
O. Goldshmidt (Haifa U): Operating Systems

Multiprocessor Systems

Operating Systems

Oleg Goldshmidt
ogoldshmidt@computer.org

Lecture 7

– p.1/38



O. Goldshmidt (Haifa U): Operating Systems

Single CPU Computers
the CPU can execute only one instruction at a time
program execution is purely sequential
multiprogramming is possible thanks to time division
increasing performance means making the clock faster
fundamental limit #1: c ≈ 20 cm/ ns in wire or fiber

10 GHz system must be smaller than 2 cm

fundamental limit #2: heat dissipation
the smaller the system the more heat it generates
the smaller the system the harder it is to dissipate
(Intel say) the melting point of (doped) silicon is not
so far away

– p.2/38



O. Goldshmidt (Haifa U): Operating Systems

Solution: Parallelization
many CPUs running at “normal” speed, for some
definition of “normal”
speed up computations

at least those that can be parallelized
deal with heavier loads

different CPUs deal with different transactions, users
enormous range of systems:

single servers with 2, 4, 8, 16, and more CPUs
supercomputers and clusters (10 ÷ 105 CPUs)
internet-wide computations (e.g. SETI@home)
grid computing

– p.3/38



O. Goldshmidt (Haifa U): Operating Systems

Stored-Program Multiprocessors
separation of CPUs and memory
how CPUs access memory is central to what follows

where istructions and data live
how fast can the CPU access the data
caching
shared memory

interconnect between CPUs and memory, its properties
are crucial

topology and connectivity
bandwidth and latencies
blocking properties
routing

– p.4/38



O. Goldshmidt (Haifa U): Operating Systems

Shared-Memory Multiprocessors
between 2 and hundreds of
CPUs
all have access to the entire
physical memory
LOAD and STORE individual
words
memory access times 10 ÷ 50 ns

looks simple
difficult to implement
much message-passing under
the covers

– p.5/38



O. Goldshmidt (Haifa U): Operating Systems

Message-Passing Multiprocessors

102
÷ 105 CPUs

each CPU has its own memory,
inaccessible by others
communicate by sending
messages over the interconnect
latencies 1 ÷ 50 µs

much easier to build than
shared-memory ones
harder to program
each node can be a shared-
memory multiprocessor

– p.6/38



O. Goldshmidt (Haifa U): Operating Systems

Distributed Multiprocessors
potentially huge number of
nodes
each node is a complete
system
very similar to
message-passing
multicomputers
but long latencies 1 ÷ 50 ms

often no QoS (e.g. over
Internet)
“loosely-coupled” vs. “tightly-
coupled”

– p.7/38



O. Goldshmidt (Haifa U): Operating Systems

Shared-Memory MP Quirks
multiple CPUs share full access to a common RAM
a process running on a CPU sees a normal virtual
address space
the memory is usually paged
things really can happen simultaneously
unusual property: a CPU can STORE a word in
memory and then LOAD it, and get a different value

because another CPU changed it
allows a form of interprocessor communication
must be very careful indeed with locking

– p.8/38



O. Goldshmidt (Haifa U): Operating Systems

Shared-Memory Multiprocessor OS
a regular OS for the most part

system calls
memory management
file systems
I/O

but not quite ordinary
process synchronization
resource management
scheduling

– p.9/38



O. Goldshmidt (Haifa U): Operating Systems

Shared-Memory MP Hardware: UMA
CPUs share a bus for communication

contention limited by the bus
bandwidth — non-scalable beyond
a few CPUs

solution: add caches to CPUs
optimization: place all text sections,
read-only data, stacks, local variables
in private memory, access the bus for
writeable shared data

requires co-operation from
compilers

– p.10/38



O. Goldshmidt (Haifa U): Operating Systems

Shared-Memory MP Hardware: UMA

CPUs share a bus for communication
contention limited by the bus
bandwidth — non-scalable beyond
a few CPUs

solution: add caches to CPUs

optimization: place all text sections,
read-only data, stacks, local variables
in private memory, access the bus for
writeable shared data

requires co-operation from
compilers

– p.10/38



O. Goldshmidt (Haifa U): Operating Systems

Shared-Memory MP Hardware: UMA

CPUs share a bus for communication
contention limited by the bus
bandwidth — non-scalable beyond
a few CPUs

solution: add caches to CPUs
optimization: place all text sections,
read-only data, stacks, local variables
in private memory, access the bus for
writeable shared data

requires co-operation from
compilers

– p.10/38



O. Goldshmidt (Haifa U): Operating Systems

NUMA Multiprocessors
single-bus UMA multiprocessors are not very scalable
crossbar and multistage switching help, but not very
much
to go beyond 100 CPUs something has got to give
NUMA — give up the uniform memory access time
all CPUs still see all the RAM and use a single address
space, but local memory access is faster than remote
all UMA programs will run on NUMA machines, but
slower
NC-NUMA — no caching
CC-NUMA — coherent caches are present

– p.11/38



O. Goldshmidt (Haifa U): Operating Systems

Directory-Based NUMA

maintain a DB (in very fast HW) that knows where each
cache line is and what its status (clean or dirty) is
query the DB for every memory access

– p.12/38



O. Goldshmidt (Haifa U): Operating Systems

Multiprocessors with Private OS

each CPU has private memory and a private copy of OS
effectively n independent computers
optimization: share OS code

– p.13/38



O. Goldshmidt (Haifa U): Operating Systems

Multiprocessors with Private OS II
better than n independent computers

shared I/O
flexible memory allocation
effective inter-processor communication

system calls are handled locally — private tables etc
no process sharing: CPU 1 idle while CPU 2 overloaded
no page sharing: CPUs cannot borrow/loan pages
local buffer caches (of recently used disk blocks)

if a block is present and dirty in multiple buffer
caches the system is in inconsistent state
eliminating buffer caches hurts performance

– p.14/38



O. Goldshmidt (Haifa U): Operating Systems

Master-Slave Multiprocessors

only one CPU (“master”) has OS, tables, etc
all system calls are redirected to the master CPU
master can also run user processes, if it is not loaded

– p.15/38



O. Goldshmidt (Haifa U): Operating Systems

Master-Slave Multiprocessors II
solves most of the problems of the private OS scheme

there is a single set of OS data structures
a CPU will never stay idle when another is
overloaded
pages can be allocated among all the processes
dynamically
there is one buffer cache, so no inconsistencies will
occur

problem: the master CPU is a bottleneck
must handle all the system calls from all the slaves
example: if 10% of the time is spent in system calls,
the master will be saturated by 10 CPUs

– p.16/38



O. Goldshmidt (Haifa U): Operating Systems

Master-Slave Multiprocessors III
usefulness depends on the workload

OK for workloads with few system calls
very important application: heavy number crunching
used in HPC, supercomputers

not scalable for workloads with a lot of system activity
need another model...

– p.17/38



O. Goldshmidt (Haifa U): Operating Systems

Symmetric Multiprocessors (SMP)

there is one copy of OS, but any CPU can run it
when a CPU needs to perform a system call it does

– p.18/38



O. Goldshmidt (Haifa U): Operating Systems

Symmetric Multiprocessors II
balances processes and memory dynamically
there is only one set of OS tables
eliminates the master CPU bottleneck
problem: need to synchronize the CPUs

imagine 2 CPUs scheduling the same process to run
or claiming the same free memory page

solution: protect the OS with a mutex
any CPU can run the OS, but only one at a time can
do it
almost as bad as master-slave: CPUs will queue to
get the OS

– p.19/38



O. Goldshmidt (Haifa U): Operating Systems

SMP Synchronization
solution: split the OS into independent critical regions,
protect each with its own mutex
some tables may be used by multiple critical sections

e.g. process table is used by
scheduler
fork()
signal handling

such tables need their own mutexes
such organization is hard to design...
... and is even harder to program

– p.20/38



O. Goldshmidt (Haifa U): Operating Systems

No Simple Solutions
on uniprocessor machines simple, direct, brute-force
solutions are possible in some cases

the only thing we need to take care of is interrupts
in principle, one can disable interrupts while in
critical region

disabling interrupts on SMP affects only the disabling
processor
one big lock for the OS (BKL in the Linux world)
reduces SMP performance to that of master-slave:
CPUs queue to acquire the lock
solution: lock different data structures separately

NB: always lock data, not code!
what are the mechanisms?

– p.21/38



O. Goldshmidt (Haifa U): Operating Systems

Test and Set Lock (TSL)
TSL is a HW instruction that lies in the heart of any
practical mutex protocol
atomic operation on a memory word

reads a word from memory
stores the word in a register
writes 1 (or a non-zero value) into the memory word

two memory operations, really: LOAD and STORE

takes two bus cycles
always works as expected on uniprocessor machines

– p.22/38



O. Goldshmidt (Haifa U): Operating Systems

TSL on SMP
Both CPUs may acquire the lock, can proceed into the
critical region
mutual exclusion is broken, unless SL locks the bus
need a special locking line and protocol on the bus

CPU 1

READ 0
...
WRITE 1
...

CPU 2

...
READ 0
...
WRITE 1

– p.23/38



O. Goldshmidt (Haifa U): Operating Systems

What Does the Waiting CPU Do?
keeps testing the lock (“spins”)
wastes cycles
accesses the bus all the time, slowing everybody else
down!
but what about cache?
in theory, it should work

the CPU should be able to test the lock in its own
cache
when the lock is released, all the caches will be
invalidated

– p.24/38



O. Goldshmidt (Haifa U): Operating Systems

Avoiding Bus Thrashing
in practice, caches work in 32-bit or 64-bit blocks
TSL brings a whole block into a cache, and invalidates
it, since it is a write
result: “bus thrashing”
need to get rid of TSL writes for requesters
make the requesting CPU do a pure read to see if the
lock is free
every CPU polls its own cache in read-only mode
when the lock is released, caches are invalidated
the next attempts to TSL does not guarantee lock
acquisition!

– p.25/38



O. Goldshmidt (Haifa U): Operating Systems

Binary Exponential Backoff
enhancement to further reduce bus traffic
same algorithm as in Ethernet
insert a delay loop between successive polls

initial delay — 1 instruction
if the lock is busy — increase delay to 2 instructions
continue until some maximal delay is reached

tradeoff:
low maximal delay — faster acquisition on release,
more thrashing
high maximal delay — reduced thrashing, slow
acquisition

– p.26/38



O. Goldshmidt (Haifa U): Operating Systems

Private Lock Variables
a CPU that fails to acquire a lock allocates a private
lock variable

private lock resides in its own cache block
adds itself to the list of CPUs waiting for the (real) lock
when the holder releases the real lock it also releases
the private lock of the first CPU on the list

remember: memory is shared
further complication: can 2 CPUs attach themselves to
the list simultaneously?

– p.27/38



O. Goldshmidt (Haifa U): Operating Systems

To Spin Or Not To Spin?
on UP spinning does not make sense — no one else
can release the lock

on SMP sometimes spinning cannot be avoided
an idle CPU needs to pick a process from a (locked)
ready queue

spinning wastes CPU cycles
so does switching contexts (at least twice):

save current process state
pick a process to run from ready queue (another lock
etc.)
load and start the new process
suffer from many cache misses, TLB faults etc.

– p.28/38



O. Goldshmidt (Haifa U): Operating Systems

To Spin Or Not To Spin?
on UP spinning does not make sense — no one else
can release the lock
on SMP sometimes spinning cannot be avoided

an idle CPU needs to pick a process from a (locked)
ready queue

spinning wastes CPU cycles
so does switching contexts (at least twice):

save current process state
pick a process to run from ready queue (another lock
etc.)
load and start the new process
suffer from many cache misses, TLB faults etc.

– p.28/38



O. Goldshmidt (Haifa U): Operating Systems

To Spin Or Not To Spin?
on UP spinning does not make sense — no one else
can release the lock
on SMP sometimes spinning cannot be avoided

an idle CPU needs to pick a process from a (locked)
ready queue

spinning wastes CPU cycles
so does switching contexts (at least twice):

save current process state
pick a process to run from ready queue (another lock
etc.)
load and start the new process
suffer from many cache misses, TLB faults etc.

– p.28/38



O. Goldshmidt (Haifa U): Operating Systems

Designing for Concurrency
What causes concurrency issues?

HW and SW interrupts, sleeping, preemption, SMP
design protection and locking from the start

not too difficult, if you realize that you need to protect
the data, not code paths (have I said this before?)
retrofitting locks in is really difficult, and the results
are not pretty

always design and develop for the worst case: SMP,
preemption, etc
always test on SMP

– p.29/38



O. Goldshmidt (Haifa U): Operating Systems

Linux Spinlocks
by far the most common type of lock
does what it says: if a lock is contended the waiting
thread “spins”, i.e., busy-waits until the lock is released
it is not wise to hold a spinlock for a long time
architecture-dependent, assembly implementation
useless on single-processor machines

are compiled away if CONFIG SMP is not defined
can be used in interrupt handlers (cannot sleep)

must disable local (this CPU) interrupts
otherwise there is a deadlock (can you see it?)
why only local interrupts must be disabled?

– p.30/38



O. Goldshmidt (Haifa U): Operating Systems

Spinlock Interface
spinlock_t lck = SPIN_LOCK_UNLOCKED;

/* generic interface */
spin_lock(&lck);
/* critical section */
spin_unlock(&lck);

/* disable interrupts and lock */
unsigned long flags;
spin_lock_irqsave(&lck,flags);
/* critical section */
spin_unlock_irqrestore(&lck,flags);

– p.31/38



O. Goldshmidt (Haifa U): Operating Systems

Semaphores
not very relevant to SMP — SMP protection is done by
spinlocks
spinlocks vs. semaphores:

low overhead is important — spinlocks preferred
short lock holding time — spinlocks preferred
another CPU may access the data — spinlocks
required
in interrupt context — spinlocks required
long lock holding time — semaphores preferred
may sleep while holding lock — semaphores
required

– p.32/38



O. Goldshmidt (Haifa U): Operating Systems

Practical OS Coding Rules
if a function acquires a lock and calls another function
that may attempt to acquire the same lock, your
machine will hang
avoid taking multiple locks
if you asolutely have to, determine the scope of the lock

take more local lock first
e.g., if you lock a device you are writing a driver for
— obtain this lock first
never hold a spinlock if you can sleep
if you need both a semaphore and a spinlock, obtain
the semaphore first

semaphores can sleep, spinlocks cannot!

– p.33/38



O. Goldshmidt (Haifa U): Operating Systems

SMP And Preemption
the kernel is preemptive

can stop at any time to allow another process to run
a task can begin running in the same critical region as
another task that was preempted
the kernel uses spinlocks as markers for
non-preemptive regions

while a spinlock is held the kernel is not preemptive
same as SMP: SMP-safe means preemption-safe!
not always...

– p.34/38



O. Goldshmidt (Haifa U): Operating Systems

Disabling Preemption
some situations do not require SMP spinlocks, but
preemption must be disabled
example: per-processor data

no need to protect from SMP, since the data are
CPU-specific
still need a spinlock to disable preemption

preemption counter: zero if preemptive

preempt_disable();
preempt_enable();
preempt_count();
get_cpu();
put_cpu();

– p.35/38



O. Goldshmidt (Haifa U): Operating Systems

Side Note: Superthreading
a.k.a. time-slice multithreading
interleave instructions from different threads
each pipeline stage can contain instructions from one
thread only
scheduling logic switches between threads
helps alleviate memory latency

if one thread requests data from main memory that
is not in cache it stalls for several cycles
another thread can proceed with execution, keeping
pipelines full

does not help with instruction-level parallelism
if on a given cycle not enough instructions can be
parallelized, there will still be waste

– p.36/38



O. Goldshmidt (Haifa U): Operating Systems

Side Note: Hyperthreading
removes the “one thread per time slot” restriction
Intel Pentium 4 Xeon: 2 threads per CPU
not very complicated: adds about 5% to the die area for
Xeon
from the OS perspective: 2 logical processors,
equivalent to 2-way SMP

installing an OS on a Xeon means installing an SMP
kernel
can be disabled (why?)

both logical CPUs share the same cache

– p.37/38



O. Goldshmidt (Haifa U): Operating Systems

Side Note: SMT and Caching
no cache coherence problems that plague SMPs
but higher potential for cache conflicts
each thread can monopolize the caches — no
cooperation

potential for cache thrashing
can be bad for memory-intensive workloads
remember: hyperthreading can be disabled

– p.38/38


	Single CPU Computers
	Solution: Parallelization
	Stored-Program Multiprocessors
	Shared-Memory Multiprocessors
	Message-Passing Multiprocessors
	Distributed Multiprocessors
	Shared-Memory MP Quirks
	Shared-Memory Multiprocessor OS
	Shared-Memory MP Hardware: UMA
	NUMA Multiprocessors
	Directory-Based NUMA
	Multiprocessors with Private OS
	Multiprocessors with Private OS II
	Master-Slave Multiprocessors
	Master-Slave Multiprocessors II
	Master-Slave Multiprocessors III
	Symmetric Multiprocessors (SMP)
	Symmetric Multiprocessors II
	SMP Synchronization
	No Simple Solutions
	Test and Set Lock (TSL)
	TSL on SMP
	What Does the Waiting CPU Do?
	Avoiding Bus Thrashing
	Binary Exponential Backoff
	Private Lock Variables
	To Spin Or Not To Spin?
	Designing for Concurrency
	Linux Spinlocks
	Spinlock Interface
	Semaphores
	Practical OS Coding Rules
	SMP And Preemption
	Disabling Preemption
	Side Note: Superthreading
	Side Note: Hyperthreading
	Side Note: SMT and Caching

