;
interested|[process] = TRUE;
turn = other;
while (turn == other &&
interested[other] == TRUE);

vold leave_critical_region(int process) {
interested[process] = FALSE;

}

o -

O. Goldshmidt (Haifa U): Operating Systems —p.15/3



Hardware Support: Test and Set Lock
- -

® atomic TSL instruction
® Tsl register,lock

» copies lock to register and stores a non-zero
value in lock

# fictitious assembly code:

enter_region:
tsl register,lock // test and set to 1

cmp register, #0 // 1s the lock zero?

jnz enter_region // loop if non-zero

ret // return to caller
leave_region:

mov lock, #0 // set lock to zero

L__ ret // return to caller __J

O. Goldshmidt (Haifa U): Operating Systems —p.16/3



Synchronization Hazards

-

# busy-waiting wastes CPU cycles
# race conditions — see above
# priority inversion
» a low priority process L grabs a lock and enters a
critical section
s a high priority process H busy-waits on the lock

s a medium priority process M grabs the CPU while L
IS In the critical section

o net result: M runs most of the time, sometimes L
runs, H is stuck...

® deadlocks...

o -

O. Goldshmidt (Haifa U): Operating Systems —p.17/3



Deadlocks
b

rocess 1: Process 2:
acquire(lockl); acquire(lock?2);
acquire(lock?2); acquire(lockl);
release(lockl); release(lock?2);
release(lock?2); release(lockl);

#® necessary conditions for deadlock:
o at least one exclusive resource is held

s a process is holding a resource and waiting for
another resource held by another process

s No preemption: resources can only be released
voluntarily

L s circular wait J

O. Goldshmidt (Haifa U): Operating Systems —p.18/3



Dealing with Deadlocks

o .

# protocols ensuring the system will never enter a
deadlock state

» deadlock prevention — ensure that (some of) the
necessary conditions do not hold

» deadlock avoidance — require additional info about
resource requests, analyze dynamically
# detecting and recovering from deadlocks
» may involve killing some processes

# ignore, pretend deadlocks do not exist
s this is what most OS do, including UNIX/Linux
s OS is about mechanisms, not policies
» users’ responsibility

o -

O. Goldshmidt (Haifa U): Operating Systems —p.19/3



Avoiding Busy-Wait: Sleep/Wakeup I

F__#define N 100 /% buffer size x/ __W
int count = 0; /% tracks items in buffer «/

vold producer (void)

{

ltem_t i1tem;

while (1) {
produce_item(&item);
if (count == N) sleep(); /* buffer full x/
put_item(&item) ;
count++;
1f (count == 1) wakeup(consumer);

}

o -

O. Goldshmidt (Haifa U): Operating Systems — p.20/3



Avoiding Busy-Wait: Sleep/Wakeup 11
B o

vold consumer (void)

{
ltem t 1tem;
while (1) {
if (count == 0) sleep(); /+buffer empty=*/
get_item(&item); /+ removes from bufferx/
count——;

1f (count == N-1) wakeup(producer);
consume_item(&item) ;

}

# can you see a race here?

o -

O. Goldshmidt (Haifa U): Operating Systems —p.21/3



Sleep/Wakeup Synchronyzation
B -

# race condition on count — “lost wakeup”
s the buffer is empty — consumer reads count ==
» scheduler switches to producer

s producer puts an item into the buffer, increments
count, wakes consumer

s consumer thinks count == 0 and goes to sleep!
s producer fills the buffer and goes to sleep, too!
# quick fix — “wakeup waiting bit”
» set when wakeup is sent to a process that is not
sleeping
s sleep() Wwill test the bit, turn it off, remain awake

s for more than 2 processes more than 1 bit is needed,
o the problem exists in principle o

O. Goldshmidt (Haifa U): Operating Systems - p.22/3



°

°

-

Semaphores

=

Dijkstra (1965) — generalization of sleep/wakeup

two atomic operations — up () and down () (P andV,
according to Dijkstra)

a counter that controls a shared resource

down () checks the value

s If positive, the process can use the resource, the
semaphore is decremented (indicates that the
process is using a “unit” of the resource)

s If 0, the process goes to sleep

when the process is done with the resource, up ()
Increments the value, processes waiting for the
semaphore are awakened

binary semaphores — 0 or 1 J

O. Goldshmidt (Haifa U): Operating Systems —p.23/3



Semaphore Implementation

=

® up() and down () must be atomic — kernel support is
needed

# typically implemented via system calls that disable
interrupts briefly

o for multiple CPUs a (busy-wait) lock is needed to
ensure that only one CPU at a time can access the
semaphore — TsL will help here

# note that this busy-wait is only for the duration of up ()
and down (), not for the duration of the critical section

#» POSIX and SysV semaphores — the latter are much
more complicated (more details during the drill session)

o -

O. Goldshmidt (Haifa U): Operating Systems — p.24/3



Semaphore Usage

o .

® mutual exclusion

s Quarantees that protected resource will not be
corrupted by simultaneous access

# synchronization
» guarantees that certain events will or will not occur

s producer stops running when the buffer is full
s consumer stops running when the buffer is empty

# very important: as any lock, semaphores protect data,
not code!
» never ask what parts of code are critical — always

ask what data items must be protected or
synchronized, and the critical sections will become

obvious
| -

O. Goldshmidt (Haifa U): Operating Systems —p.25/3



Producer/Consumer with Semaphores

o .

semaphore mutex = 1, empty = N, full = 0;

vold producer (void) vold consumer (void)
{ {
item_t 1tem; item_t 1tem;
while (1) { while (1) {
produce(&item) ; down (&full) ;
down ( &empty) ; down (&mutex) ;
down (&mutex) ; get_item(&item);
put_item(&item) ; up (&mutex) ;
up (&mutex) ; up (&empty) ;
up(&full); consume (&ltem) ;

} }

o -

O. Goldshmidt (Haifa U): Operating Systems — p.26/3



Mutexes

o .

# a viariable with two states: locked (0) and unlocked (1)
# basic operations

® mutex_lock(&mutex)

®» mutex_unlock (&mutex)

® mutex_lock() Islike enter_ critical_region()
» but does not busy-walit
s if it fails to acquire the mutex it gives up the CPU
(using sched_yield(2) or similar)
o featuritis: mutex_trylock (&mutex)
s acquires the mutex or returnes an error code
» lets the caller decide whether to yield the CPU or do

something else
- o

O. Goldshmidt (Haifa U): Operating Systems —p.27/3



Semaphore and Mutex Hazards

=

# both semaphores and mutexes are very prone to
programming errors

# many subtle timing issues

» very difficult to avoid

s enough for one process to be buggy, and everybody
suffers

very difficult to debug (“heisenbugs”)

°

# some trivial examples
s up () called before down () — no exclusion
s two down ()’s — deadlock
s either up () or down () is not called

o -

O. Goldshmidt (Haifa U): Operating Systems — p.28/3



Reader/Writer Problem

o .

# a multiprocess (multithreaded) application where
processes can read and write the same data

s several can read simultaneously
» only one can write at a time

# practical importance: transaction systems, filesystems,
etc.

# two types of locks: shared for readers, exclusive for
writers

o when an exclusive lock is held, no one else can
acquire access in any form

» when a shared lock is held, others can acquire the
shared lock, but no one can acquire an exclusive

\— lock J

O. Goldshmidt (Haifa U): Operating Systems — p.29/3



Reader/Writer Flavours

o .

# reader preferred

s If areader runs and no one is currently writing, the
reader proceeds even if there are writers waiting for
access

# writer preferred

s if a new writer runs in can proceed as soon as
possible

# Dboth solutions suffer from possible starvation

o -

O. Goldshmidt (Haifa U): Operating Systems —p.30/3



Synchronization Performance

o .

# busy-waiting (“spinning” — we’ll discuss spinlocks later)
» wastes cycles, but if the resource is available or will
be available soon avoids a context switch
# blocking (semaphores and mutexes)
» let other processes run while we walit
s Incurs the overhead of one or more context switches

# hybrid, “adaptive mutexes”

s start spinning, if the resource is not available spin for
a limited time, then go to sleep

s check if the thread holding the lock is running — it
may be likely to release the lock soon (never on UP!)

® reader/writer locks are efficient if reads are much more
frequent than writes J

O. Goldshmidt (Haifa U): Operating Systems —p.31/3



°

9

.

Scheduling: Basic Concepts
-

all resources, not just CPU, are scheduled

a process will run happily until it has to wait for I/O
s we cannot allow the CPU to sit idle

s multiprogramming: keep several processes in
memory, when one has to wait switch to another
one, increasing utilization

CPU “bursts” — periods of CPU activity between 1/O
waits

s many more short bursts than long ones

s |/O-bound processes — lots of short CPU bursts
s CPU-bound process — a few long CPU bursts

the (short-term) scheduler selects a process to run from
a ready queue (not necessarily a FIFO)

O. Goldshmidt (Haifa U): Operating Systems - p.32/3



Scheduling Policies: Preemption

=

# scheduling decisions
s running — waiting (I/O request, wait ())
s running — ready (interrupt)
s waiting — ready (completion of I/O)
s termination

# when a process switches to the “ready” state we need
to decide whether to “preempt”

# non-preemptive scheduling — the running process
keeps the CPU until it waits or terminates

s a must for certain hardware (e.g., no timers)

# preemptive scheduling — the CPU may be taken away
L s a must for real-time, high performance computing J

O. Goldshmidt (Haifa U): Operating Systems —p.33/3



Preemption Tradeoffs

o .

# need to protect shared data

s aprocess is updating a shared item, is preempted,
another process tries to read the inconsistent data

s similar to multiprocessor systems — discuss later

# kernel preemption

s the kernel may be updating critical data (e.g., I/O
gueues) on behalf of a process (during a system call)

s If preempted, may need to read/modify the same
data on behalf of another process — chaos

s OS may wait for the system call to complete (or an
/O block) before switching context — simpler

s need to preempt for real time, high performance
L s code affected by interrupts cannot be preempted J

O. Goldshmidt (Haifa U): Operating Systems — p.34/3



	Threads
	Multiple Threads in a Process
	Threads vs Processes: Similarities
	Threads vs Processes: Differences
	Implementing Threads
	Solaris Threads
	Cooperating Processes
	Cooperating Processes: Classic Models
	Shared Memory Bounded-Buffer
	Circular Buffer Producer-Consumer
	Critical Sections
	Mutual Exclusion with Busy Waiting
	Busy Waiting: Strict Alternation
	Busy Waiting: Peterson's Solution
	Hardware Support: Test and Set Lock
	Synchronization Hazards
	Deadlocks
	Dealing with Deadlocks
	Avoiding Busy-Wait: Sleep/Wakeup I
	Avoiding Busy-Wait: Sleep/Wakeup II
	Sleep/Wakeup Synchronyzation
	Semaphores
	Semaphore Implementation
	Semaphore Usage
	Producer/Consumer with Semaphores
	Mutexes
	Semaphore and Mutex Hazards
	Reader/Writer Problem
	Reader/Writer Flavours
	Synchronization Performance
	Scheduling: Basic Concepts
	Scheduling Policies: Preemption
	Preemption Tradeoffs

