
O. Goldshmidt (Haifa U): Operating Systems

Memory Management III

Operating Systems

Oleg Goldshmidt
ogoldshmidt@computer.org

Lecture 6

– p.1/35



O. Goldshmidt (Haifa U): Operating Systems

Virtual Memory
must logical memory be mapped to physical?
usually, parts of the program are not needed

error handling
overallocated arrays, lists, symbol tables, etc
unused options and features

not everything is needed at the same time
execute a program that is only partially in memory

the size of physical memory no longer a constraint
higher degree of multiprogramming, higher CPU
utilization, higher throughput, with no response time
or turnaround time penalty
potentially less I/O for swapping

– p.2/35



O. Goldshmidt (Haifa U): Operating Systems

Demand Paging
lazy swapping: never swap a page into memory unless
the page is needed

not swapping but paging
when swapping a process in the pager guesses which
pages will be used before the next swap-out

does not load pages unlikely to be used
pte of a page not currently in memory has invalid bit on

no effect if the process never accesses the page
if an invalid page is accessed, a page fault occurs

hardware traps into the OS

– p.3/35



O. Goldshmidt (Haifa U): Operating Systems

Handling Page Faults
check the PCB to find out if the reference is valid

if it is invalid — segfault
find a free frame (the OS keeps track of free memory)
schedule a disk I/O to read the swapped-out page into
the frame
when the I/O is completed, modify the page table to
indicate the page is in memory

also modify the process internal tables (in PCB)
continue the interrupted process from the instruction
that caused the page fault — the needed page is now in
memory

– p.4/35



O. Goldshmidt (Haifa U): Operating Systems

Page Faults: Analysis I
pure demand paging: a process can start executing
with no pages in memory

the OS will set the instruction pointer to the address
of the first instruction, which is on a non-resident
page
there will be a page fault, and the page will be
brought into memory

in principle, there may be several page faults per
instruction

rare in practice
same hardware support as for paging and swapping:
page tables and backing store

– p.5/35



O. Goldshmidt (Haifa U): Operating Systems

Page Faults: Analysis II
a fault may occur when we fetch an instruction, or the
operands, or try to store the result
need to restart the instruction again after bringing the
page into memory
a problem when, say moving a block (e.g., MVC on IBM
360/370, which moves up to 256 bytes from one
location to another, possibly overlapping, location)
possible solutions

check beginning and end before moving
use temporary registers to hold the overwritten
values, write them back into memory before handling
the fault

– p.6/35



O. Goldshmidt (Haifa U): Operating Systems

Demand Paging Performance I
basic parameters

p — probability of a page fault
tm — memory access time
tf — page fault time

te = (1 − p)tm + ptf — effective access time
usually p << 1

slowdown: te/tm = 1 + p(tf/tm)

acceptable performance: p(tf/tm) < 1

– p.7/35



O. Goldshmidt (Haifa U): Operating Systems

Demand Paging Performance II
handling a page fault

service the page fault interrupt: trap to OS — save
registers and process state — determine that the
trap was a page fault — determine disk location
read in the page: issue a read command to a free
frame — wait in the disk queue — wait for the device
seek and/or latency time — begin the transfer —
context switch to another process — interrupt from
the disk
restart the process: save the running process’s
registers and state — determing the interrupt was
from disk — update the page tables — wait for CPU
— context switch

context switches are optional
– p.8/35



O. Goldshmidt (Haifa U): Operating Systems

Page Replacement
what if there are no free frames?

we can swap out a process
or find a frame that is not used and swap it out

doubles the page fault service time tf : one page is
written to disk, one read from disk
optimization: use dirty bit to indicate that the page has
been modified since swap-in

only write dirty pages back to disk
for efficient demand paging we need a frame allocation
algorithm and a page replacement algorithm

– p.9/35



O. Goldshmidt (Haifa U): Operating Systems

Page Replacement Algorithms
goals

minimize the page fault rate
maximize the degree of multiprogramming

evaluation: “reference string”
generated randomly
recorded trace from a real system and workload

collapse subsequent references to the same page
example: for 100 byte pages:

0100, 0432, 0101, 0612, 0102, 0103, 0104,
0101, 0611, 0102, 0103, 0104, 0101, 0610,
0102, 0103, 0104, 0101, 0609, 0102, 0105

1, 4, 1, 6, 1, 6, 1, 6, 1, 6, 1
– p.10/35



O. Goldshmidt (Haifa U): Operating Systems

Page Replacement: FIFO
record arrival time for each page
swap out the oldest page in the system
alternatively, maintain a FIFO of pages
example (with 3 frames):

oldest page may contain initialization code or a heavily
used variable

– p.11/35



O. Goldshmidt (Haifa U): Operating Systems

Belady’s Anomaly

if we increase
the number of
available frames
we expect the
page fault rate to
go down
not always the
case!

– p.12/35



O. Goldshmidt (Haifa U): Operating Systems

Optimal Page Replacement
there is an optimal page replacement algorithm with the
lowest page fault rate for a fixed number of frames
replace the page that won’t be used for the longest time

no Belady’s anomaly
problem: we don’t know the future
useful to compare practical algorithms with

– p.13/35



O. Goldshmidt (Haifa U): Operating Systems

Page Replacement: LRU
an approximation to optimal replacement
replace the page not used for the longest time
may swap out a page that will be used soon

good performance, but difficult to implement

– p.14/35



O. Goldshmidt (Haifa U): Operating Systems

LRU Implementation Issues
need to maintain a data structure updated on every
memory reference

accessible in constant time
update time much shorter than memory access

counters — maintain time of last reference per page
a global counter updated on each memory reference
per page counter updated with the value of global
counter when the page is referenced
need to search page tables, clock may overflow, etc.

stack (or, rather, list)
on reference, a page is moved to head, tail is
replaced (no search)

both options require HW support and are not practical
– p.15/35



O. Goldshmidt (Haifa U): Operating Systems

LRU Approximations I
reference bit per page, set to 1 when page is referenced

replace a page with 0 reference bit — no order
information

additional reference bits
keep, e.g., 8 bits per page to record the reference
history
on timer interrupt copy the reference bit into the high
order bit, shift the rest to the right, discard the lowest

second chance algorithm
keep a FIFO (or a circular list), check the reference
bit, if it is 1 clear it, reset arrival time, and move to
the next page
heavily used pages will not be replaced

– p.16/35



O. Goldshmidt (Haifa U): Operating Systems

LRU Approximations II
enhanced second chance algorithm

check both the reference bit and the dirty bit
possibilities:

(0,0) — neither recently used nor modified, the
best candidate for replacement
(0,1) — not recently used but dirty, not quite as
good because a write out is needed
(1,0) — recently used but clean, likely to be used
again soon?
(1,1) — recently used and dirty, likely to be used
again and needs a write-out

replace the first page in the lowest non-empty class

– p.17/35



O. Goldshmidt (Haifa U): Operating Systems

Counting Algorithms
count the references to each page
LFU (least frequently used)

replace the page with the lowest count
a page may have a high count but be no longer in
use
shift the count right regularly to age the pages

MFU (most frequently used)
replace the page with highest count
pages with smallest count have just been brought in

workload dependent
not good approximations to the optimal algorithm

– p.18/35



O. Goldshmidt (Haifa U): Operating Systems

Allocating Frames
how many frames should we allocate to a process?
considerations:

there is a minimum number of frames dependent on
the architecture (how many frames will an instruction
need?)

indirect addressing must be taken into account
fixed number of frames per process does not take
into account the process size or needs
allocate frames in proportion to the process size
take priority into account

– p.19/35



O. Goldshmidt (Haifa U): Operating Systems

Local vs. Global Allocation
local allocation

the number of frames allocated to a process is
constant
when a process needs a new page it replaces one of
its own

global allocation
any frame can be chosen for replacement
less predictable performance

– p.20/35



O. Goldshmidt (Haifa U): Operating Systems

Thrashing I
what if a process has too few pages?

it will need a new page, and will replace an existing
one
if the replaced page is heavily used it will cause
another fault
the process will spend more time paging than
running — thrashing

typical cause of thrashing
CPU utilization decreases, OS brings another
process in
with global allocation, processes take frames from
each other, fill the paging device queue, empty the
ready queue
CPU utilization decreases further

– p.21/35



O. Goldshmidt (Haifa U): Operating Systems

Thrashing II

local replacement helps to an extent
a thrashing process queues for paging device,
increasing the service time for page faults — still affects
others
how many pages does a process actually use?

– p.22/35



O. Goldshmidt (Haifa U): Operating Systems

Locality Model
locality — a set of pages actively used together
a program consists of several localities that may overlap
when a function is called it defines a new locality

the function’s instructions
local variables
a subset of global variables

on return the process leaves this locality
locality model: all programs have this locality pattern,
determined by the program structure and data

the basis for most caching decisions
allocate enough frames for the current locality

– p.23/35



O. Goldshmidt (Haifa U): Operating Systems

Working Set Model
∆ — working set window, a fixed # of page references
WSSi — working set size or process i — total number
of pages referenced in the most recent ∆

if ∆ is too small, it will not encompass the locality
if ∆ is too large, it will encompass several localities
∆ → ∞ — entire program

D =
∑

i WSSi — total demand for frames
M — total memory
if D > M thrashing will occur — suspend processes
prepaging: remember the working set for the
swapped-out process, bring all the pages in at once

– p.24/35



O. Goldshmidt (Haifa U): Operating Systems

Page Fault Frequency
one can also monitor the page fault frequency to control
thrashing
establish acceptable range of fault rate

if page fault rate is too high, process gains a frame
if page fault rate is too low, process loses a frame

– p.25/35



O. Goldshmidt (Haifa U): Operating Systems

Choosing Page Size
small pages

less fragmentation
better locality tracking (less I/O)
less time to transfer pages to/from disk

large pages
smaller page tables
less TLB flushing
more efficient swapping (disk latency and seek time
dominate transfer time)
fewer page faults

historical trend — toward larger pages
sometimes beneficial to use huge pages for particular
applications

– p.26/35



O. Goldshmidt (Haifa U): Operating Systems

Page Tables in Linux I
include/asm/page.h
#define PAGE_SHIFT 12
#define PAGE_SIZE (1UL << PAGE_SHIFT)

similarly for PGDIR SIZE, PUD SIZE, PMD SIZE (in
include/asm/pgtable.h)

pte bit (examples) meaning
PAGE PRESENT resident in memory, not swapped out
PAGE RW writable
PAGE USER accessible from userspace
PAGE DIRTY dirty bit
PAGE ACCESSED reference bit

– p.27/35



O. Goldshmidt (Haifa U): Operating Systems

Page Tables in Linux II
pgd offset(), pmd offset(), pte offset() point
into different levels of page table
pte none(), pmd none(), etc.— checks existence of
entry
pte present(), etc.— check the PAGE PRESENT bits
pmd bad(), pgd bad() — check entries when passed
as input to functions that may change the entry value

architecture-dependent, but normally start with
checking that the page is present and accessed

– p.28/35



O. Goldshmidt (Haifa U): Operating Systems

Walking Through Page Tables
mm/memory.c: follow page():
pgd = pgd_offset(mm, address);
if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))

goto out;
pud = pud_offset(pgd, address);
if (pud_none(*pud) || unlikely(pud_bad(*pud)))

goto out;
pmd = pmd_offset(pud, address);
if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))

goto out;
ptep = pte_offset_map(pmd, address);
if (!ptep)

goto out;
pte = *ptep;

– p.29/35



O. Goldshmidt (Haifa U): Operating Systems

Process Address Space I
include/linux/sched.h
struct task_struct {

...
struct mm_struct *mm;
...

};

only one mm struct per process
threads of a process — all task struct’s that point to
the same mm struct

– p.30/35



O. Goldshmidt (Haifa U): Operating Systems

Process Address Space II
include/linux/sched.h
struct mm_struct {

struct vm_area_struct * mmap;
...

};

VMA’s share protection attributes and purpose
examples: shared library loaded into the address
space, heap, etc.
VMA’s can be viewed in /proc/<pid>/maps

– p.31/35



O. Goldshmidt (Haifa U): Operating Systems

Virtual Memory Areas
include/linux/mm.h
struct vm_area_struct {

struct mm_struct * vm_mm;
unsigned long vm_start;
unsigned long vm_end;
/* linked list of VM areas per task,

sorted by address */
struct vm_area_struct *vm_next;
...
/* protection, flags, backing store, etc */
struct vm_operations_struct * vm_ops;

};

vm ops: open(), close(), nopage()
mmap(2), munmap(2) system calls

– p.32/35



O. Goldshmidt (Haifa U): Operating Systems

Memory Usage Of A Process I
# egrep "ˆVm" /proc/5909/status
VmSize: 4448 kB
VmLck: 0 kB
VmRSS: 1408 kB
VmData: 304 kB
VmStk: 84 kB
VmExe: 556 kB
VmLib: 1380 kB
VmPTE: 28 kB

Size = code + data + stack
RSS = resident set size (memory mapped in RAM)
Size and RSS don’t count page tables, task struct

– p.33/35



O. Goldshmidt (Haifa U): Operating Systems

Out Of Memory I
“OOM Killer”

very controversial
many suggestions to remove it

when a system needs more memory, e.g., expanding
the heap via brk(2) or remapping an address space
via mremap(2), it will check if it has enough memory to
satisfy the request
vm enough memory() checks how many pages are
potentially available

total free pages, total page cache, total free swap
pages, filesystem caches, etc.

if false is returned to the caller the caller returns
-ENOMEM to userspace

– p.34/35



O. Goldshmidt (Haifa U): Operating Systems

Out Of Memory II
if nothing helps out of memory() is called
selects a process that uses a lot of memory but has not
been running for a long time

long running processes are unlikely to cause
memory shortage

assumes that processes with root privileges are
well-behaved
try not to kill a process that can access HW directly
walk through the tasks again and find those sharing
mm struct with the selected task (i.e., all the threads),
and send SIGTERM (for RAWIO processes) or SIGKILL

– p.35/35


	Virtual Memory
	Demand Paging
	Handling Page Faults
	Page Faults: Analysis I
	Page Faults: Analysis II
	Demand Paging Performance I
	Demand Paging Performance II
	Page Replacement
	Page Replacement Algorithms
	Page Replacement: FIFO
	Belady's Anomaly
	Optimal Page Replacement
	Page Replacement: LRU
	LRU Implementation Issues
	LRU Approximations I
	LRU Approximations II
	Counting Algorithms
	Allocating Frames
	Local vs. Global Allocation
	Thrashing I
	Thrashing II
	Locality Model
	Working Set Model
	Page Fault Frequency
	Choosing Page Size
	Page Tables in Linux I
	Page Tables in Linux II
	Walking Through Page Tables
	Process Address Space I
	Process Address Space II
	Virtual Memory Areas
	Memory Usage Of A Process I
	Out Of Memory I
	Out Of Memory II

