
O. Goldshmidt (Haifa U): Operating Systems

Networking

Operating Systems

Oleg Goldshmidt
ogoldshmidt@computer.org

Lecture 12

– p.1/38

O. Goldshmidt (Haifa U): Operating Systems

Networked Systems
various resources (CPUs, disks, clocks, etc.) are
connected via one or more communication networks
much of the low level issues (drivers, interrupt handling,
buffering, etc.) is “just” I/O— already covered
“local” and “remote” resources

hardware: disks, printers, CPUs, specialized
resources
software: files, programs (“services”)

client/server and peer-to-peer

– p.2/38

O. Goldshmidt (Haifa U): Operating Systems

Networked And Distributed Systems
networked systems

users are aware of the network connecting the
resources
resources are accessed by logging on to remote
machines (ssh, telnet, etc.) or by transfering data
between machines (HTTP, FTP, etc.)

distributed systems
users are not (or need not be) aware of the network
resources are accessed transparently

– p.3/38

O. Goldshmidt (Haifa U): Operating Systems

Why?
resource sharing

different capabilities at different sites
reduce resource duplication / increase utilization
file sharing
processing information in a distributed database
using remote specialized HW devices

computation speedup via load sharing
reliability: failure detection, failover, recovery,
reintegration
communication: message passing and RPC

– p.4/38

O. Goldshmidt (Haifa U): Operating Systems

Node Types
mainframes: (≈ 70% of the world’s data)

large DB: airline reservations, banking, insurance
many large attached disks

servers
web, ftp, DB, applications
attached or networked disks

workstations
CAD, Office, email private DBs, etc.
no disks or a few small/medium attached disks

computational nodes of HPC systems
(floating point) computations
normally no disks, rarely system disks

– p.5/38

O. Goldshmidt (Haifa U): Operating Systems

Topology
a lot of different ways to connect sites (nodes) of a
system
design criteria

basic cost: how expensive is it to link the various
sites?
communication cost: how long and how many
resources does it take to send a message from site
A to site B?
reliability: if a link or a site fails, can the remaining
sites communicate with each other?

topologies are usually represented as graphs

– p.6/38

O. Goldshmidt (Haifa U): Operating Systems

Topology Examples I
fully connected partially connected

– p.7/38

O. Goldshmidt (Haifa U): Operating Systems

Topology Examples II

tree
star

– p.8/38

O. Goldshmidt (Haifa U): Operating Systems

Topology Examples III
ring more complex ring

– p.9/38

O. Goldshmidt (Haifa U): Operating Systems

Topology Examples IV

linear bus

ring bus

– p.10/38

O. Goldshmidt (Haifa U): Operating Systems

Network Types: LAN
up to a few
buildings
multiaccess bus,
ring, or star
10 ÷ 1000 Mb/s

broadcast is fast
and cheap
nodes:

workstations
PCs
servers
an occasional
mainframe

– p.11/38

O. Goldshmidt (Haifa U): Operating Systems

Network Types: WAN
links geographically separated sites
connections over long-haul lines

usually leased
involves multiple networks

speed: non-uniform
very high bandwidth in the backbone
0.05 ÷ 10 Mb/s — the “last mile” problem
asymmetric for download and upload

broadcast requires multiple messages
nodes

high percentage of servers and mainframes
PCs are often connected via LANs

– p.12/38

O. Goldshmidt (Haifa U): Operating Systems

Communications: Issues
naming and name resolution: how do two processes
locate each other and communicate?
routing strategies: how are messages sent through the
network?
connection strategies: how do two processes send a
sequence of messages to each other?
contention: the network is a shared resource, how do
we resolve conflicting demands for its use?
reliability and survivability: what happens if some of the
links and/or nodes fail?
quality of service: what are the performance
guarantees?

– p.13/38

O. Goldshmidt (Haifa U): Operating Systems

Naming And Name Resolution
local: use PID to send a message to a particular
process
remote: identify processes on remote systems using a
〈host-id,port〉 pair
domain name service (DNS): specifies the naming
structure of the hosts, as well as name to address
resolution

humans prefer names
computers prefer numbers
cannot have a translation table of every host —
non-scalable and unreliable
hierarchical system of “name servers”
local caches are kept

– p.14/38

O. Goldshmidt (Haifa U): Operating Systems

Elementary Name Resolution
popular name server: BIND (Berkeley Internet Name
Domain)
basic API:

#include <netdb.h>
struct hostent {
char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses */

}
struct hostent *gethostbyname(const char *name);
struct hostent *gethostbyname2(const char *name, int af);
#include <sys/socket.h> /* for AF_INET */
struct hostent

*gethostbyaddr(const char *addr,int len,int type);

– p.15/38

O. Goldshmidt (Haifa U): Operating Systems

Elementary Service Names
we would like to refer to services by names, not by port
numbers (/etc/services or similar provides a map)

#include <netdb.h>
struct servent {
char *s_name; /* official service name */
char **s_aliases; /* alias list */
int s_port; /* port number */
char *s_proto; /* protocol to use */

}
struct servent *getservbyname(const char *name, const char *proto);
struct servent *getservbyport(int port, const char *proto);

struct servent *s;
s = getservbyname("domain", "udp"); /* DNS using UDP */
s = getservbyname("ftp", "tcp"); /* FTP using TCP */
s = getservbyname("http", NULL); /* HTTP using TCP */
s = getservbyname("kerberos-adm", "udp"); /* this will fail! */

– p.16/38

O. Goldshmidt (Haifa U): Operating Systems

Routing Strategies I
fixed routing: a path from A to B is specified in advance;
path changes only if a hardware failure disables it

since the shortest path is usually chosen,
communication costs are minimized
cannot adapt to load changes
ensures that messages will be delivered in the order
in which they were sent

virtual circuit: a path from A to B is fixed for the duration
of one session; different sessions involving messages
from A to B may have different paths

partial solution to the problem of adapting to load
changes
ensures that messages will be delivered in the order
in which they were sent

– p.17/38

O. Goldshmidt (Haifa U): Operating Systems

Routing Strategies II
dynamic routing: the path used to send a message form
site A to site B is chosen only when a message is sent

usually a site sends a message to another site on the
link least used at that particular time (load balancing)
adapts to load changes by avoiding routing
messages on heavily used paths
messages may arrive out of order; this problem can
be remedied by appending a sequence number to
each message

– p.18/38

O. Goldshmidt (Haifa U): Operating Systems

Connection Strategies I
circuit switching: a permanent physical link is
established for the duration of the communication (i.e.,
telephone system)
message switching: a temporary link is established for
the duration of one message transfer (i.e., post-office
mailing system)
packet switching: messages of variable length are
divided into fixed-length packets which are sent to the
destination

each packet may take a different path through the
network
the packets must be reassembled into messages as
they arrive

– p.19/38

O. Goldshmidt (Haifa U): Operating Systems

Connection Strategies II
circuit switching requires setup time, but incurs less
overhead for shipping each message, and may waste
network bandwidth
message and packet switching require less setup time,
but incur more overhead per message
with circuit switching the sender and receiver can use
any bit rate, format, or framing method
with packet switching the carrier determines the basic
parameters (“road vs. railroad”).

– p.20/38

O. Goldshmidt (Haifa U): Operating Systems

Shared Media
TDM — Time Division Multiplexing
FDM — Frequency Division Multiplexing
CDMA — Code Division Multiple Access

– p.21/38

O. Goldshmidt (Haifa U): Operating Systems

Contention I
CSMA/CD — Carrier Sense with Multiple Access /
Collision Detection

a site determines whether another message is
currently being transmitted over that link
if two or more sites begin transmitting at exactly the
same time, then they will register a CD and will stop
transmitting
when the system is very busy, many collisions may
occur, and thus performance may be degraded
CSMA/CD is used successfully in Ethernet

– p.22/38

O. Goldshmidt (Haifa U): Operating Systems

Contention II
token passing

a unique message type, known as a token,
continuously circulates in the system (usually a ring
structure)
a site that wants to transmit information must wait
until the token arrives
when the site completes its round of message
passing, it retransmits the token
used in IBM TokenRing and Apollo networks
(obsolete)

– p.23/38

O. Goldshmidt (Haifa U): Operating Systems

Layered Networks
“layer” (or “level”) structure to reduce complexity
layer n on host A “talks” to layer n on host B

rules and conventions are referred to as “layer n
protocol”
hosts A and B are often called “peers”
no direct “conversation”: data are passed to lower
layers on sender, signal is transferred over the
physical medium, then data are passed to
successive upper layers on receiver
inter-layer interfaces
protocol stack and headers

– p.24/38

O. Goldshmidt (Haifa U): Operating Systems

Services And Protocols
connection-oriented and connectionless services
service primitives
services and protocols

service is a collection of primitives
protocol is a set of format rules — implementation

– p.25/38

O. Goldshmidt (Haifa U): Operating Systems

Layering Principles
each layer represents a different level of abstraction
each layer performs a well-defined function
an eye on standardization
information flow across the interface boundaries should
be minimized

a general rule for interface design
optimal number of layers

large enough in order not to bundle distinct functions
together in the same layer
small enough so that the architecture does not
become unwieldy

reference models: OSI and TCP/IP

– p.26/38

O. Goldshmidt (Haifa U): Operating Systems

OSI Reference Model I
physical layer — handles the mechanical and electrical
details of the physical transmission of a bit stream
data-link layer — handles the frames, or fixed-length
parts of packets, including any error detection and
recovery that occurred in the physical layer
network layer — provides connections and routes
packets in the communication network, including
handling the address of outgoing packets, decoding the
address of incoming packets, and maintaining routing
information for proper response to changing load levels

– p.27/38

O. Goldshmidt (Haifa U): Operating Systems

OSI Reference Model II
transport layer — responsible for low-level network
access and for message transfer between clients,
including partitioning messages into packets,
maintaining packet order, controlling flow, and
generating physical addresses
session layer — implements sessions, or
process-to-process communications protocols
presentation layer — resolves the differences in formats
among the various sites in the network, including
character conversions, and half duplex/full duplex
(echoing)
application layer — interacts directly with the users,
deals with file transfer, remote login protocols, email,
schemas for distributed databases

– p.28/38

O. Goldshmidt (Haifa U): Operating Systems

TCP/IP Reference Model I
physical layer (“Layer 1”)
data-link layer (“Layer 2”, “host-to-network layer”, “great
void”)
internet layer (“Layer 3”)

IP — internet protocol
major function — routing
similar to OSI’s network layer

transport layer (“Layer 4”)
TCP — transmission control protocol

reliable, connection-oriented
UDP — user datagram protocol

unreliable, connectionless

– p.29/38

O. Goldshmidt (Haifa U): Operating Systems

TCP/IP Reference Model II
no session or presentation layers

no need perceived
application layer (“Layer 5”)

telnet
FTP
HTTP
SMTP
SNMP
DNS
etc.

– p.30/38

O. Goldshmidt (Haifa U): Operating Systems

OSI vs. TCP/IP Comparison I
both based on layering and the concept of protocol
stack
the functionality of the layers is roughly similar

up to and including the transport layer — end-to-end
network-independent transport service
above transport layer — application-specific,
user-oriented

OSI contribution — service, interface, protocol
abstractions

Protocols in OSI are better hidden — a main
purpose of layering

OSI was devised before protocols — generality

– p.31/38

O. Goldshmidt (Haifa U): Operating Systems

OSI vs. TCP/IP Comparison II
in the case of TCP/IP the protocols came first, the
model is a description of the existing system

poorly suited to describing any protocol stack other
than TCP/IP

OSI has support for connection-based and
connectionless communications in the network layer,
only connection-based in the transport layer (visible to
the users)
TCP/IP has only connectionless support in the internet
layer, gives users a choice via dual support in the
transport layer
OSI model and TCP/IP protocols have become very
popular

– p.32/38

O. Goldshmidt (Haifa U): Operating Systems

The TCP/IP World
the Internet — a collection of networks

different owners
different infrastructure
different (internal) protocols
different topology
different performance

IP addresses and the notion of subnets
IP — routing packets around

routing tables
gateways
link-state protocol

address resolution — ARP
– p.33/38

O. Goldshmidt (Haifa U): Operating Systems

Quality Of Service
the Internet is a “best effort” network
sometimes guarantees are needed

all packets reach the destination
all packets arrive in order
latency restrictions
jitter

example: VoIP
latency above 150 ms — poor quality

200, 000 km at 2 × 1010 cm/ s — 50 ms delay
packetization, buffering, etc. end-to-end must
satisfy the constraint

can lose a few per cent of packets
how large should the buffers be?

– p.34/38

O. Goldshmidt (Haifa U): Operating Systems

OS Network Interfaces I
sockets — the common API in UNIX (POSIX)

socket address structure (struct sockaddr in)
address family (.e.g., AF INET)
IP address (32-bit for IPv4)
port number (16-bit)
a length member added for OSI support

Well known numbers
/etc/services

in Windows — winsock

– p.35/38

O. Goldshmidt (Haifa U): Operating Systems

OS Network Interfaces II
TCP sockets

socket() — create a socket
bind() — assign a local protocol address

can assign an IP address, but rarely done
listen() — server “listening” to incoming requests
connect() — client connects to a server

normally does not call bind()
accept() — returns a “connected socket”

a server normally creates one “listening socket”
and a “connected socket” for each client
connection that was accept()-ed

need to be careful about network and host byte order

– p.36/38

O. Goldshmidt (Haifa U): Operating Systems

Typical Server Program Flow
int listenfd, connfd;
struct sockaddr_in servaddr;

listenfd = socket(AF_INET,SOCK_STREAM,0);

servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
servaddr.sin_port = htons(<port_number>);

bind(listenfd,(SA*)&servaddr,sizeof(servaddr));

listen(listenfd,LISTENQ);

while(1) {
connfd = accept(listenfd,(SA*)NULL,NULL);
<write(connfd,data,datalen);>
close(connfd);

}

– p.37/38

O. Goldshmidt (Haifa U): Operating Systems

Typical Client Program Flow
int sockfd;
struct sockaddr_in servaddr;
struct in_addr **addr;

struct hostent host = gethostbyname(<hostname>);
struct servent serv = getservbyname(<servname>,<protocol>);

for (addr = host->h_addr_list; addr != NULL; addr++) {
sockfd = socket(AF_INET, SOCK_STREAM, 0);
bzero(&servaddr,sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_port = serv->s_port;
memcpy(&servaddr.sin_addr,*addr,sizeof(struct in_addr));
if (connect(sockfd, (SA*)&servaddr, sizeof(servaddr)) == 0)

break; /* SUCCESS */
close(sockfd);

}
if (*addr == NULL) exit(EXIT_FAILURE); /* unable to connect */
/* use the socket here */

– p.38/38

	Networked Systems
	Networked And Distributed Systems
	Why?
	Node Types
	Topology
	Topology Examples I
	Topology Examples II
	Topology Examples III
	Topology Examples IV
	Network Types: LAN
	Network Types: WAN
	Communications: Issues
	Naming And Name Resolution
	Elementary Name Resolution
	Elementary Service Names
	Routing Strategies I
	Routing Strategies II
	Connection Strategies I
	Connection Strategies II
	Shared Media
	Contention I
	Contention II
	Layered Networks
	Services And Protocols
	Layering Principles
	OSI Reference Model I
	OSI Reference Model II
	TCP/IP Reference Model I
	TCP/IP Reference Model II
	OSI vs TCP/IP Comparison I
	OSI vs TCP/IP Comparison II
	The TCP/IP World
	Quality Of Service
	OS Network Interfaces I
	OS Network Interfaces II
	Typical Server Program Flow
	Typical Client Program Flow

