
O. Goldshmidt (Haifa U): Operating Systems

Memory Management I

Operating Systems

Oleg Goldshmidt
ogoldshmidt@computer.org

Lecture 4, Part II

– p.1/20



O. Goldshmidt (Haifa U): Operating Systems

The Basic Issue
von Neumann’s stored-program model
programs and their data must be loaded into memory
a running program is a process (or a collection thereof),
has access to memory holding its instructions and data
memory must be managed between multiple processes
everything must be as efficient as possible

memory access should better be fast
fast memory is expensive, hence scarce
cheaper, but slower memory may be abundant
hierarchy: registers, cache, RAM, storage

sophisticated memory managament mechanisms and
algorithms

– p.2/20



O. Goldshmidt (Haifa U): Operating Systems

CPU And Memory: Basic Operation
fetch — decode — execute — store

CPU fetches instructions from memory, according to
the value of the program counter
an instruction is decoded, and operands may be
loaded from memory
the instruction is executed
the results may be stored in memory

memory unit is an addressable array of words or bytes
sees only a stream of addresses
does not know or care how addresses are generated
does not know or care what is stored (instructions or
data)

– p.3/20



O. Goldshmidt (Haifa U): Operating Systems

Program Processing

– p.4/20



O. Goldshmidt (Haifa U): Operating Systems

Address Binding I
addresses in the source program are usually symbolic

int count;
goto label;

address binding: how to transform goto label into
jmp 740148?
often done in stages:

the compiler binds the program’s symbolic
addresses to relocatable addresses

“24 bytes from the starting address of this module”
the linker or the loader will bind the relocatable
addresses to absolute addresses
successive mappings between address spaces

– p.5/20



O. Goldshmidt (Haifa U): Operating Systems

Address Binding II
compile time binding

if the location of the program in memory is known at
compile time, then the compiler can generate
absolute addresses
the program will not be relocatable — relocation will
require re-compilation (e.g., MS-DOS .COM)

load time binding
the compiler generates relocatable code, binding is
delayed till load time
relocation requires reloading only

runtime binding (usually with HW support)
processes may be moved between memory
segments (or machines?) at runtime

– p.6/20



O. Goldshmidt (Haifa U): Operating Systems

Physical And Logical Addresses
logical addresses: seen and generated by the CPU
physical addresses: seen by memory (loaded into the
memory address register of the memory)
are they the same?

in compile-time and load-time address binding
models they are
in runtime address binding model they differ

with runtime binding logical addresses are usually
called virtual addresses
the set of addresses used by a program is the
program’s logical address space
the actual instructions and data ultimately reside in the
physical address space

– p.7/20



O. Goldshmidt (Haifa U): Operating Systems

Hardware Support: MMU
runtime mapping between physical and virtual
addresses: special hardware — memory management
unit (MMU)
simplest mapping scheme:

MMU keeps a relocation register
the value of the relocation register is added to the
virtual address in order to convert to the
corresponding physical address
there may be multiple relocation registers

even MS-DOS on Intel 80x86 used 4
the program never sees a physical address

thinks that all the addresses are between 0 and MAX

– p.8/20



O. Goldshmidt (Haifa U): Operating Systems

Virtual/Physical Mapping

– p.9/20



O. Goldshmidt (Haifa U): Operating Systems

Dynamic Loading
so far, we assume that the entire program and data of a
process must reside in physical memory
the size of a process is limited by the size of (available)
memory
dynamic loading: do not load a module until it is called

keep all modules on disk in a relocatable format
check whether a module has already been loaded
update the address map of the process at load time

code used rarely (e.g., error, exception handling) is
practically never loaded
no OS support needed — a design function

but the OS may provide libraries to implement
dynamic loading

– p.10/20



O. Goldshmidt (Haifa U): Operating Systems

Dynamic Linking I
static linking — all object modules are conbined into a
single binary program image

the image is loaded as a single piece
if there are common parts between different
programs (e.g., system libraries) they are duplicated

dynamic linking — linking and loading is postponed till
runtime (“DLL”, “shared libraries”)

the program includes stubs — small pieces of code
that indicate how to locate an already loaded library
module, or how to load it if it is not in memory yet
upon loading a dynamically linked module, the stub
modifies itself
all processes sharing a library access the single
(read-only) copy

– p.11/20



O. Goldshmidt (Haifa U): Operating Systems

Dynamic Linking II
what if we update, e.g., libc?
statically linked programs

must be relinked to use the new version
need not be relinked if the old version is good

dynamically linked libraries can be replaced
if modifications are minor, preserve the interfaces,
and are generally compatible, the existing programs
may use the new version
if changes are major, the existing programs may
break (“DLL hell”)
multiple versions may co-exist, programs contain
version information to choose the right library

– p.12/20



O. Goldshmidt (Haifa U): Operating Systems

Dynamic Linking III
OS support is needed — only the OS can check if a
module is in another process’s memory space, and can
allow multiple processes to access the same memory
addresses
e.g., the GNU linker (ld) looks for shared libraries in a
special PATH-like environment variable
(LD LIBRARY PATH), in /etc/ld.so.conf, and then
in /lib and /usr/lib (there is also a cache)
programming interface

#include <dlfcn.h>
void *dlopen(const char *filename, int flag);
const char *dlerror(void);
void *dlsym(void *handle, char *symbol);
int dlclose(void *handle);

– p.13/20



O. Goldshmidt (Haifa U): Operating Systems

Dynamic Linking: Example
void *handle;
double (*cosine)(double);
char *error;
handle = dlopen ("libm.so", RTLD_LAZY);
if (!handle) {

fprintf (stderr, "%s\n", dlerror());
exit(EXIT_FAILURE);

}
cosine = dlsym(handle, "cos");
if ((error = dlerror()) != NULL) {

fprintf (stderr, "%s\n", error);
exit(EXIT_FAILURE);

}
printf ("%f\n", (*cosine)(2.0));
dlclose(handle);

– p.14/20



O. Goldshmidt (Haifa U): Operating Systems

Building Shared Libraries I
relocatable object code

machine code generated by compilers and
assemblers and stored in relocatable .o object files
relocatable object files contain symbolic references
to locations defined within and outside of the
compilation unit, as well as relocation information
the linker replaces symbols with actual addresses

absolute object code
refers to actual virtual (not physical) addresses
linker combines relocatable object files into an
executable containing absolute object code
can be shared by several processes running the
same program, but not suitable for shared libraries

– p.15/20



O. Goldshmidt (Haifa U): Operating Systems

Building Shared Libraries II
position-independent code (PIC)

a form of absolute object code that does not contain
absolute addresses — only relative
does not depend on its position in the virtual address
space of a process
may be attached anywhere

PC-relative addressing — addresses are referenced
relative to the program counter register

branches within a module
indirect addressing — through per-process linkage table

global variables, inter-module procedure calls, etc.
loader fills out procedure linkage table and data linkage
table at runtime (“binding”)

– p.16/20



O. Goldshmidt (Haifa U): Operating Systems

Building Shared Libraries III
compiler must be told explicitly to generate
position-independent code if a shared library is to be
built
gcc: cc -c -fPIC foo.c (or -fpic)
other compilers — other options:

Sun: -K
HP: +z or +Z
etc.

common mistake: forgetting a compiler option when
building a shared library
only the library code must be compiled as PIC, not the
client code

– p.17/20



O. Goldshmidt (Haifa U): Operating Systems

Overlays
what if our process needs more memory than available?
let’s keep only the instructions and data that are needed
now in memory
when other data and/or instructions are needed we’ll
load them into the memory holding stuff that is no
longer needed
example: decomposition of a 2-pass assembler

pass 1 code (to generate a symbol table): 160 K

pass 2 code (to generate machine code): 200 K

common support code: 120 K

symbol table: 80 K

pass 1 and pass 2 need not be present at the same
time, so we do not need the full 560 K

– p.18/20



O. Goldshmidt (Haifa U): Operating Systems

Overlays: Example

– p.19/20



O. Goldshmidt (Haifa U): Operating Systems

Overlays: Tradeoffs
need only 420 K (instead of 560 K) — 25% saved

an overlay driver to write and store — overhead
the initial load will be faster — less code to load
execution will be slower because of the extra overlay I/O
no special OS support is needed

similarly to dynamic loading
the programmer must design and implement the code
very carefully

overlaid programs are by definition large, complex
used in embedded systems, microcontrollers with
limited memory

compiler, loader support helps
– p.20/20


	The Basic Issue
	CPU And Memory: Basic Operation
	Program Processing
	Address Binding I
	Address Binding II
	Physical And Logical Addresses
	Hardware Support: MMU
	Virtual/Physical Mapping
	Dynamic Loading
	Dynamic Linking I
	Dynamic Linking II
	Dynamic Linking III
	Dynamic Linking: Example
	Building Shared Libraries I
	Building Shared Libraries II
	Building Shared Libraries III
	Overlays
	Overlays: Example
	Overlays: Tradeoffs

