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The Linux Kernel

● 18,000 files
● 15,000 source files
● 24 architectures
● A lot of code, but mostly in drivers and different 

architectures
● The greatest kernel ever



Directory Structure

● arch/

● crypto/

● Documentation

● drivers/

● fs/

● include/

● init/

● ipc/

● kernel/

● lib/

● mm/

● net/

● scripts/

● security/

● sound/

● usr/



Unpacking, Configuring, and Building

● tar xvjf linux-2.6.12.tar.bz2
● cd linux-2.6.12/
● make [defconfig|oldconfig|...]
● make



Beast of a Different Nature

● Written in GNU C and 
inline assembly

● No memory protection
● Very small stack
● Concurrency 

concerns: interrupts, 
preemption, SMP

● No libc
● No (easy use of) 

floating point
● Portability is a must: 

64-bit clean, endian 
neutral



Entry Points to the Kernel

● Booting
– init/main.c

● System calls/Traps
– arch/i386/kernel/entry.S

● Interrupts
– arch/i386/kernel/irq.c



System Calls

● System calls are the legal method of trapping 
into the kernel from user-space

● Syscalls are referenced by number
– for x86, defined in arch/i386/kernel/entry.S

● Returning negative error code sets errno

– example: return -ENOMEM;

● Syscalls run in the kernel in the context of the 
invoking process—called process context

● Defined with asmlinkage and return a long



User Context

● Processes only enter the kernel via trap: system 
call, page fault, other exceptions

● current is a pointer to the process's task 
structure (process descriptor)
– e.g. current->pid is the pid

● Process can sleep if needed: Block on a wait 
queue and wait until event occurs
– Done by calling schedule()

● explicitly or implicitly with f.e. a semaphore



Interrupt Context

● Interrupt handlers run in response to interrupts
● Interrupt handlers run in interrupt context
● There is not an associated process

– current is not valid

– Cannot sleep

● Handlers run with their interrupt line disabled
● Speed is crucial, as the handler interrupted 

previously executing code





QEMU

● Full system simulator
● Simulates (in software) a complete computer 

system (CPU, RAM and peripheral devices) 
● Excellent for kernel debugging (although there's 

no replacement for having real live hardware)
● We are using a copy of QEMU that has the 

LR3K device



LR3K

● LR3K is a “ROT13” encryption device
● This is how LR3K is hooked into QEMU

+void pci_lr3000_init(PCIBus *bus)
+{
+ struct lr3000 *d;
+ uint8_t *pci_conf;
+    
+ d = container_of(pci_register_device(bus, "LR3000", sizeof(*d),
+      -1, NULL, NULL),
+  struct lr3000, dev);
+ pci_conf = d->dev.config;
+ pci_conf[0x00] = 0x11; // Manufacturer
+ pci_conf[0x01] = 0x11;
+ pci_conf[0x02] = 0x01;
+ pci_conf[0x03] = 0x02;
+ pci_conf[0x0a] = 0x00; // Network and computing encryption device
+ pci_conf[0x0b] = 0x10;
+ pci_conf[0x0e] = 0x00; // header_type
+ pci_conf[0x3d] = 1; // interrupt pin 0
+
+ pci_register_io_region(&d->dev, 0, 0x100, 
+        PCI_ADDRESS_SPACE_IO, lr3000_map);
+}



LR3K continued

● Registering with QEMU for IO space accesses
#include <linux/init.h>
+static void lr3000_map(PCIDevice *pci_dev, int region_num, 
+                       uint32_t addr, uint32_t size, int type)
+{
+ struct lr3000 *l = container_of(pci_dev, struct lr3000, dev);
+
+ /* First twelve bytes are simple. */
+ register_ioport_write(addr, 12, 4, ioport_write_src_dst_len, l);
+ register_ioport_read(addr, 12, 4, ioport_read_src_dst_len, l);
+
+ /* Write-only control word. */
+ register_ioport_write(addr + 12, 4, 4, ioport_write_control, l);
+
+ /* Read only result word. */
+ register_ioport_read(addr + 16, 4, 4, ioport_read_result, l);
+
+ /* Read only SHA. */
+ register_ioport_read(addr + 20, MD4_DIGEST_SIZE, 1, ioport_read_md4,l);
+}



Your Mission

● Write first kernel module
● Add Makefile info
● Add Kconfig info
● Build it
● Load it
● Unload it
● Start hacking the SCSI layer



Hello World Module

● Save this as drivers/crypto/l3rk.c in 
your kernel source tree:
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>

static int hello_init(void)
{

printk(KERN_ALERT "Hello, world!\n");
return 0;

}

static void hello_exit(void)
{

printk(KERN_ALERT "Goodbye, world!\n");
}

module_init(hello_init);
module_exit(hello_exit);



Hello World Makefile

● The kernel build process is vastly improved in 
2.6

● Constructing kernel Makefiles is easy

– E.g., drivers/crypto/Makefile

– Add to it:

obj-$(CONFIG_CRYPTO_LR3K) += lr3k.o

● Save your module as 
drivers/crypto/lr3k.o



Configuration Entries

● Edit drivers/crypto/Kconfig

● Add a new entry:

config CRYPTO_LR3K
tristate “Support for the Love-Rusty 3000”
help

The greatest crypto card in the word.



Building

● make oldconfig

● Set CONFIG_CRYPTO_LR3K=m

● make



Installing Modules

● As root:
– mkdir /mnt/qemu

– mount -o loop -o offset=32256 image.img  
/mnt/qemu

– make INSTALL_MOD_PATH=/mnt/qemu modules_install

– umount /mnt/qemu



Loading and Unloading Modules

● Modules are built as name.ko

● Run qemu:
– qemu -hda ../debian -kernel 
arch/i386/boot/bzImage -append “ro 
root=/dev/hda1”

● Login as root/root to qemu, load the module with 
“modprobe name”

● As root, unload with “modprobe -r name”



Making it Easy

● Let's write a script to automate this stuff, name it 
test-kernel:
– #! /bin/sh

mount -o loop -o offset=32256 ../debian /
mnt/qemu

make INSTALL_MOD_PATH=/mnt/qemu modules_install

umount /mnt/qemu

qemu -hda ../debian -kernel 
arch/i386/boot/bzImage -append “ro 
root=/dev/hda1”



Tainted Kernel?

● You probably saw an error about a tainted kernel
● Add the line

 MODULE_LICENSE(“GPL”);
to the end of the file

● Go and add your names as the author, too:
 MODULE_AUTHOR(“Lennon, McCartney”);

● And some nice comments at the top of the file, 
listing your copyright and license



What was that printk() thing?

● printk() is the kernel's version of printf()

● Use is the same except for the optional use of a 
kernel log level
– e.g. KERN_WARNING and KERN_DEBUG

– printk(KERN_INFO “My dog smells\n”);

● You can always call printk()

– As we will see, most kernel interfaces are not so 
robust



Module Initialization and Exit

● module_init() 
marks a module's init 
function

● Invoked by the kernel 
when the module is 
loaded

● Returns zero on 
success, negative 
error code on failure
– Standard kernel 

convention

● module_exit() 
marks a module's exit 
function

● Invoked by the kernel 
when the module is 
unloaded

● No return value



Registering a PCI Device

● PCI devices are registered via

pci_register_driver(struct pci_driver *dev)

● PCI devices are unregistered via

pci_unregister_driver(struct pci_driver *dev)



struct pci_driver

● the pci_driver structure defines properties of 
a PCI driver

● Example:

static struct pci_driver foo_driver {
.name = “foo”,
.probe = foo_probe,
.remove = foo_remove,
.id_table = foo_tbl,
};



Complete PCI Device Registration 
and Init

● static struct pci_driver foo_dev {
.owner = THIS_MODULE,
.name = “foo”,
.probe = foo_probe,
.remove = foo_remove,
.id_table = foo_id_tbl,

};

static int foo_init(void)
{

return pci_register_driver(&foo_dev);
}

static void foo_exit(void)
{

pci_unregister_driver(&foo_dev);
}

module_init(foo_init);
module_exit(foo_exit);



PCI Probe Function

● Invoked in response to kernel detecting device
● Example:

static int foo_probe(struct pci_driver *pdev,
const struct pci_device_id *id)

{
/* tell the kernel that we are alive */
pci_enable_device(pdev);

/* init the physical hardware ... */

printk(KERN_INFO “Foo driver is loaded!\n”);

return 0;
}



PCI Device Table

● Describes to the PCI layer the devices that this 
driver supports

● Defined in <linux/mod_devicetable.h>  as
struct pci_device_id {
__u32 vendor, device; /* Vendor and device ID or PCI_ANY_ID*/
__u32 subvendor, subdevice; /* Subsystem ID's or PCI_ANY_ID */
__u32 class, class_mask; /* (class,subclass,prog-if) triplet */
kernel_ulong_t driver_data; /* Data private to the driver */
};

● PCI_ANY_ID means “anything matches”

● The PCI layer will automatically calls your probe 
function for any matching device



PCI Device Table Example

● Example:

static struct pci_device_id foo_id[] = {
{ 0x1111, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
{ 0 }

};

● This driver is saying that it supports a device 
with a vendor ID of 0x1111, a device ID of 
0x0201, with any subvendor and subdevice ID's

● Array is zero-terminated



Your Mission: Compile

● Fill out an array of pci_device_id structures 
to identify the LR3K
– #include <linux/mod_devicetable.h>

● Define a pci_driver structure

– Include id_table and a name field

– #include <linux/pci.h>

● Call pci_register_driver() and 
pci_unregister_driver()



Your Mission: Compile and Test

● Write a probe function
– Call pci_enable_device() in the right place

– Add your probe to the pci_driver structure

– printk() something charismatic in the probe



Summary

● pci_driver structure

● pci_device_id structure

● Probe and Remove functions
● Registering and Unregistering PCI drivers



What's Next?

● Talking to devices
● Virtual versus Physical Memory
● PCI I/O space
● Writing to and reading from PCI I/O mappings



PCI I/O Space

● PCI provides into own I/O memory space
● Can be mapped into virtual memory
● This allows device drivers to read from and write 

to PCI device's memory (regions, mappings, 
etc.) via pointers to normal memory addresses



pci_iomap

● Defined in <asm/iomap.h> as

void * pci_iomap(struct pci_dev *pdev, int bar, unsigned int max)

● bar holds the BAR

– Base Address Register

– Where to start the mapping

– Often zero

● max is the amount to map (i.e. size)

● Unmap with pci_iounmap(struct pci_dev *pdev, void *iomap)



pci_iomap Example

● Example:

void *iomap;

iomap = pci_iomap(pdev, 0, sizeof (struct foo));
if (!iomap)
/* error */



Reading from and Writing to I/O 
Memory

● int ioread32(void *iomap)

– Reads and returns the 32-bit word starting at the 
given address

● void iowrite32(u32 word, void *iomap)

– Writes word to iomap

● Both defined in <asm/iomap.h>



I/O Examples

● Example:

void *iomap;
char buf[] = “dog”;
int foo;

iomap = pci_iomap(pdev, 0, sizeof(struct my_regs));
if (!iomap)
return -EFAULT;

/* write the physical LOCATION of “buf” */
iowrite32(virt_to_phys(buf), iomem);

/* read the second word */
foo = ioread32(iomem + 4);



Your Mission: Compile and Test

● Create a C structure that contains the layout of 
the register structure
– Per your data sheet

– Name it lr3k_regs

● Use pci_iomap() to map the registers from 
the LR3K device
– include/asm-generic/iomap.h

● Print out the result register



Summary

● PCI I/O space
● pci_iomap()

● iowrite32() and ioread32()



Virtual versus Physical Memory

● Modern machines implement virtual memory
– User-space is used to dealing with virtual addresses

● Addresses zero to 0xffffffff
● Cannot see other process's memory

– Memory is divided up into pages (4K)
● Hardware transparently maps addresses onto physical 

memory

● Virtual memory has many benefits: large 
separate virtual address spaces, demand 
paging, protection, sharing physical memory



Virtual Address Spaces



Getting physical address of virtual 
memory

● The kernel knows about physical memory and 
page tables

● unsigned long virt_to_phys(void *addr)

– Declared in <asm/io.h>

– Given the virtual address addr, returns the backing 
location in physical memory

– Not very portable and full of other problems but good 
for testing

● Physical devices will want physical addresses



Your Mission: Compile and Test

● Declare input and output test buffers on the 
stack
– char in[] = “Something funny”;

– char out[sizeof (in)];

● Program the src, dst, and len registers

● Write LR3K_IN_ACTIVATE to control

● Loop until not busy
● Print output



Your Mission: Compile and Test

● Handle errors
– pci_enable_device() can fail

– pci_iomap() can fail

– Hardware can fail and result register may indicate 
error

● Cleanup in response to errors
● Return valid error values

– See include/asm-generic/errno-base.h



Dynamic Memory Allocations

● kmalloc(size, flag)

– Just like malloc(): allocates at least size bytes

– flag stipulates the type of allocation
● GFP_KERNEL says the caller is able to wait for the 

memory to become available (the usual case)
● GFP_ATOMIC is used for special cases

● kfree(buf)



kmalloc() Example

● struct foo *f;

f = kmalloc(sizeof (struct foo), GFP_KERNEL);
if (!f)
/* handle error */

/* ... */

kfree(f);



Storing Data in your pci_driver

● You can stuff personal data in the pci_driver 
structure and retrieve it later

● void pci_set_drvdata(struct pci_driver *, void *)

– Associates the given data with the given pci_driver structure

● void * pci_get_drvdata(struct pci_driver *)

– Returns the data associated with the given pci_driver structure



PCI Remove Function

● Kernel calls this function when device is 
removed

● Stored in the remove field of pci_driver

● Example:
static void foo_remove(struct pci_driver *pdev)
{
/* shutdown the device ... */

pci_disable_device(pdev);
}

● Your probe function can use 
pci_set_drvdata() to store data that you 
need during remove



Your Mission: Compile and Test

● Declare a struct lr3k containing the PCI I/O 
map pointer

● Allocate this structure dynamically using 
kmalloc() in your probe routine

● Use pci_set_drvdata() to store the lr3k 
structure

● Write a remove function that uses 
pci_get_drvdata() and cleans up

● Add the remove to pci_driver



Your Mission: Compile and Test

● Handle endianness
– #define write_register(value, iomem, member) \

iowrite32(cpu_to_le32(value), \
(iomem) + offsetof(struct lr3k_regs, member))

#define read_register(iomem, member) \
le32_to_cpu(ioread32((iomem) + \

offsetof(struct lr3k_regs, member)))

– Use these everywhere instead of hardcoded writes and reads



Summary

● Physical versus Virtual Memory
● virt_to_phys()

● kmalloc() and kfree()

● PCI remove functions

● pci_set_drvdata() and 
pci_get_drvdata()



DMA'able Memory

● Often a device needs to write directly to memory
– This is called DMA, direct memory access

– Memory capable of undergoing DMA is called
DMA-capable

● A concern when both devices and processors 
are accessing memory is coherence
– Processors have caches

– Does a processor read following a device write return 
the correct data?



Allocating DMA'able Coherent 
Memory without Shame

● void * dma_alloc_coherent(dev, size, dma, flag)

– dev is your device (pci_dev->dev)

– size is the size in bytes of the allocation

– dma is a dma_addr_t *
● Filled in with the physical address

– flag is the allocation flags, same as kmalloc()

– <asm/dma-mapping.h>

– Returns the virtual address



Freeing DMA'able Coherent Memory

● dma_free_coherent(dev, size, buf, dma)

– dev is the device (&pci_dev->dev)

– size is the size, in bytes, of the allocation

– buf is a pointer to the memory to free, 
previously returned by dma_alloc_coherent()

– dma is the dma_addr_t



Allocating and Freeing DMA'able 
Coherent Memory Example

●

dma_addr_t dma;
void *buf;

/* allocate 4 KB */
buf = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,

&dma, 
GFP_KERNEL);

memcpy(buf, “hello”, 5); /* buf is virt addr */
iowrite32(dma, iomem+4); /* dma is phys addr */

dma_free_coherent(&pdev->dev, PAGE_SIZE,
 buf, dma);



Your Mission: Compile and Test

● Doing virt_to_phys() does not give a valid 
PCI-visible address on all architectures

● Doing DMA on the stack is problematic on some 
architectures

● Use dma_alloc_coherent() to allocate the 
buffers for reading and writing

● Read and write from these buffers and not via 
virt_to_phys()



Registering an Interrupt Handler

● Interrupt Handlers are registered via 
request_irq(irq, handler, flags,
            name, dev_id)

– declared in <linux/interrupt.h>

– irq is the interrupt number requested

– handler is a pointer to the interrupt handler

– flags is a bit mask of options

– name is the name of the interrupt

– dev_id is a unique identifier

– <linux/interrupt.h>



Interrupt Handler

● Interrupt handlers must match the prototype:

irqreturn_t handler(int irq, void *data, struct pt_regs *regs)

● irq is the interrupt number

● data is the dev_id value given during 
registration

● regs is a copy of the register contents (almost 
totally worthless)



Interrupt Handler's Retval

● irqreturn_t is a special return type

● Only two legit values
– IRQ_HANDLED on success (or indeterminate)

– IRQ_NONE on failure

● Used by the kernel to detect spurious interrupts



Flags

● Flags parameter provides options relating to the 
new interrupt handler

● SA_INTERRUPT

● SA_SHIRQ

● SA_SAMPLE_RANDOM



Freeing an Interrupt Handler

● An interrupt handler is removed from a given 
interrupt line via free_irq(irq, dev_id)



Probing for Interrupts

● Older devices needed to be probed
● Or have the interrupt provided

– Poking, probing, guessing

– Not pretty

● Modern bus architectures make this easy
● PCI detects and assigns interrupt number 

automatically
● Kernel interface makes it easy



Registering a PCI Device

● Recall that PCI devices are registered via

pci_register_driver(struct pci_driver *pdev)

● Automatically determines the interrupt number 
and places it in pdev->irq

● Simple



Your Mission: Compile and Test

● Register an interrupt handler with 
request_irq()

● Write an interrupt handler that simply calls 
printk() with a limerick

● Set the LR3K_IN_IRQ_ON_DMA_COMPLETE 
flag along with the existing 
LR3K_IN_ACTIVATE flag



Summary

● DMA-capable memory

● dma_alloc_coherent() and 
dma_free_coherent()

● Interrupts, interrupts handlers, probing
● Registering an interrupt handler



Sleeping and Waking Up

● Processes can go to sleep, suspending 
execution and allowing other processes to run, 
until some event occurs that wakes them up
– For example a consumer might sleep until the 

producer creates more data, at which time the 
producer would wake the consumer up



Sleeping

● The fundamental way of sleeping is to just call 
schedule()

– Selects next task to run with 
state==TASK_RUNNING

● May be the current task
● If no other runnable tasks, selects the idle task

● Usually need better control, though, so wrappers 
are used
– ssleep(n) sleeps for n seconds or until woken up



Waking another process up

● Wake up a sleeping process with
wake_up_process(struct task_struct *)

– Returns task's state to TASK_RUNNING so it will be 
run on the next schedule()

● Recall that current is the task_struct of 
the currently running process



Your Mission: Compile and Test

● Have the interrupt handler wake up the waiting 
task when the work is complete

● After activating the device, sleep using ssleep
() for three seconds until the interrupt hits and 
wakes you up



Bug?
● Did you notice that the reader always slept for 

three seconds?
– The interrupt is too fast.  Our awesome hardware 

and qemu respond immediately.

– The interrupt hits before the ssleep() is invoked, 
and thus the process sleeps unconditionally for three 
seconds.

● program activate register
● interrupt hits and sets current->state=TASK_RUNNING
● current calls ssleep()

– ssleep() sets current->state=TASK_UNINTERRUPTIBLE
– calls schedule()

● Wakes up three seconds later



Process States

● Processes are in various states: running, 
sleeping, zombie, etc.

● TASK_RUNNING means running or runnable

● TASK_UINTERRUPTIBLE means sleeping (and 
not responding to signals)

● set_current_state(foo) sets the state of 
the current process to foo

– e.g. set_current_state(TASK_UNINTERRUPTIBLE)

● ssleep() did this automatically



Your Mission: Compile and Test

● schedule_timeout(n) sleeps for n clock 
ticks or until woken up
– There are HZ clock ticks in a second

– Does not automatically set the state

– Example:

set_current_state(TASK_UNINTERRUPTIBLE);
/* optionally do stuff ... */
schedule_timeout(HZ);

● Can you now fix the bug?



Summary

● Processes can sleep via schedule()

● Processes have states
● Most code uses wrappers that perform other 

functions too, such as ssleep() or 
schedule_timeout()

● wake_up_process() wakes a process up



Your Mission: Compile and Test

● Check the device result register in the 
interrupt handler
– If it is not our interrupt, return IRQ_NONE

● Remove the test code from the probe routine
– Leave card I/O mapped and setup but do not use 

card in probe routine



Linked Lists

● Data structure for dynamically linking multiple 
objects together

● Kernel provides a nice circular double linked list 
interface in <linux/list.h>

● Unique implementation: Pointers for each node 
go inside of the object
– No list of pointers as in classic linked lists

– Just a bunch of objects that point to each other



Creating a linked list

● Create a global list head:
static LIST_HEAD(my_list);

● Add a list_head structure to your object:
static struct foo {
struct list_head list;
/* ... */
}



Adding to and Removing from the list

● Add:
list_add(&foo->list, &my_list);

– Adds foo->list as a node to my_list

● Remove:
list_del(&foo->list);

– Removes foo->list from whatever list it may be in



Walking the List

● Walk a list:

struct foo *i;

list_for_each_entry(i, &my_list, list) {
/* 'i' points to a node in the list */

}

– i is a temp iterator holding each node

– my_list is the global list head

– list is the name of the list variable inside of each 
foo structure (recall that we named the variable 
“list”)



Your Mission: Compile and Test

● What if a user's machine has more than one 
LR3K card?

● Add support for multiple cards to the driver
– Create a global list of cards

– Add card on PCI probe

– Remove card on PCI remove

– Implement a find_card()  that returns first entry in 
list (or NULL)



What's Next

● Need a way for user-space to access the card
● The Unix-way is to provide a device file that can 

be read from or written to 



Devices

● Device files abstract device drivers and other 
special kernel interfaces as normal files
– example: /dev/null and /dev/hda1

– Accessed via normal Unix system calls: read, write, 
open, close

● Block devices
● Character devices
● Misc devices



Character Devices

● Abstraction for devices that are accessed 
sequentially
– Character by character

– No seeking

● Files are opened, read from, written to, and then 
closed

● Examples: /dev/zero, /dev/input/mice



Creating a New Character Device

● What you need:
– A major number, such as 42, or a carefree attitude 

that allows you to not even care what the major 
number is

– A name, such as “lettuce”

– A pointer to a structure defining a bunch of function 
pointers that implement the various system calls that 
act on the device



register_chrdev()

● int register_chrdev(unsigned int major,
const char *name,
struct file_operations *fops)

● major is the request major number

– If major is zero, a major is automatically assigned

● name is the name of the character device

● Returns the assigned major number on success 
or a negative error code on failure



register_chrdev() example
● Example:

int retval;

retval = register_chrdev(0, “foo”, &fops);

if (retval < 0)
/* error */

else
/* 'retval' is the major */



Unregistering a Char Device

● unregister_chrdev(major, name)

– Unregisters the previously registered device with the 
given major and name

● Example:

unregister_chrdev(major, “foo”);



File Operations Table

● Defined in <linux/fs.h>

● Contains function pointers to various VFS 
functions, such as read, write, open, close, etc.
– A lot of operations

● Do not need to define all of them
● Do need to define some of them



struct file_operations

● Example (only some of the fields):

struct file_operations {
struct module *owner;
ssize_t (*read) (struct file *, char *,

  size_t, loff_t *);
ssize_t (*write) (struct file *, const char *,

size_t, loff_t *);
int (*open) (struct inode *, struct file *);
int (*release) (struct inode *, struct file *);

}



Defining your own file operations

● For example, When the user does an open() 
on your device, the open method is invoked in 
response

● Example:

static struct file_operations fops = {
.owner = THIS_MODULE,
.read = my_read,
.write = my_write,
.open = my_open,
.release = my_release,
};



An Open Function

● Called when the device is opened
– Initializes device, etc.

● struct foo_module { void *buf; /* ... */ };

static int my_open(struct inode *inode, struct file *file)
{
struct foo_module *f;

f = kmalloc(sizeof (struct foo_module), GFP_KERNEL);
if (!f)

return -ENOMEM;
f->buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!f->buf) {

kfree(f);
return -ENOMEM;

}
memset(f->buf, 0, PAGE_SIZE);
file->private_data = f;

return 0;
}



A Release Function

● Called on final close
● Cleans up reference to open device
● Example:

static int my_release(struct inode *inode,
 struct file *file)

{
struct foo_module *f;

f= = file->private_data;

kfree(f->buf);
kfree(f);
return 0;
}



Your Mission: Compile and Test

● Create a character device
– Register it on module init

– Unregister it on module exit

● Implement open
– Use your find card function to find a card

● Return -ENODEV if no card exists, otherwise zero

● Implement release
– Just return zero



Your Mission: Compile and Test

● Enhance your open routine to dynamically 
allocate, populate, and stuff in
file->private_data:

– struct lr3k_file {
struct lr3k *lr3k;
unsigned int size;
char *inpage, *outpage;
dma_addr_t in, out;
};

● Clean up and free in release
– Hint: You need a new member in struct lr3k



Getting Data To and From the User
● int copy_to_user(void *dst, void *src, size_t size)

– <asm/uaccess.h>

– Copies size bytes from src in kernel-space to dst 
in user-space

– Returns zero on success, number of bytes not 
copied, or negative error code

● int copy_from_user(void *dst, void *src, size_t size)

– <asm/uaccess.h>

– Copies size bytes from src in user-space to dst 
in kernel-space

– Returns zero on success, number of bytes not 
copied, or negative error code



A Write Function

● Example:

static int my_read(struct file *file, char *data,
                   size_t size, loff_t *off)
{

struct foo_module *f;

f = file->private_data;

if (size > PAGE_SIZE)
size = PAGE_SIZE;

if (copy_to_user(f->buf, data, size))
return -EFAULT;

return size;
}



A Read Function

● Example:

static int my_read(struct file *file, char *data,
                   size_t size, loff_t *off)
{

struct foo_module *f;

f = file->private_data;

if (size > PAGE_SIZE)
size = PAGE_SIZE;

if (copy_to_user(data, f->buf, size))
return -EFAULT;

return size;
}



Your Mission: Compile and Test

● Implement write function
– copy data into inpage

– set size for read

– program card to encrypt inpage

● Implement read function
– copy up to size bytes from outpage

– reset size to zero

● Put these in the file_operations structure



Interrupts, Processes, SMP

● Everything running in the kernel shares the 
same memory: share globals and static vars.
– Multiple processes can be playing with the same 

data:
● eg. one reads from a file while another writes to it.

– Interrupt handlers can interrupt and play with  data 
while a process is also playing with it.

– Other CPUs can be playing with data while we are 
playing with it (CONFIG_SMP only).

● These are usually called races.



Interrupts, Processes, SMP

● Consider “i++” in C.

● In PPC assembler, this becomes:
– lwz r9,0(r3)   # Load contents of R3 + 0 into R9
addi r9,r9,1   # Add one to R9
stw r9,0(r3)   # Put contents of R9 back into R3 + 0



Interrupts, Processes, SMP

● Race with an interrupt:
– lwz r9,0(r3)   # Load contents of R3 + 0 into R9
****INTERRUPT****
...
lwz r9,0(r3)   # Load contents of R3 + 0 into R9
addi r9,r9,1   # Add one to R9
stw r9,0(r3)   # Put contents of R9 back into R3+0
...
****RETURN FROM INTERRUPT***
addi r9,r9,1   # Add one to R9
stw r9,0(r3)   # Put contents of R9 back into R3 + 0



Interrupts, Processes, SMP

● Race with another process by being preempted:
– lwz r9,0(r3)   # Load contents of R3 + 0 into R9
****Process 1 kicked off CPU. Process 2:****
...
lwz r9,0(r3)   # Load contents of R3 + 0 into R9
addi r9,r9,1   # Add one to R9
stw r9,0(r3)   # Put contents of R9 back into R3+0
...
****Process 1 returns to CPU***
addi r9,r9,1   # Add one to R9
stw r9,0(r3)   # Put contents of R9 back into R3 + 0



Interrupts, Processes, SMP

● Race with another CPU:
– CPU 1 CPU 2

...
... lwz r9,0(r3)
lwz r9,0(r3) addi r9,r9,1
addi r9,r9,1 stw r9,0(r3)
stw r9,0(r3) ...
...



Who Can Race Me?

● Here is a diagram of who can run at the same 
time:
– Worry about those beside you and above you.



What Can I Do About It?

● We can prevent changes on this CPU:
– Stop hardware interrupts:

● local_irq_disable() / ...enable()
local_irq_save(flags) / ...restore(flags)

– Stop softirqs (aka. bottom halves):
● local_bh_disable() / ...enable()

– Stop other processes from running:
● preempt_disable() / ...enable()



What Can I Do About It?

● eg: an interrupt handler increments a variable 
set in user context:

● static int i;

static irqreturn_t irq_handler(...)
{
i++;
}
...
static void myfunc(void)
{
local_irq_disable();
i++;
local_irq_enable();
}



What Can I Do About It?

● To protect data from other CPUs, we need locks.
● “spinlocks” can be used everywhere

– You will spin until you get it.

– You can't sleep/call schedule() while holding one.

● Simple interface:

– static DEFINE_SPINLOCK(lock);

– void spin_lock(spinlock_t *lock);

– void spin_unlock(spinlock *lock);



What Can I Do About It?

● spinlock combo meal deals available:
– spin_lock_bh(lock)/ ...unlock_bh

– spin_lock_irq(lock)/ ...unlock_irq

– spin_lock_irqsave(lock, flags)
/ spin_unlock_irqrestore(lock, flags)



What Can I Do About It?

● eg. interrupts handler increments variable (SMP-
safe version):

● static int i;
static DEFINE_SPINLOCK(i_lock);

static irqreturn_t irq_handler(...)
{
spin_lock(&i_lock);
i++;
spin_unlock(&i_lock);
}
...
static void myfunc(void)
{
spin_lock_irq(&i_lock);
i++;
spin_unlock_irq(&i_lock);
}



What Can I Do About It?

● We can use the generic _irqsave version:
● static increment_i(void)
{
unsigned long flags;
spin_lock_irqsave(&i_lock, flags);
i++;
spin_unlock_irqrestore(&i_lock, flags);
}

static irqreturn_t irq_handler(...)
{
increment_i();
}
...
static void myfunc(void)
{
increment_i();
}



Who Can Race Me?

●                                    Soft Interrupts
                 User-   User-   Tasklet Softirq IRQ
                 space   context
Same one runs     No      No      No      Yes     No
simultaneously
on other CPU?

Same type runs    Yes     Yes     Yes     Yes     Yes
simultaneously
on other CPU?

Interrupted by
same type?        Yes     Yes*    No      No      Yes

Interrupted by    Yes     Yes     No      No      No
soft interrupts?

Interrupted by    Yes     Yes     Yes     Yes     Yes
hard interrupts?



Find the Races!

● Checklist:
– For each piece of data / object:

● What pieces of code read or write that data?
● Can those pieces of code run at the same time?
● If so, you need some locking.

– Don't have to worry about:
● Stack variables (everyone gets their own stack)
● Things you've created but not put anywhere?



Your Mission: Identify

● How many races can you find in the driver?
– Which ones need a lock?

● A spinlock or semaphore?

– Which ones need irq-disabling?

– Which ones need something else?


