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Threads
a thread (a.k.a. “lightweight process”) is a basic unit of
CPU utilization
a thread consists of

program counter
register set
stack

a thread must belong to exactly one task (or process)
threads in one task share all resources except CPU:

code section
data section
OS resources

a traditional process is a task with one thread
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Multiple Threads in a Process
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Threads vs. Processes: Similarities
both share the CPU

only one thread (of one process) may be running
same (similar) states

ready, blocked, running, terminated
can create children
block on system calls

if one thread is blocked another can run

– p.4/34



O. Goldshmidt (Haifa U): Operating Systems

Threads vs. Processes: Differences
threads have access to all the memory space of the
task

can read from and write to each other’s stacks
do not have — or require — mutual protection

processes are useful to parallelize unrelated,
independent tasks
threads are useful to parallelize operations on shared
resources

cooperation of multiple threads in the same task
leads to higher throughput, improved performance
applications that require sharing common data (e.g.,
the buffer in producer-consumer) benefit from
threads
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Implementing Threads
user-level threads

fast switching
write your own scheduler

but the OS can take the CPU away from the task
unfair scheduling since the OS allocates the CPU
to tasks regardless of the number of threads

will not work with single-threaded kernels
imagine a thread executing a system call

kernel supported threads
more expensive switching
fair scheduling is possible
a process can execute concurrent system calls

hybrid (user-level and kernel-level) — Solaris 2
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Solaris Threads
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Cooperating Processes
independent and cooperating processes

independent processes cannot affect each other’s
execution
cooperating processes can affect or be affected by
the execution of another process

what for?
information sharing
speedup

overlap CPU and I/O
use several processors

modularity
convenience
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Cooperating Processes: Classic Models
producer-consumer: one process produces information
that it consumed by another

bounded-buffer — a buffer of fixed size is assumed
unbounded-buffer — no practical limit is placed on
the buffer size

reader-writer: a number of processes read from and
write to a shared location in memory
environment

shared memory
read and write atomicity
serial consistency: read returns the value stored
by the latest write

message passing (distributed environments)
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Shared Memory Bounded-Buffer
/* shared data */
item_t buffer[LENGTH];
/* in - next free position;

out - first full */
int in, out /* from 0 to LENGTH */
/* circular buffer implementation */
int empty(void) { return (in == out); }
int full(void) {

return (((in+1) % LENGTH) == out);
}
/* assume the following are defined */
void produce(item_t *next);
void consume(const item_t *next);
void copy_item(item_t *dst, const item_t *src);
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Circular Buffer Producer-Consumer
void producer(void) {

item_t next;
while (1) {

produce(&next);
while (full()) /* wait */;
copy_item(&(buffer[in]),&next);
in = (in+1) % LENGTH; } }

void consumer(void) {
item_t next;
while (1) {

while (empty()) /* wait */;
copy_item(&next,&(buffer[out]));
out = (out+1) % LENGTH;
consume(&next); } }
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Critical Sections
parts of the program in which shared variables are
manipulated
mutual exclusion is used to avoid races
a variety of algorithms and hardware support
conditions for a good solution

no assumption about speed or number of CPUs
no two processes can simultaneously be inside their
critical section (exclusion)
no process running outside its critical section may
block other processes and the selection of who
enters can’t be postponed indefinitely (progress)
no process should have to wait forever to enter its
critical section (bounded waiting or no starvation)
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Mutual Exclusion with Busy Waiting
brute force solution: disable interrupts

cannot be used in userspace
does not work with more than one CPU

lock variables do not prevent races

...
while (lock == 1); /* busy-wait */
lock = 1;
critical_section();
lock = 0;
noncritical_section();
...
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Busy Waiting: Strict Alternation
process 0:
while (1) {

while (turn != 0) /* wait */;
critical_section();
turn = 1;
noncritical_section(); }

process 1:
while (1) {

while (turn != 1) /* wait */;
critical_section();
turn = 0;
noncritical_section(); }

if one of the processes is slower than the other the progress
condition is violated
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Busy Waiting: Peterson’s Solution
#define N 2
int turn, interested[N]

void enter_critical_region(int process) {
int other = 1 - process;
interested[process] = TRUE;
turn = other;
while (turn == other &&

interested[other] == TRUE);
}

void leave_critical_region(int process) {
interested[process] = FALSE;

}
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Hardware Support: Test and Set Lock
atomic TSL instruction

tsl register,lock
copies lock to register and stores a non-zero
value in lock

fictitious assembly code:

enter_region:
tsl register,lock // test and set to 1
cmp register,#0 // is the lock zero?
jnz enter_region // loop if non-zero
ret // return to caller

leave_region:
mov lock,#0 // set lock to zero
ret // return to caller
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Synchronization Hazards
busy-waiting wastes CPU cycles
race conditions — see above
priority inversion

a low priority process L grabs a lock and enters a
critical section
a high priority process H busy-waits on the lock
a medium priority process M grabs the CPU while L
is in the critical section
net result: M runs most of the time, sometimes L
runs, H is stuck...

deadlocks...
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Deadlocks
Process 1: Process 2:
acquire(lock1); acquire(lock2);
acquire(lock2); acquire(lock1);
... ...
release(lock1); release(lock2);
release(lock2); release(lock1);

necessary conditions for deadlock:
at least one exclusive resource is held
a process is holding a resource and waiting for
another resource held by another process
no preemption: resources can only be released
voluntarily
circular wait
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Dealing with Deadlocks
protocols ensuring the system will never enter a
deadlock state

deadlock prevention — ensure that (some of) the
necessary conditions do not hold
deadlock avoidance — require additional info about
resource requests, analyze dynamically

detecting and recovering from deadlocks
may involve killing some processes

ignore, pretend deadlocks do not exist
this is what most OS do, including UNIX/Linux
OS is about mechanisms, not policies
users’ responsibility
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Avoiding Busy-Wait: Sleep/Wakeup I
#define N 100 /* buffer size */
int count = 0; /* tracks items in buffer */

void producer(void)
{
item_t item;
while (1) {
produce_item(&item);
if (count == N) sleep(); /* buffer full */
put_item(&item);
count++;
if (count == 1) wakeup(consumer);

}
}
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Avoiding Busy-Wait: Sleep/Wakeup II
void consumer(void)
{
item_t item;
while (1) {
if (count == 0) sleep(); /*buffer empty*/
get_item(&item); /* removes from buffer*/
count--;
if (count == N-1) wakeup(producer);
consume_item(&item);

}
}

can you see a race here?
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Sleep/Wakeup Synchronyzation
race condition on count — “lost wakeup”

the buffer is empty — consumer reads count == 0
scheduler switches to producer
producer puts an item into the buffer, increments
count, wakes consumer
consumer thinks count == 0 and goes to sleep!
producer fills the buffer and goes to sleep, too!

quick fix — “wakeup waiting bit”
set when wakeup is sent to a process that is not
sleeping
sleep() will test the bit, turn it off, remain awake
for more than 2 processes more than 1 bit is needed,
the problem exists in principle
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Semaphores
Dijkstra (1965) — generalization of sleep/wakeup
two atomic operations — up() and down() (P and V,
according to Dijkstra)
a counter that controls a shared resource
down() checks the value

if positive, the process can use the resource, the
semaphore is decremented (indicates that the
process is using a “unit” of the resource)
if 0, the process goes to sleep

when the process is done with the resource, up()
increments the value, processes waiting for the
semaphore are awakened
binary semaphores — 0 or 1
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Semaphore Implementation
up() and down() must be atomic — kernel support is
needed
typically implemented via system calls that disable
interrupts briefly
for multiple CPUs a (busy-wait) lock is needed to
ensure that only one CPU at a time can access the
semaphore — TSL will help here
note that this busy-wait is only for the duration of up()
and down(), not for the duration of the critical section
POSIX and SysV semaphores — the latter are much
more complicated (more details during the drill session)
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Semaphore Usage
mutual exclusion

guarantees that protected resource will not be
corrupted by simultaneous access

synchronization
guarantees that certain events will or will not occur

producer stops running when the buffer is full
consumer stops running when the buffer is empty

very important: as any lock, semaphores protect data,
not code!

never ask what parts of code are critical — always
ask what data items must be protected or
synchronized, and the critical sections will become
obvious

– p.25/34



O. Goldshmidt (Haifa U): Operating Systems

Producer/Consumer with Semaphores
semaphore mutex = 1, empty = N, full = 0;

void producer(void) void consumer(void)
{ {
item_t item; item_t item;
while (1) { while (1) {
produce(&item); down(&full) ;
down(&empty); down(&mutex);
down(&mutex); get_item(&item);
put_item(&item); up(&mutex);
up(&mutex); up(&empty);
up(&full); consume(&item);

} }
} }
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Mutexes
a viariable with two states: locked (0) and unlocked (1)
basic operations

mutex lock(&mutex)
mutex unlock(&mutex)

mutex lock() is like enter critical region()
but does not busy-wait
if it fails to acquire the mutex it gives up the CPU
(using sched yield(2) or similar)

featuritis: mutex trylock(&mutex)
acquires the mutex or returnes an error code
lets the caller decide whether to yield the CPU or do
something else
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Semaphore and Mutex Hazards
both semaphores and mutexes are very prone to
programming errors
many subtle timing issues
very difficult to avoid

enough for one process to be buggy, and everybody
suffers

very difficult to debug (“heisenbugs”)
some trivial examples

up() called before down() — no exclusion
two down()’s — deadlock
either up() or down() is not called
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Reader/Writer Problem
a multiprocess (multithreaded) application where
processes can read and write the same data

several can read simultaneously
only one can write at a time

practical importance: transaction systems, filesystems,
etc.
two types of locks: shared for readers, exclusive for
writers

when an exclusive lock is held, no one else can
acquire access in any form
when a shared lock is held, others can acquire the
shared lock, but no one can acquire an exclusive
lock
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Reader/Writer Flavours
reader preferred

if a reader runs and no one is currently writing, the
reader proceeds even if there are writers waiting for
access

writer preferred
if a new writer runs in can proceed as soon as
possible

both solutions suffer from possible starvation
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Synchronization Performance
busy-waiting (“spinning” — we’ll discuss spinlocks later)

wastes cycles, but if the resource is available or will
be available soon avoids a context switch

blocking (semaphores and mutexes)
let other processes run while we wait
incurs the overhead of one or more context switches

hybrid, “adaptive mutexes”
start spinning, if the resource is not available spin for
a limited time, then go to sleep
check if the thread holding the lock is running — it
may be likely to release the lock soon (never on UP!)

reader/writer locks are efficient if reads are much more
frequent than writes
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Scheduling: Basic Concepts
all resources, not just CPU, are scheduled
a process will run happily until it has to wait for I/O

we cannot allow the CPU to sit idle
multiprogramming: keep several processes in
memory, when one has to wait switch to another
one, increasing utilization

CPU “bursts” — periods of CPU activity between I/O
waits

many more short bursts than long ones
I/O-bound processes — lots of short CPU bursts
CPU-bound process — a few long CPU bursts

the (short-term) scheduler selects a process to run from
a ready queue (not necessarily a FIFO)
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Scheduling Policies: Preemption
scheduling decisions

running→ waiting (I/O request, wait())
running→ ready (interrupt)
waiting→ ready (completion of I/O)
termination

when a process switches to the “ready” state we need
to decide whether to “preempt”
non-preemptive scheduling — the running process
keeps the CPU until it waits or terminates

a must for certain hardware (e.g., no timers)
preemptive scheduling — the CPU may be taken away

a must for real-time, high performance computing
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Preemption Tradeoffs
need to protect shared data

a process is updating a shared item, is preempted,
another process tries to read the inconsistent data
similar to multiprocessor systems — discuss later

kernel preemption
the kernel may be updating critical data (e.g., I/O
queues) on behalf of a process (during a system call)
if preempted, may need to read/modify the same
data on behalf of another process — chaos
OS may wait for the system call to complete (or an
I/O block) before switching context — simpler
need to preempt for real time, high performance
code affected by interrupts cannot be preempted
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