
O. Goldshmidt (Haifa U): Operating Systems

Memory Management II

Operating Systems

Oleg Goldshmidt
ogoldshmidt@computer.org

Lecture 5

– p.1/33

O. Goldshmidt (Haifa U): Operating Systems

Contiguous Allocation
both the OS (kernel) and user processes need to reside
in memory
the main memory is usually divided into 2 partitions —
for the OS and for user processes
do we place the OS in low or high memory?

the interrupt memory is often in low memory, OS is
commonly there as well
assume OS is in low memory, the other case is not
significantly different

OS must be protected from the user processes
user processes must be protected from each other

– p.2/33

O. Goldshmidt (Haifa U): Operating Systems

Single Partition Allocation
add a limit register to the relocation register
the relocation register contains the value of the lowest
physical address accessible by the process
the limit register contains the value of the highest logical
address accessible by the process
the dispatcher loads the relocation and limit registers as
a part of a context switch
if (virt < limit) phys = reloc + virt;
else goto segfault;

can be used to change the OS size dynamically
e.g., a driver and its buffers are not used — why
keep them in memory?

– p.3/33

O. Goldshmidt (Haifa U): Operating Systems

Multiple Partition Allocation
how to allocate memory to various processes?
multiple fixed size partitions (early IBM OS/360)

divide the memory into fixed partitions in advance,
load a process from the input queue into a free
partition
degree of multiprogramming is predefined
size of process is predefined
requires careful tuning dependent on workload

generalization: multiple variable size partitions
OS keeps a table of allocated and free space
for each process we allocate just enough space

– p.4/33

O. Goldshmidt (Haifa U): Operating Systems

Long Term Scheduling

RR
scheduling,
∆t = 1

t = 14: P2

terminates
t = 28: P1

terminates

– p.5/33

O. Goldshmidt (Haifa U): Operating Systems

Allocation Algorithms I
special case of dynamic resource allocation
given a set of holes, satisfy a request of size n

first-fit
allocate (a part of) the first hole that is big enough
start either at the beginning of the free list or where
the previous search stopped

best-fit
allocate the smallest hole that is big enough
must search the entire list (or keep it ordered)
produces the smallest leftover hole

– p.6/33

O. Goldshmidt (Haifa U): Operating Systems

Allocation Algorithms II
worst-fit

allocate the largest hole
must search the entire list (or keep it ordered)
produces the largest leftover hole

first-fit and best-fit usually yield better utilization
best-fit does not win clearly on utilization (especially if
scheduling is flexible)
first-fit is the fastest

– p.7/33

O. Goldshmidt (Haifa U): Operating Systems

Fragmentation
external fragmentation: enough memory exists to
satisfy a request, but it is not contiguous

exists for any allocation scheme
exists whether we allocate the low or the high end of
a hole
often reaches 50% (for first-fit) — “50 per cent rule”

internal fragmentation: more memory is allocated to a
process than is really needed

the overhead of keeping track of many very small
holes is not justified — better allocate a slighly larger
partition

– p.8/33

O. Goldshmidt (Haifa U): Operating Systems

Compaction

reshuffle memory
to make a single
large free hole
only possible if
relocation is
dynamic and done
at runtime
move program and
data, change the
base register
optimization is diffi-
cult

– p.9/33

O. Goldshmidt (Haifa U): Operating Systems

Swapping
RR: swap out the
process that has
just finished its
quantum
priority scheduling:
swap out low
priority processes
(roll-in, roll-out)
for runtime binding
the new memory
space may be
different
may help with com-
paction

– p.10/33

O. Goldshmidt (Haifa U): Operating Systems

Swapping Tradeoffs I
backing store — a (fast) disk

commonly a “swap partition” allocated at install time
may be a “swap file” (but extra head seeks)
can be attached (“mounted”) on demand
must be large enough — rule of thumb 2 × RAM

much slower than RAM — high context switch overhead
the time quantum must be long enough
transfer time is proportional to the amount of
memory used
useful to know how much memory the process is
using (as opposed to how much it might use)
allocate and free memory dynamically

– p.11/33

O. Goldshmidt (Haifa U): Operating Systems

Swapping Tradeoffs II
process being swapped must be completely idle
we might want to swap out a process waiting for I/O

but what if I/O may access the user’s buffers
asynchronously? (this will be discussed later in the course)
swap in a different process — I/O might corrupt its
memory

solutions to the I/O problem
never swap blocked processes
only use OS buffers (incurs extra copy)

– p.12/33

O. Goldshmidt (Haifa U): Operating Systems

Freeing Memory
modern OS do not actually release unused memory
until another process makes a request
typical memory usage reported by the OS when probed
is close to 100%

free
total used free

Mem: 511356 503920 7436
--

shared buffers cached
0 12032 228328

--
-/+ buffers/cache: 263560 247796
Swap: 1050832 144624 906208
(output format modified to fit the slide)

– p.13/33

O. Goldshmidt (Haifa U): Operating Systems

Paging
contiguous memory allocation suffers from
fragmentation
solution: allow the logical address space of a process
be non-contiguous
allocate memory in (relatively small) chunks — pages
physical memory is divided into fixed-sized blocks —
frames
logical memory consists of blocks of the same size —
pages
pages are loaded into available frames from the backing
store (also divided into chunks of the same size)
any page can be loaded into any frame

– p.14/33

O. Goldshmidt (Haifa U): Operating Systems

Paging: Basics

– p.15/33

O. Goldshmidt (Haifa U): Operating Systems

Page Tables
logical addresses are divided into page number and
page offset
frame size (and page size) is determined by hardware
— normally a power of 2 of addressing units (bytes or
words)
e.g., page size is 2n, logical address space size is 2m

m − n high order bits of the logical address
designate the page number
n low order bits form the page offset

page table contains the base address of each page in
physical memory

phys = base(pagenum) + offset

– p.16/33

O. Goldshmidt (Haifa U): Operating Systems

Paging: Hardware Support

– p.17/33

O. Goldshmidt (Haifa U): Operating Systems

Paging and Fragmentation
paging is a form of dynamic relocation

page table is essentially a table of relocation
registers — one per frame

no external fragmentation
but we still have internal fragmentation because we
allocate a page even if the process needs less (usually
the last page)
on average, 1/2 page per process is wasted
reducing page size may help, but overhead increases

– p.18/33

O. Goldshmidt (Haifa U): Operating Systems

Paging: Example

– p.19/33

O. Goldshmidt (Haifa U): Operating Systems

Transparent Memory Management
user sees contiguous logical memory
the mappings are hidden
user can only access memory that is in the page table
of the process
frame table: what frames are allocated to which page of
which process?
OS maintains the mappings per process

paging increases the context switch overhead

– p.20/33

O. Goldshmidt (Haifa U): Operating Systems

Paging: Implementation
a set of dedicated relocation registers

fast
feasible only when the page table is small
PDP-11: 16-bit addressing, 8K pages — 8 base
registers

keep page table in main memory, its address in a
register

reload the page table base register (PTBR) only
during context switch
two memory access for each request (pte and
offset)
very inefficient!

– p.21/33

O. Goldshmidt (Haifa U): Operating Systems

Translation Lookaside Buffer (TLB)

paging cache
fast
expensive
small

associative
registers —
parallel search
flushed during
context switch
“tagging” may al-
low flushing only
some entries

– p.22/33

O. Goldshmidt (Haifa U): Operating Systems

Multilevel Page Tables
very large logical address spaces

e.g., 32-bit architecture with 4 K pages
232/212 = 220 > 1, 000, 000 page table entries
with 4 bytes per entry need 4 M for the page table

do not allocate contiguosly: paged page table

for 64-bit architectures 2 levels are not enough
n-level page tables — n memory accesses per request

a TLB with a high hit rate is essential!
– p.23/33

O. Goldshmidt (Haifa U): Operating Systems

Two-Level Page Table

– p.24/33

O. Goldshmidt (Haifa U): Operating Systems

Inverted Page Table

4 M per process is too
much
map each frame to virtual
address and pid

logical address:
〈pid, page, offset〉

slow search (sorted by
physical, lookup by
virtual)
hashing adds a memory
access
cacheing helps

– p.25/33

O. Goldshmidt (Haifa U): Operating Systems

Shared Pages
reentrant code — never
changes during
execution, can be shared
only one copy in physical
memory, mapped into
different processes’
virtual memory
code must be correct, OS
must enforce read-only
systems with inverted
page tables have a
problem: more than
one virtual address per
physical address

– p.26/33

O. Goldshmidt (Haifa U): Operating Systems

Segmentation
paging separates the user’s view of memory from reality
segmentation supports the user’s view of memory
users do not see memory as a linear array of bytes, but
rather as a collection of different functional segments:

main program
functions
stack
symbol table
global variables
etc.

addressing: segment ID and offset
compare with paging: single address that is
interpreted by the OS

– p.27/33

O. Goldshmidt (Haifa U): Operating Systems

Segmentation: Software Support

user writes code using
the logical structure of the
language and the
program environment
compiler automatically
divides the object code
into segments reflecting
the structure of the
original program
loader will assign seg-
ment numbers

– p.28/33

O. Goldshmidt (Haifa U): Operating Systems

Segmentation: Hardware Support
segment table maps segment number and offset to a
linear physical address
each table entry has a segment base and a segment
limit
if offset is larger than limit we trap
basically an array of base-limit register pairs
implementation

fast registers for small number of segments
in memory for large number of segments, STBR
(base) and STLR (length) registers
multiple memory accesses and caching similar to
paging

– p.29/33

O. Goldshmidt (Haifa U): Operating Systems

Shared Segments
segmentation is related to
usage patterns,
semantics
protection is simplified
parts of memory can be
shared
code segments refer to
themselves: jmp ADDR

shared code segments
must have the same num-
ber, or use relative ad-
dressing w.r.t. program
counter or segment num-
ber register

– p.30/33

O. Goldshmidt (Haifa U): Operating Systems

Fragmentation Revisited
long-term scheduler must allocate memory for all the
segments of the process
while pages are of fixed size, segments are of variable
size — similar to the variable-sized partition scheme
(best-fit, first-fit)
external fragmentation is possible, depending on
average partition size

segment per process — variable-sized partitioning
segment per byte — no fragmentation but 100%
overhead
small fixed-sized segments — paging

– p.31/33

O. Goldshmidt (Haifa U): Operating Systems

Segmentation and Paging

– p.32/33

O. Goldshmidt (Haifa U): Operating Systems

Intel i386 Memory Management
2 partitions per
process
8 K segments
LDT and GDT

6 segment registers
16-bit selector

13 bits for segment,
1 bit for global/local,
2 bits for protection

32-bit address, 2-level
page table
swapping: 1 invalid bit,
31 bits for disk location

– p.33/33

	Contiguous Allocation
	Single Partition Allocation
	Multiple Partition Allocation
	Long Term Scheduling
	Allocation Algorithms I
	Allocation Algorithms II
	Fragmentation
	Compaction
	Swapping
	Swapping Tradeoffs I
	Swapping Tradeoffs II
	Freeing Memory
	Paging
	Paging: Basics
	Page Tables
	Paging: Hardware Support
	Paging and Fragmentation
	Paging: Example
	Transparent Memory Management
	Paging: Implementation
	Translation Lookaside Buffer (TLB)
	Multilevel Page Tables
	Two-Level Page Table
	Inverted Page Table
	Shared Pages
	Segmentation
	Segmentation: Software Support
	Segmentation: Hardware Support
	Shared Segments
	Fragmentation Revisited
	Segmentation and Paging
	Intel i386 Memory Management

