Memory Management 1

Operating Systems

Oleg Goldshmidt

ogoldshmidt@computer.org

Lecture 4, Part Il

o -

O. Goldshmidt (Haifa U): Operating Systems —p.1/2

The Basic Issue

=

°

von Neumann'’s stored-program model
programs and their data must be loaded into memory

arunning program is a process (or a collection thereof),
has access to memory holding its instructions and data

°

memory must be managed between multiple processes

everything must be as efficient as possible
» memory access should better be fast
s fast memory is expensive, hence scarce
s cheaper, but slower memory may be abundant
s hierarchy: registers, cache, RAM, storage

sophisticated memory managament mechanisms and

L algorithms J

O. Goldshmidt (Haifa U): Operating Systems —p.2/2

CPU And Memory: Basic Operation
- -

o fetch — decode — execute — store

s CPU fetches instructions from memory, according to
the value of the program counter

s an instruction is decoded, and operands may be
loaded from memory

s the instruction is executed
s the results may be stored in memory

memory unit is an addressable array of words or bytes
» sees only a stream of addresses
s does not know or care how addresses are generated

» does not know or care what is stored (instructions or
data)

o -

O. Goldshmidt (Haifa U): Operating Systems —p.3/2

Program Processing

Compile time
N
> Load time
Dynamic Loy Y,
libs
In fnenfory Execute time
binaries

o -

O. Goldshmidt (Haifa U): Operating Systems —p.4/2

Address Binding 1

o .

addresses in the source program are usually symbolic
o 1nt count;
® goto label;

address binding: how to transform goto label into
jmp 7401487

often done in stages:

» the compiler binds the program’s symbolic
addresses to relocatable addresses
s “24 bytes from the starting address of this module”

o the linker or the loader will bind the relocatable
addresses to absolute addresses

» successive mappings between address spaces

o -

O. Goldshmidt (Haifa U): Operating Systems — p.5/2

Address Binding 11
- o

o compile time binding

s If the location of the program in memory is known at
compile time, then the compiler can generate
absolute addresses

» the program will not be relocatable — relocation will
require re-compilation (e.g., MS-DOS . com)
|oad time binding

» the compiler generates relocatable code, binding is
delayed till load time

s relocation requires reloading only

runtime binding (usually with HW support)

s processes may be moved between memory
L segments (or machines?) at runtime J

O. Goldshmidt (Haifa U): Operating Systems — p.6/2f

°

9

.

Physical And Logical Addresses
-

logical addresses: seen and generated by the CPU

physical addresses: seen by memory (loaded into the
memory address register of the memory)
are they the same?

s In compile-time and load-time address binding
models they are

s In runtime address binding model they differ

with runtime binding logical addresses are usually
called virtual addresses

the set of addresses used by a program is the
program’s logical address space

the actual instructions and data ultimately reside in the
physical address space J

O. Goldshmidt (Haifa U): Operating Systems —p.7/2

.

Hardware Support: MMU

runtime mapping between physical and virtual T
addresses: special hardware — memory management

unit (MMU)
simplest mapping scheme:
s MMU keeps a relocation register

s the value of the relocation register is added to the
virtual address in order to convert to the
corresponding physical address

s there may be multiple relocation registers
s even MS-DOS on Intel 80x86 used 4

the program never sees a physical address
» thinks that all the addresses are between 0 and MAX

-

—p.8/2

O. Goldshmidt (Haifa U): Operating Systems

Virtual/Physical Mapping

-

CPU

.

O. Goldshmidt (Haifa U): Operating Systems

Logical
address

327

MMU

Relocation
register

9000

Physical
address

9327

—p.9/2

Dynamic Loading

=

so far, we assume that the entire program and data of a
process must reside in physical memory

the size of a process is limited by the size of (available)
memory

dynamic loading: do not load a module until it is called
s keep all modules on disk in a relocatable format
s check whether a module has already been loaded
s update the address map of the process at load time

® code used rarely (e.g., error, exception handling) is
practically never loaded

no OS support needed — a design function

s but the OS may provide libraries to implement
L dynamic loading J

O. Goldshmidt (Haifa U): Operating Systems —p.10/2

Dynamic Linking 1
- o

static linking — all object modules are conbined into a
single binary program image
» the image is loaded as a single piece
s if there are common parts between different
programs (e.g., system libraries) they are duplicated
dynamic linking — linking and loading is postponed till
runtime (“DLL’, “shared libraries”)

s the program includes stubs — small pieces of code
that indicate how to locate an already loaded library
module, or how to load it if it is not in memory yet

s upon loading a dynamically linked module, the stub
modifies itself

o all processes sharing a library access the single
L (read-only) copy J

O. Goldshmidt (Haifa U): Operating Systems —p.11/2

Dynamic Linking 11
-

what if we update, e.g., 1ibc?

statically linked programs
s must be relinked to use the new version
s need not be relinked if the old version is good

dynamically linked libraries can be replaced

s If modifications are minor, preserve the interfaces,
and are generally compatible, the existing programs
may use the new version

s If changes are major, the existing programs may
break (“DLL hell”)

s multiple versions may co-exist, programs contain
version information to choose the right library

o -

O. Goldshmidt (Haifa U): Operating Systems —p.12/2

Dynamic Linking 111

o .

#® OS support is needed — only the OS can check if a
module is in another process’'s memory space, and can
allow multiple processes to access the same memory
addresses

® e.g.,the GNU linker (14d) looks for shared libraries in a
special PATH-like environment variable
(LD_.LIBRARY_PATH), In /etc/1d.so.conf, and then
In /1lib and /usr/1lib (there is also a cache)

programming interface

#finclude <dlfcn.h>
vold =*dlopen(const char xfilename, int flag);
const char xdlerror(void);
volid *dlsym(void =xhandle, char =xsymbol);
 int dlclose(void shandle); .

O. Goldshmidt (Haifa U): Operating Systems —p.13/2

Dynamic Linking: Example

-

vold =<handle; __W

double (*cosine) (double);

char xerror;

handle = dlopen ("libm.so", RTLD_LAZY);

1f ('handle) {
fprintf (stderr, "%$s\n", dlerror());
ex1t (EXIT FAILURE);

}

cosline = dlsym(handle, "cos");

if ((error = dlerror()) != NULL) {
fprintf (stderr, "%s\n", error);
ex1t (EXIT FAILURE);

}

printf ("%$f\n", (*cosine)(2.0));

 dlclose(handle); B

O. Goldshmidt (Haifa U): Operating Systems —p.14/2

Building Shared Libraries I
- o

relocatable object code

s machine code generated by compilers and
assemblers and stored in relocatable . o object files

» relocatable object files contain symbolic references
to locations defined within and outside of the
compilation unit, as well as relocation information

s the linker replaces symbols with actual addresses

absolute object code
s refers to actual virtual (not physical) addresses

» linker combines relocatable object files into an
executable containing absolute object code

s can be shared by several processes running the
L same program, but not suitable for shared libraries J

O. Goldshmidt (Haifa U): Operating Systems —p.15/2

Building Shared Libraries 11
- -

position-independent code (PIC)

» a form of absolute object code that does not contain
absolute addresses — only relative

» does not depend on its position in the virtual address
space of a process

s may be attached anywhere

o PC-relative addressing — addresses are referenced
relative to the program counter register
s branches within a module

indirect addressing — through per-process linkage table
s global variables, inter-module procedure calls, etc.

|oader fills out procedure linkage table and data linkage
L table at runtime (“binding”)

O. Goldshmidt (Haifa U): Operating Systems —p.16/2

°

Building Shared Libraries 111
-

compiler must be told explicitly to generate
position-independent code if a shared library is to be
built

gcc: cc —-c¢ —-fPIC foo.c (or —-fpic)
other compilers — other options:

s Sun: -K
o HP: +z or +7
s etc.

common mistake: forgetting a compiler option when
building a shared library

only the library code must be compiled as PIC, not the
client code

-

O. Goldshmidt (Haifa U): Operating Systems —p.17/2

Overlays
f what if our process needs more memory than available T

let’s keep only the instructions and data that are needed
now in memory

°

when other data and/or instructions are needed we’ll
load them into the memory holding stuff that is no
longer needed

#® example: decomposition of a 2-pass assembler
s pass 1 code (to generate a symbol table): 160 K
s pass 2 code (to generate machine code): 200 K
s common support code: 120 K
s symbol table: 80 K

pass 1 and pass 2 need not be present at the same
L time, so we do not need the full 560 K J

O. Goldshmidt (Haifa U): Operating Systems —p.18/2

Overlays: Example

Common
routines

Overlay driver

160 K

o -

O. Goldshmidt (Haifa U): Operating Systems —-p.19/2

Overlays: Tradeoffs
-

need only 420 K (instead of 560 K) — 25% saved
s an overlay driver to write and store — overhead

the initial load will be faster — less code to load
execution will be slower because of the extra overlay 1/O

no special OS support is needed
s similarly to dynamic loading

o the programmer must design and implement the code
very carefully

s overlaid programs are by definition large, complex

used in embedded systems, microcontrollers with
limited memory

L s compiler, loader support helps J

O. Goldshmidt (Haifa U): Operating Systems —p.20/2

	The Basic Issue
	CPU And Memory: Basic Operation
	Program Processing
	Address Binding I
	Address Binding II
	Physical And Logical Addresses
	Hardware Support: MMU
	Virtual/Physical Mapping
	Dynamic Loading
	Dynamic Linking I
	Dynamic Linking II
	Dynamic Linking III
	Dynamic Linking: Example
	Building Shared Libraries I
	Building Shared Libraries II
	Building Shared Libraries III
	Overlays
	Overlays: Example
	Overlays: Tradeoffs

