
O. Goldshmidt (Haifa U): Operating Systems

Process Management I

Operating Systems

Oleg Goldshmidt
ogoldshmidt@computer.org

Lecture 2

– p.1/26

O. Goldshmidt (Haifa U): Operating Systems

Process Concept
a process is a dynamic entity — an instance of a
program in execution

as opposed to the static concept of a program — a
set of instructions (usually in a file on a disk)
process execution is sequential (assuming single
CPU) — one instruction at a time

principal components of a process:
the program (a.k.a. “text section”)
program counter
CPU register values
stack (function args, local vars, return addresses)
“data section” (global variables)

a program may run several processes
– p.2/26

O. Goldshmidt (Haifa U): Operating Systems

Process States
new — the process is
being created
running — instructions
are being executed
waiting — waiting for
some event to occur
ready — waiting to be
assigned to CPU
terminated — has finished
execution

– p.3/26

O. Goldshmidt (Haifa U): Operating Systems

Process Control Block (PCB)
representation of a process

process state
program counter
CPU registers
CPU scheduling information —
priority, queues, parameters
memory information
accounting information — CPU
and real time usage, time limits,
statistics, etc.
I/O state information — devices,
files used, etc.

– p.4/26

O. Goldshmidt (Haifa U): Operating Systems

Linux Implementation
in include/linux/sched.h (some fields only):
struct task_struct {

volatile long state;
int prio, static_prio;
prio_array_t *array;
unsigned long sleep_avg;
unsigned long long timestamp, last_ran;
pid_t pid;
struct task_struct *parent;
struct list_head children;
struct list_head sibling;
cputime_t utime, stime;
uid_t uid,euid,suid,fsuid;
wait_queue_t *io_wait;

};
– p.5/26

O. Goldshmidt (Haifa U): Operating Systems

Context Switch I

– p.6/26

O. Goldshmidt (Haifa U): Operating Systems

Context Switch II
save registers of the current process

general purpose registers, memory management
info, stack pointer

save PSW of the current process
Program Status Word — a CPU register containing
execution control bits (e.g., user or kernel mode)

insert the current PCB into the relevant queue
mark PCB of the new process as running
load PSW and PCB of the new process
new process continues to run from the point where it
stopped
context switch is pure overhead, not useful work!

– p.7/26

O. Goldshmidt (Haifa U): Operating Systems

Scheduling Queues

– p.8/26

O. Goldshmidt (Haifa U): Operating Systems

Process Scheduling

– p.9/26

O. Goldshmidt (Haifa U): Operating Systems

Schedulers and Dispatchers
short term scheduler

moves processes between states
long term scheduler

loads processes from disk to memory
controls process mix (CPU-bound vs. I/O-bound)
controls the degree of multiprogramming

mid-term scheduler
swaps processes in and out of memory
controls process mix

dispatcher
switching context, switching to user mode
jumping to proper location in the program

– p.10/26

O. Goldshmidt (Haifa U): Operating Systems

Process Creation I
processes are created via a system call

POSIX: fork(2), Windows: CreateProcess()
new process gets resources from parent (resource
sharing) or from OS

sharing parent’s resources prevents overloading
initialization data: input, environment

process creation policies
execution policy

parent continues to execute concurrently
parent waits till children (some or all) terminate

generation policy
child is a duplicate of its father (POSIX)
child has a new program loaded into it (Windows)

– p.11/26

O. Goldshmidt (Haifa U): Operating Systems

Process Creation II
processes are created by other processes, with a few
exceptions
special processes in UNIX

swapper/scheduler (pid = 0) — system process
init (pid = 1)

normal user process
brings up the system
all other processes are created via a series of
fork(2) calls originating in init
foster parent for orphan processes

pagedaemon (pid = 2) — virtual memory paging
support, system process

– p.12/26

O. Goldshmidt (Haifa U): Operating Systems

UNIX Process Tree

– p.13/26

O. Goldshmidt (Haifa U): Operating Systems

Process Creation: POSIX
pid = fork();

pid t pid is a unique integer identifying a new
process

fork(2) returns 0 for the child process
pid = 0 for swapper, hence no confusion
child can call getppid(2) to locate its parent
−1 is returned on error

fork(2) creates a copy of the parent process and
environment — PCB, links, etc.

modern implementations use COW: resources are
allocated, but no copy occurs unless something is
changed (either in child or in parent)

– p.14/26

O. Goldshmidt (Haifa U): Operating Systems

Process Creation: Example
#define _POSIX_SOURCE 1
#include <stdlib.h>
#include <stdio.h>
int main(void) {

int child;
if ((child = fork()) < 0) {

perror("fork error");
exit(EXIT_FAILURE);

} else if (child == 0) {
printf("child: PID %d\n",getpid());

} else {
printf("parent: child PID %d\n",child);

}
exit(EXIT_SUCCESS);

}
– p.15/26

O. Goldshmidt (Haifa U): Operating Systems

Executing A New Program I
fork(2) creates a copy of the parent process — how
can we make a child execute a different program?
the exec() family of system calls: execl(2),
execv(2), execle(2), execve(2),
execlp(2), execvp(2)

often referred to, collectively, as “exec”
replace the process virtual memory space with a new
program by loading an executable file into memory
the first 4 take a path argument, the last 2 take a
filename argument (PATH is used to search for the
executable)

– p.16/26

O. Goldshmidt (Haifa U): Operating Systems

Executing A New Program II
the l functions (execl(), execle(), execlp())
require a list of arguments terminated by a null pointer
the v functions (execv(), execve(), execvp())
require building a vector of pointers to arguments
the e functions (execle(), execve()) allow to pass
environment (the others inherit environment from
parent)
this is how, e.g., shells work
more info during the drill sessions

– p.17/26

O. Goldshmidt (Haifa U): Operating Systems

Executing A New Program: Example
char *env[] = {"USER=oleg","PATH=/bin",NULL};
pid_t pid;
if ((pid = fork()) < 0) {

perror("fork error");
exit(EXIT_FAILURE);

} else if (pid == 0) {
if (execle("/bin/echo","echo",

"arg1","arg2",(char*)0,
env) < 0) {

perror("execle error");
exit(EXIT_FAILURE);

}
}
/* the rest of the parent code */

– p.18/26

O. Goldshmidt (Haifa U): Operating Systems

Creating Processes: Windows
not POSIX — no fork(2) or exec(2)
CreateProcess() is a combination of fork() and
exec()

some differences in building the command line,
parsing

fork(2) without exec(2) is more difficult
useful when the child needs to inherit some
resources of the parent
handles to objects are inherited explicitly, via a
variety of means

no process hierarchy or a global concept of parent, but
children can be grouped if the parent has been created
with a particular attribute

– p.19/26

O. Goldshmidt (Haifa U): Operating Systems

Process Creation Overhead I
find some files and do something with each of them
find . -exec ls -ld \{\} \;

creates a process per file
ls -ld ‘find .‘

this will work, unless the output of find . is too
long to be used on the command line

find . | xargs ls -ld
xargs takes arguments from stdin and passes up
to ARG MAX arguments to command at a time —
creates only a few processes

– p.20/26

O. Goldshmidt (Haifa U): Operating Systems

Process Creation Overhead II
in /usr/src/linux-2.4.21-27.0.4.EL:
time nice find . -exec ls -ld \{\} \;
real 4m55.845s
user 0m14.990s
sys 0m28.290s
time nice ls -l ‘find .‘
bash: /bin/nice: Argument list too long
real 0m1.542s
user 0m0.810s
sys 0m0.040s
time nice find . -print0 | xargs -0 ls -ld
real 1m6.878s
user 0m0.990s
sys 0m0.580s

– p.21/26

O. Goldshmidt (Haifa U): Operating Systems

Normal Process Termination
a process can be killed by itself, some other process, or
the kernel
normal termination — exit(3)

may return data to parent
returning from main() is equivalent to exit(3)
all resources are deallocated

call all handlers registered with atexit(3)
close all standard I/O streams, etc.
release memory

exit(2) is called by exit(3) to take care of
OS-specific details

– p.22/26

O. Goldshmidt (Haifa U): Operating Systems

Abnormal Process Termination
abnormal termination — abort(3)

invoked by another process, typically parent
calling process needs to know the pid (fork(2)
returns the child’s pid to the parent)
a special case of a signal — SIGABRT
reasons:

resource usage exceeded
task no loner needed,
parent is exiting (cascading termination)

– p.23/26

O. Goldshmidt (Haifa U): Operating Systems

Process Termination: Details I
parent must be notified

for normal termination exit(3) or exit(2) are
called with an “exit status” argument

“exit status” is converted to “termination status” by
the kernel when exit(2) is called

for abnormal termination the kernel generates the
“termination status”
parent can obtain the termination status using
wait(2) or waitpid(2) (handler for SIGCHLD)

– p.24/26

O. Goldshmidt (Haifa U): Operating Systems

Process Termination: Details II
what if parent terminates before child?

cascading termination (VMS) — child cannot exist if
parent is terminated (normally or abnormally)
UNIX — every process has a parent, if parent
terminates the kernel changes the ppid to 1 (init)
for all the children

what if a child terminates before the parent?
the kernel must keep minimal information (pid,
status, usage statistics) for every terminated process
the process becomes a “zombie”
init periodically calls one of the wait() functions
to prevent clogging by “zombies”

– p.25/26

O. Goldshmidt (Haifa U): Operating Systems

Terminating Processes: Windows
TerminateProcess() is not a substitute for kill(2)

not all DLL’s call their exit routines
use only in extreme circumstances
use WM CLOSE message instead

remember: no concept of parent
if the parent was created with
CREATE NEW PROCESS GROUP flag set, the children
can be grouped
GenerateConsoleCtrlEvt() can send Control-C
or Control-Break signals to the group
only the children who share a console with parent
will receive the signal

– p.26/26

	Process Concept
	Process States
	Process Control Block (PCB)
	Linux Implementation
	Context Switch I
	Context Switch II
	Scheduling Queues
	Process Scheduling
	Schedulers and Dispatchers
	Process Creation I
	Process Creation II
	UNIX Process Tree
	Process Creation: POSIX
	Process Creation: Example
	Executing A New Program I
	Executing A New Program II
	Executing A New Program: Example
	Creating Processes: Windows
	Process Creation Overhead I
	Process Creation Overhead II
	Normal Process Termination
	Abnormal Process Termination
	Process Termination: Details I
	Process Termination: Details II
	Terminating Processes: Windows

