Memory Management 11

Operating Systems

Oleg Goldshmidt

ogoldshmidt@computer.org

Lecture 5

o -

O. Goldshmidt (Haifa U): Operating Systems -p.1/3

°

Contiguous Allocation

=

both the OS (kernel) and user processes need to reside
IN memory

the main memory is usually divided into 2 partitions —
for the OS and for user processes

do we place the OS in low or high memory?

s the interrupt memory is often in low memory, OS is
commonly there as well

s assume OS is in low memory, the other case is not
significantly different

OS must be protected from the user processes
user processes must be protected from each other

-

O. Goldshmidt (Haifa U): Operating Systems —p.2/3

Single Partition Allocation

=

add a limit register to the relocation register

the relocation register contains the value of the lowest
physical address accessible by the process

o the limit register contains the value of the highest logical
address accessible by the process

the dispatcher loads the relocation and limit registers as
a part of a context switch

® 1f (virt < limit) phys = reloc + virt;
else goto segfault;
® can be used to change the OS size dynamically

s €.g., adriver and its buffers are not used — why
keep them in memory?

o -

O. Goldshmidt (Haifa U): Operating Systems - p.3/3:

Multiple Partition Allocation

o .

how to allocate memory to various processes?

multiple fixed size partitions (early IBM OS/360)

s divide the memory into fixed partitions in advance,
load a process from the input queue into a free
partition

s degree of multiprogramming is predefined
s Size of process is predefined
s requires careful tuning dependent on workload

generalization: multiple variable size partitions
s OS keeps a table of allocated and free space
s for each process we allocate just enough space

o -

O. Goldshmidt (Haifa U): Operating Systems — p.4/3:

Long Term Scheduling

0. |

400 400

-

P1 600K 10
P2 1000K 5
P3 300K 20
P4 700K 8
P5 400K 15

400 400 400

800

1000 1000 1000 1000 1000
» RR
scheduling,
At =1
® t= 1.42 P 1700 1700 1700
terminates
2000 2000 2000 2000 2000
ot = 280 P
terminates 2300 2300 2300 2300 2300
2400 2400 2400

2400 2400

O. Goldshmidt (Haifa U): Operating Systems —p.5/3

Allocation Algorithms I

o .

special case of dynamic resource allocation
® given a set of holes, satisfy a request of size n
o first-fit
s allocate (a part of) the first hole that is big enough
s start either at the beginning of the free list or where
the previous search stopped
best-fit
s allocate the smallest hole that is big enough
» must search the entire list (or keep it ordered)
s produces the smallest leftover hole

o -

O. Goldshmidt (Haifa U): Operating Systems — p.6/3:

Allocation Algorithms 11
-

» worst-fit
» allocate the largest hole
s must search the entire list (or keep it ordered)
s produces the largest leftover hole

first-fit and best-fit usually yield better utilization

best-fit does not win clearly on utilization (especially if
scheduling is flexible)

o first-fit is the fastest

o -

O. Goldshmidt (Haifa U): Operating Systems - p.7/3

Fragmentation

o .

o external fragmentation: enough memory exists to
satisfy a request, but it is not contiguous

s exists for any allocation scheme

s exists whether we allocate the low or the high end of
a hole

s often reaches 50% (for first-fit) — “50 per cent rule”
internal fragmentation: more memory is allocated to a
process than is really needed

s the overhead of keeping track of many very small
holes is not justified — better allocate a slighly larger
partition

o -

O. Goldshmidt (Haifa U): Operating Systems - p.8/3:

Compaction

reshuffle memory
to make a single
large free hole

only possible if
relocation is
dynamic and done
at runtime

move program and
data, change the
base register

& optimization is diffi-

cult
|

O. Goldshmidt (Haifa U): Operating Systems

0

300

500
600

1000

1200

1500

1900

2100

- p.9/3:

Swapping

-

RR:swap out the
process that has
just finished its
quantum

priority scheduling:
swap out low
priority processes
(roll-in, roll-out)

for runtime binding
the new memory
space may be
different

may help with com-

L paction

O. Goldshmidt (Haifa U): Operating Systems

User space

—p.10/3

Swapping Tradeoffs I
f # backing store — a (fast) disk T
s commonly a “swap partition” allocated at install time
s may be a “swap file” (but extra head seeks)
s can be attached (“mounted”) on demand
s must be large enough — rule of thumb 2 x RAM

o much slower than RAM — high context switch overhead
s the time quantum must be long enough

s transfer time is proportional to the amount of
memory used

s useful to know how much memory the process is
using (as opposed to how much it might use)

» allocate and free memory dynamically

o -

O. Goldshmidt (Haifa U): Operating Systems

~p.11/3

Swapping Tradeoffs 11

o .

process being swapped must be completely idle

we might want to swap out a process waiting for 1/0

s but what if I/O may access the user’s buffers
asynchronously? (this will be discussed later in the course)

s swap in a different process — |/O might corrupt its
memory
solutions to the 1/O problem
s never swap blocked processes
s only use OS buffers (incurs extra copy)

o -

O. Goldshmidt (Haifa U): Operating Systems —p.12/3

Freeing Memory

-

until another process makes a request

typical memory usage reported by the OS when probed

IS close to 100%

free
total used
Mem: 511356 503920
shared buffers
0 12032
—/+ buffers/cache: 263560
sSwap: 1050832 144624

L(output format modified to fit the slide)

O. Goldshmidt (Haifa U): Operating Systems

#® modern OS do not actually release unused memory

free
7436

cached
228328

2477796
900208

=

—p.13/3

Paging
-

contiguous memory allocation suffers from
fragmentation

solution: allow the logical address space of a process
be non-contiguous

allocate memory in (relatively small) chunks — pages

physical memory is divided into fixed-sized blocks —
frames

logical memory consists of blocks of the same size —
pages

pages are loaded into available frames from the backing
store (also divided into chunks of the same size)

any page can be loaded into any frame J

O. Goldshmidt (Haifa U): Operating Systems —p.14/3

Paging: Basics

0
754
(I

197

1000

2000

3000

1000
1197
2000
Page Table
“Page [Frame
0 3
1 0

.

O. Goldshmidt (Haifa U): Operating Systems

3754

—p.15/3

Page Tables
-

logical addresses are divided into page number and
page offset

frame size (and page size) is determined by hardware
— normally a power of 2 of addressing units (bytes or
words)

e.g., page size is 2", logical address space size is 2™

s m — n high order bits of the logical address
designate the page number

» n low order bits form the page offset

page table contains the base address of each page in
physical memory
o phys = base(pagenum) + offset

o -

O. Goldshmidt (Haifa U): Operating Systems —p.16/3

Paging: Hardware Support

pld tfd
Physical
I memory
p<|__
I
I

L Page table J

O. Goldshmidt (Haifa U): Operating Systems —p.17/3

Paging and Fragmentation

=

paging is a form of dynamic relocation

» page table is essentially a table of relocation
registers — one per frame

no external fragmentation

but we still have internal fragmentation because we
allocate a page even if the process needs less (usually
the last page)

#® on average, 1/2 page per process is wasted
reducing page size may help, but overhead increases

o -

O. Goldshmidt (Haifa U): Operating Systems —p.18/3

Paging: Example

page 0

page 1

page 2

page 3

logical
memory

.

O. Goldshmidt (Haifa U): Operating Systems

N = O

N|lw|s =

page table

frame
number

page 0

page 2

page 1

page 3

physical
memory

—p.19/3

Transparent Memory Management

=

°

user sees contiguous logical memory

°

the mappings are hidden

user can only access memory that is in the page table
of the process

o frame table: what frames are allocated to which page of
which process?

OS maintains the mappings per process
s paging increases the context switch overhead

o -

O. Goldshmidt (Haifa U): Operating Systems —p.20/3

Paging: Implementation

-

a set of dedicated relocation registers

o fast
» feasible only when the page table is small

s PDP-11: 16-bit addressing, 8K pages — 8 base
registers

® Kkeep page table in main memory, its address in a
register

s reload the page table base register (PTBR) only
during context switch

s two memory access for each request (pte and
offset)

s very inefficient!

.

O. Goldshmidt (Haifa U): Operating Systems

—p.21/3

Translation Lookaside Buffer (TLB)
B o

paging cache
o fast
s expensive o

s small —

#® associative B TLB hit hvsi
registers — . E,e{,s,f:yl
parallel search TLB

o flushed during
context switch

p <

“tagging” may al-
low flushing only TLBmis Lt |

some entries
Page table J

O. Goldshmidt (Haifa U): Operating Systems —p.22/3

Multilevel Page Tables
-

very large logical address spaces
s €.g., 32-bit architecture with 4 K pages

o 2%2/212 =920 > 1 000,000 page table entries
s Wwith 4 bytes per entry need 4 M for the page table

do not allocate contiguosly: paged page table

pl p2 d

10 10 12

for 64-bit architectures 2 levels are not enough

n-level page tables — n memory accesses per request
L s a TLB with a high hit rate is essential! J

O. Goldshmidt (Haifa U): Operating Systems —p.23/3

Two-Level Page Table

hil o /’I’
/ : 100
500 \
S 100 o 500
708 | :
\
: 708
outer-page 929 >
table i \ X
900 7
page of 929
page table

page table
memory

O. Goldshmidt (Haifa U): Operating Systems —p.24/3

Inverted Page Table

#® 4 M per process is too

much
map each frame to virtual

address and pid g -

. o physica

|ogical address: ol b pida ;Nd g eSS | physieal

(pid, page, of fset) /L -
slow search (sorted by

physical, lookup by Seamhl — li

virtual))

At
C= T
=

hashing adds a memory _
access —

L # cacheing helps page lal J

O. Goldshmidt (Haifa U): Operating Systems —p.25/3

.

Shared Pages

reentrant code — never
changes during
execution, can be shared

only one copy in physical
memory, mapped into
different processes’
virtual memory

code must be correct, OS
must enforce read-only

systems with inverted
page tables have a
problem: more than
one virtual address per
physical address

O. Goldshmidt (Haifa U): Operating Systems

ed 1

g 2

ed3

gafa 1

process P,

ed?

3
4
6
1
page fable
for P, e 1
3
802 4
&03 L
a2 | page table
for
— process F’2
3
4
page fable
for P,

10

dlafa 1

tafa 3

g0 1

& 02

€0 3

7| dala2

— p.26/3

Segmentation

=

paging separates the user’s view of memory from reality

o o

segmentation supports the user’'s view of memory

users do not see memory as a linear array of bytes, but
rather as a collection of different functional segments:
» Mmain program
s functions

stack

symbol table

global variables

etc.

addressing: segment ID and offset

L s compare with paging: single address that is J
interpreted by the OS

O. Goldshmidt (Haifa U): Operating Systems —p.27/3

i
K
K
i

Segmentation: Software Support

- o

user writes code using
the logical structure of the 4
language and the
program environment 5

o compiler automatically

divides the object code :

Into segments reflecting 4

the structure of the

original program 3

o |oader will assign seg-
ment numbers

L user space physical memory space

-

O. Goldshmidt (Haifa U): Operating Systems — p.28/3

Segmentation: Hardware Support

=

#® segment table maps segment number and offset to a
linear physical address

each table entry has a segment base and a segment
limit
If offset is larger than limit we trap

°

basically an array of base-limit register pairs

implementation
s fast registers for small number of segments

s In memory for large number of segments, STBR
(base) and sTLR (length) registers

s multiple memory accesses and caching similar to
paging

o -

O. Goldshmidt (Haifa U): Operating Systems —p.29/3

Shared Segments

segmentation is related to
usage patterns,
semantics

°

protection is simplified

43062

parts of memory can be e

segment 1/

logical memory 68348

s P data 1
process P, o

code segments refer to i
themselves: jmp ADDR /T

0003
adior

shared code segments

must have the same num- =

ber, or use relative ad- "2 o e
dressing w.rt. program . e

logical memory

L counter or segment num-
ber register

O. Goldshmidt (Haifa U): Operating Systems

-

- p.30/3

Fragmentation Revisited

o .

|ong-term scheduler must allocate memory for all the
segments of the process

o while pages are of fixed size, segments are of variable
size — similar to the variable-sized partition scheme
(best-fit, first-fit)

o external fragmentation is possible, depending on
average partition size
» segment per process — variable-sized partitioning

s segment per byte — no fragmentation but 100%
overhead

s small fixed-sized segments — paging

o -

O. Goldshmidt (Haifa U): Operating Systems —p.31/3

Segmentation and Paging

logical address

S

d,

.

page table
for segment
fable

O. Goldshmidt (Haifa U): Operating Systems

page of
segment table

page table
for segment

1

page of segment

-

—p.32/3:

Intel 1386 Memory Management
-

°

2 partitions per

process \ |
® 8K segments l
® 1LDT and GDT f
® 6 segment registers
-. 1 G_bit SeleCtor linear a ddress | directory p;;e offset page frame
» 13 bits for segment, | veeeresiess
1 bit for global/local,)
2 bits for protection | ‘
® 32-bit address, 2-level | —‘)
page table
L’ swapping: 1 invalid bit, J
31 bits for disk location

O. Goldshmidt (Haifa U): Operating Systems - p.33/3

	Contiguous Allocation
	Single Partition Allocation
	Multiple Partition Allocation
	Long Term Scheduling
	Allocation Algorithms I
	Allocation Algorithms II
	Fragmentation
	Compaction
	Swapping
	Swapping Tradeoffs I
	Swapping Tradeoffs II
	Freeing Memory
	Paging
	Paging: Basics
	Page Tables
	Paging: Hardware Support
	Paging and Fragmentation
	Paging: Example
	Transparent Memory Management
	Paging: Implementation
	Translation Lookaside Buffer (TLB)
	Multilevel Page Tables
	Two-Level Page Table
	Inverted Page Table
	Shared Pages
	Segmentation
	Segmentation: Software Support
	Segmentation: Hardware Support
	Shared Segments
	Fragmentation Revisited
	Segmentation and Paging
	Intel i386 Memory Management

