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Threads
-

# athread (a.k.a. “lightweight process”) is a basic unit of
CPU utilization
# athread consists of
# program counter
s register set
s stack

# a thread must belong to exactly one task (or process)

o threads in one task share all resources except CPU:
» code section
s data section
s OS resources

L # atraditional process is a task with one thread J
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Multiple Threads in a Process

o .
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Threads vs. Processes: Similarities

f # Dboth share the CPU T
s only one thread (of one process) may be running

# same (similar) states
s ready, blocked, running, terminated

® can create children

# block on system calls
o If one thread is blocked another can run

o -
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Threads vs. Processes: Differences

=

# threads have access to all the memory space of the
task

o can read from and write to each other’s stacks
s do not have — or require — mutual protection

® processes are useful to parallelize unrelated,
iIndependent tasks

# threads are useful to parallelize operations on shared
resources

s cooperation of multiple threads in the same task
leads to higher throughput, improved performance

s applications that require sharing common data (e.g.,
the buffer in producer-consumer) benefit from

L threads J
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Implementing Threads

o .

® user-level threads
s fast switching

s write your own scheduler
s but the OS can take the CPU away from the task
s unfair scheduling since the OS allocates the CPU
to tasks regardless of the number of threads

s will not work with single-threaded kernels
s Imagine a thread executing a system call
# kernel supported threads
s more expensive switching
s fair scheduling is possible
» a process can execute concurrent system calls

~» hybrid (user-level and kernel-level) — Solaris 2 .
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Solaris Threads

— user-level thread

- lightweight process

kernel thread
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Cooperating Processes

o .

# independent and cooperating processes

s Independent processes cannot affect each other’s
execution

» cooperating processes can affect or be affected by
the execution of another process
# what for?
s Information sharing

s Speedup
s overlap CPU and I/O
s use several processors

s modularity
# convenience

o -
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Cooperating Processes: Classic Models

o .

# producer-consumer: one process produces information
that it consumed by another

s bounded-buffer — a buffer of fixed size is assumed
s unbounded-buffer — no practical limit is placed on
the buffer size

# reader-writer: a number of processes read from and
write to a shared location in memory
#® environment

» shared memory
s read and write atomicity
s serial consistency: read returns the value stored
by the latest write

L s message passing (distributed environments) J
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Shared Memory Bounded-Buffer
-

T_>* shared data =*/
ltem_t buffer[LENGTH];
/* in — next free position;
out — first full =/
int in, out /+ from O to LENGTH =/
/* circular buffer implementation =*/

int empty(void) { return (in == out); }
int full(void) {
return (((in+1l) % LENGTH) == out);

}

/* assume the following are defined =/

vold produce(iltem_t =xnext);

vold consume(const item_t #*next);

vold copy_1ltem(item_t =*dst, const item_t =src);

o -
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Circular Buffer Producer-Consumer

o .

vold producer (void) {
ltem_t next;
while (1) {
produce (&next) ;

while (full()) /* wait =*/;
copy_1tem(&(buffer[in]), &next);
in = (in+1l) % LENGTH; } }

vold consumer (void) {
item t next;
while (1) {
while (empty()) /* wait =*/;
copy_1item(&next, & (bufferfout]));
out = (out+1l) % LENGTH;

L__ consume(&next); } } __J
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Critical Sections

o .

# parts of the program in which shared variables are
manipulated

mutual exclusion is used to avoid races
a variety of algorithms and hardware support

o o

# conditions for a good solution
» No assumption about speed or number of CPUs

s No two processes can simultaneously be inside their
critical section (exclusion)

» NO process running outside its critical section may
block other processes and the selection of who
enters can't be postponed indefinitely (progress)

» Nno process should have to wait forever to enter its
o critical section (bounded waiting or no starvation)
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Mutual Exclusion with Busy Waiting
- o

# Dbrute force solution: disable interrupts
s cannot be used in userspace
s does not work with more than one CPU

# |ock variables do not prevent races

while (lock == 1); /+* busy-wait =/
lock = 1;

critical section();

lock = 0;

noncritical section();

o -
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Busy Waiting: Strict Alternation

fproc:ess 0: T
while (1) {
while (turn != 0) /% wait =*/;
critical section();
turn = 1;
noncritical_section(); }
process 1:
while (1) {
while (turn != 1) /*x wait =*/;
critical section();
turn = 0;

noncritical section(); }

if one of the processes is slower than the other the progress
ondition is violated
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Busy Waiting: Peterson’s Solution

F__#define N 2 __T

int turn, 1nterested[N]

volid enter_critical_region(int process) {
int other = 1 - process;
interested|[process] = TRUE;
turn = other;
while (turn == other &&
interested[other] == TRUE);

vold leave_critical_region(int process) {
interested[process] = FALSE;

}

o -

O. Goldshmidt (Haifa U): Operating Systems —p.15/3



Hardware Support: Test and Set Lock
- -

® atomic TSL instruction
® Tsl register,lock

» copies lock to register and stores a non-zero
value in lock

# fictitious assembly code:

enter_region:
tsl register,lock // test and set to 1

cmp register, #0 // 1s the lock zero?

jnz enter_region // loop if non-zero

ret // return to caller
leave_region:

mov lock, #0 // set lock to zero

L__ ret // return to caller __J
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Synchronization Hazards

-

# busy-waiting wastes CPU cycles
# race conditions — see above
# priority inversion
» a low priority process L grabs a lock and enters a
critical section
s a high priority process H busy-waits on the lock

s a medium priority process M grabs the CPU while L
IS In the critical section

o net result: M runs most of the time, sometimes L
runs, H is stuck...

® deadlocks...

o -
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Deadlocks
b

rocess 1: Process 2:
acquire(lockl); acquire(lock?2);
acquire(lock?2); acquire(lockl);
release(lockl); release(lock?2);
release(lock?2); release(lockl);

#® necessary conditions for deadlock:
o at least one exclusive resource is held

s a process is holding a resource and waiting for
another resource held by another process

s No preemption: resources can only be released
voluntarily

L s circular wait J
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Dealing with Deadlocks

o .

# protocols ensuring the system will never enter a
deadlock state

» deadlock prevention — ensure that (some of) the
necessary conditions do not hold

» deadlock avoidance — require additional info about
resource requests, analyze dynamically
# detecting and recovering from deadlocks
» may involve killing some processes

# ignore, pretend deadlocks do not exist
s this is what most OS do, including UNIX/Linux
s OS is about mechanisms, not policies
» users’ responsibility

o -
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Avoiding Busy-Wait: Sleep/Wakeup I

F__#define N 100 /% buffer size x/ __W
int count = 0; /% tracks items in buffer «/

vold producer (void)

{

ltem_t i1tem;

while (1) {
produce_item(&item);
if (count == N) sleep(); /* buffer full x/
put_item(&item) ;
count++;
1f (count == 1) wakeup(consumer);

}

o -

O. Goldshmidt (Haifa U): Operating Systems — p.20/3



Avoiding Busy-Wait: Sleep/Wakeup 11
B o

vold consumer (void)

{
ltem t 1tem;
while (1) {
if (count == 0) sleep(); /+buffer empty=*/
get_item(&item); /+ removes from bufferx/
count——;

1f (count == N-1) wakeup(producer);
consume_item(&item) ;

}

# can you see a race here?

o -
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Sleep/Wakeup Synchronyzation
B -

# race condition on count — “lost wakeup”
s the buffer is empty — consumer reads count ==
» scheduler switches to producer

s producer puts an item into the buffer, increments
count, wakes consumer

s consumer thinks count == 0 and goes to sleep!
s producer fills the buffer and goes to sleep, too!
# quick fix — “wakeup waiting bit”
» set when wakeup is sent to a process that is not
sleeping
s sleep() Wwill test the bit, turn it off, remain awake

s for more than 2 processes more than 1 bit is needed,
o the problem exists in principle o
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°

°

-

Semaphores

=

Dijkstra (1965) — generalization of sleep/wakeup

two atomic operations — up () and down () (P andV,
according to Dijkstra)

a counter that controls a shared resource

down () checks the value

s If positive, the process can use the resource, the
semaphore is decremented (indicates that the
process is using a “unit” of the resource)

s If 0, the process goes to sleep

when the process is done with the resource, up ()
Increments the value, processes waiting for the
semaphore are awakened

binary semaphores — 0 or 1 J
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Semaphore Implementation

=

® up() and down () must be atomic — kernel support is
needed

# typically implemented via system calls that disable
interrupts briefly

o for multiple CPUs a (busy-wait) lock is needed to
ensure that only one CPU at a time can access the
semaphore — TsL will help here

# note that this busy-wait is only for the duration of up ()
and down (), not for the duration of the critical section

#» POSIX and SysV semaphores — the latter are much
more complicated (more details during the drill session)

o -
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Semaphore Usage

o .

® mutual exclusion

s Quarantees that protected resource will not be
corrupted by simultaneous access

# synchronization
» guarantees that certain events will or will not occur

s producer stops running when the buffer is full
s consumer stops running when the buffer is empty

# very important: as any lock, semaphores protect data,
not code!
» never ask what parts of code are critical — always

ask what data items must be protected or
synchronized, and the critical sections will become

obvious
| -
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Producer/Consumer with Semaphores

o .

semaphore mutex = 1, empty = N, full = 0;

vold producer (void) vold consumer (void)
{ {
item_t 1tem; item_t 1tem;
while (1) { while (1) {
produce(&item) ; down (&full) ;
down ( &empty) ; down (&mutex) ;
down (&mutex) ; get_item(&item);
put_item(&item) ; up (&mutex) ;
up (&mutex) ; up (&empty) ;
up(&full); consume (&ltem) ;

} }

o -
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Mutexes

o .

# a viariable with two states: locked (0) and unlocked (1)
# basic operations

® mutex_lock(&mutex)

®» mutex_unlock (&mutex)

® mutex_lock() Islike enter_ critical_region()
» but does not busy-walit
s if it fails to acquire the mutex it gives up the CPU
(using sched_yield(2) or similar)
o featuritis: mutex_trylock (&mutex)
s acquires the mutex or returnes an error code
» lets the caller decide whether to yield the CPU or do

something else
- o
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Semaphore and Mutex Hazards

=

# both semaphores and mutexes are very prone to
programming errors

# many subtle timing issues

» very difficult to avoid

s enough for one process to be buggy, and everybody
suffers

very difficult to debug (“heisenbugs”)

°

# some trivial examples
s up () called before down () — no exclusion
s two down ()’s — deadlock
s either up () or down () is not called

o -
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Reader/Writer Problem

o .

# a multiprocess (multithreaded) application where
processes can read and write the same data

s several can read simultaneously
» only one can write at a time

# practical importance: transaction systems, filesystems,
etc.

# two types of locks: shared for readers, exclusive for
writers

o when an exclusive lock is held, no one else can
acquire access in any form

» when a shared lock is held, others can acquire the
shared lock, but no one can acquire an exclusive

\— lock J
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Reader/Writer Flavours

o .

# reader preferred

s If areader runs and no one is currently writing, the
reader proceeds even if there are writers waiting for
access

# writer preferred

s if a new writer runs in can proceed as soon as
possible

# Dboth solutions suffer from possible starvation

o -
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Synchronization Performance

o .

# busy-waiting (“spinning” — we’ll discuss spinlocks later)
» wastes cycles, but if the resource is available or will
be available soon avoids a context switch
# blocking (semaphores and mutexes)
» let other processes run while we walit
s Incurs the overhead of one or more context switches

# hybrid, “adaptive mutexes”

s start spinning, if the resource is not available spin for
a limited time, then go to sleep

s check if the thread holding the lock is running — it
may be likely to release the lock soon (never on UP!)

® reader/writer locks are efficient if reads are much more
frequent than writes J
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°

9

.

Scheduling: Basic Concepts
-

all resources, not just CPU, are scheduled

a process will run happily until it has to wait for I/O
s we cannot allow the CPU to sit idle

s multiprogramming: keep several processes in
memory, when one has to wait switch to another
one, increasing utilization

CPU “bursts” — periods of CPU activity between 1/O
waits

s many more short bursts than long ones

s |/O-bound processes — lots of short CPU bursts
s CPU-bound process — a few long CPU bursts

the (short-term) scheduler selects a process to run from
a ready queue (not necessarily a FIFO)
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Scheduling Policies: Preemption

=

# scheduling decisions
s running — waiting (I/O request, wait ())
s running — ready (interrupt)
s waiting — ready (completion of I/O)
s termination

# when a process switches to the “ready” state we need
to decide whether to “preempt”

# non-preemptive scheduling — the running process
keeps the CPU until it waits or terminates

s a must for certain hardware (e.g., no timers)

# preemptive scheduling — the CPU may be taken away
L s a must for real-time, high performance computing J
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Preemption Tradeoffs

o .

# need to protect shared data

s aprocess is updating a shared item, is preempted,
another process tries to read the inconsistent data

s similar to multiprocessor systems — discuss later

# kernel preemption

s the kernel may be updating critical data (e.g., I/O
gueues) on behalf of a process (during a system call)

s If preempted, may need to read/modify the same
data on behalf of another process — chaos

s OS may wait for the system call to complete (or an
/O block) before switching context — simpler

s need to preempt for real time, high performance
L s code affected by interrupts cannot be preempted J
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