
O. Goldshmidt (Haifa U): Operating Systems

Introduction: OS Function And
Structure

Operating Systems

Oleg Goldshmidt
ogoldshmidt@computer.org

Lecture 1

– p.1/42

O. Goldshmidt (Haifa U): Operating Systems

What Is An (Intel) Computer?

– p.2/42

O. Goldshmidt (Haifa U): Operating Systems

An Example of a Computer

– p.3/42

O. Goldshmidt (Haifa U): Operating Systems

Components of a Computer

– p.4/42

O. Goldshmidt (Haifa U): Operating Systems

How Computers Work: Execution
Von Neumann’s “Stored Program” model

both programs and data are stored in memory
fetch — decode — execute — store
enables programmability, viruses, etc.

pipelining
while some circuits are executing an instruction,
others may be decoding the next one, and yet others
may be fetching another one
a low-level manifestation of parallelism
need to be very careful — much of the course will
deal with synchronization problems

are there other models?

– p.5/42

O. Goldshmidt (Haifa U): Operating Systems

How Computers Work: Peripherals
functions of peripheral devices

communicate with users (displays, consoles,
keyboards, mice, audio, video, printers, etc.)
serve as external storage devices (disks, tapes, CD,
DVD, etc.)
enable communications with other computers or
peripherals (network, serial, etc.)

controlled by controllers/adapters
data flows between peripherals and main memory (and
back):

programmed I/O — to/from I/O registers
DMA — direct memory access

peripheral data: commands, parameters, data proper
– p.6/42

O. Goldshmidt (Haifa U): Operating Systems

How Computers Work: Interrupts (I)
what happens in the keyboard when you press the a
key?

electric current flows in a wire
the keyboard controller polls the wires to detect
pressed (and released) keys
the character corresponding to the key pressed is
stored for further retrieval
the keyboard controller “taps the shoulder” of the
main CPU — raises an interrupt

– p.7/42

O. Goldshmidt (Haifa U): Operating Systems

How Computers Work: Interrupts (II)
what happens in the main CPU upon an interrupt?

the current state (registers, program counter, etc. —
details later) is stored (on a stack)
an interrupt handler is invoked and executed
(NB: software!)

retrieves the character a from where it is stored
checks whether Shift has been pressed etc.
drives the console, the display, etc. to show a to
the user (other interrupts may be involved)

the prior state is restored from the stack, and
execution resumes from the point where it was
interrupted

– p.8/42

O. Goldshmidt (Haifa U): Operating Systems

How Computers Work: Interrupts (III)
interrupts signal events
interrupts may be caused by external events or by a
step in the program operation — hardware vs. software
interrupts

software interrupts: traps, system calls
hardware interrupts: human action, the end of an I/O
operation, exceptions and errors, timers

both types cause the computer to perform the following
steps:

save the current state (program counter, registers,
etc.)
jump to a location dependent on the specific interrupt
NB: hardware saves only the hardware state!

– p.9/42

O. Goldshmidt (Haifa U): Operating Systems

Direct Memory Access
interrupt-driven operation is fine for slow devices such
as terminals (humans are slow)
not suitable for fast devices, e.g. modern storage
devices

the CPU would have to save state, execute interrupt
handler, restore state far too often

solution: set up buffers, pointers, counters once,
transfer an entire block of data to/from memory using a
separate “DMA controller”, without involving the main
CPU

inform the main CPU (via an interrupt!) when the
transfer is done
1 interrupt/operation rather than 1 interrupt/byte

– p.10/42

O. Goldshmidt (Haifa U): Operating Systems

Memory Hierarchy and Storage
von Neumann: both programs and data are stored in
memory — the most important resource of the
computer (together with the CPU, of course)
fast memory is expensive, hence scarce, slow memory
is cheap, and thus abundant
memory hierarchy:

registers
cache
RAM
storage (disks, tapes, etc.)

non-volatile memory — ROM, flash
ROM is often used for boot
flash is also used as disk replacement

– p.11/42

O. Goldshmidt (Haifa U): Operating Systems

Multiprogramming and Protection
many programs may be executed at once (through
time-sharing)
computer resources are shared between concurrent
programs
an incorrect (or malicious) program may not cause
other programs to execute incorrectly
hardware support for (at least) 2 execution modes

user mode
kernel (a.k.a. system, privileged) mode

memory, CPU, I/O protection — all need to be protected

– p.12/42

O. Goldshmidt (Haifa U): Operating Systems

Does This Look Simple?
not really, especially if we start thinking about
performance and price considerations
early computers were expensive, readers and printers
were slow compared to the CPU

allow card reading and printing to run concurrently
some programs read and print intermittently — CPU
sits idle

load other jobs while the original one does I/O, let it
run for a while, then restart the original one
time-share different users

personal computers: unsophisticated users, diverse
interfaces, a multitude of commodity devices
multiprocessor computers, integrated controllers, etc.

– p.13/42

O. Goldshmidt (Haifa U): Operating Systems

Bare Metal Is Too Complex (I)
the drive to make computers faster and cheaper makes
them more complex
hardware and architectural complexity must be hidden
from the users and from application programmers

recall how complex interrupt handling is
it will help if someone will move data and programs
arpound the complicated memory hierarchy in a
smart way
your data are usually not stored as contiguous blobs
on disks, but the directory and file structure can be
as neat as we make it
the Net is very messy behind your browsers, but we
do navigate it rather easily

– p.14/42

O. Goldshmidt (Haifa U): Operating Systems

Bare Metal Is Too Complex (II)
users and programmers must see a more abstract
picture of the machine than the machine
designers/builders
the various resources must be managed well and
allocated to competing programs in a controlled
manner, independently of the users’ qualifications and
without undue burden on the application writers
various operations need to be automated

– p.15/42

O. Goldshmidt (Haifa U): Operating Systems

What Is An Operating System?
a program that acts as an intermediary between a user
program and the computer hardware
OS functions:

makes programming applications easier — the
programmer is using an ”extended machine”
implementing high level abstractions quite remote
from hardware
makes operation easier — the machine user is
presented with tools enabling automation of most of
the machine operating procedures an mostly
unmanned operation
manages the machine resources and ensures
efficient usage of hardware

– p.16/42

O. Goldshmidt (Haifa U): Operating Systems

The Need for Operating Systems
can we do without operating systems?

yes, sure — just let the applications talk to the
hardware directly
sometimes (often, actually) it is the case — in
special-purpose embedded systems

not practical in a general purpose computer system
applications will be tied to a particular set of HW
devices, need to be ported for each new model of
each type of device
it will be practically impossible to run multiple
applications on a single machine
(“multiprogramming”)

each application will behave as if it owns the whole
system, and chaos will ensue

– p.17/42

O. Goldshmidt (Haifa U): Operating Systems

High Level Abstraction
the machine and system architecture at machine
language level are primitive and hard to program

to do a simple operation like printing a line of text or
reading a disk sector you have to: (a) set up some
controller registers in a precisely defined sequence,
(b) prepare the data in a form suitable for the device,
(c) start some mechanical operation and wait for
some conditions, (d) do the data transmission and
wait for the operation to end (an interrupt)

to be productive programmers must be shielded from all
those details (similar to what high level languages do)
application programmers need a convenient interface
hiding the low level details is very important for
portability

– p.18/42

O. Goldshmidt (Haifa U): Operating Systems

Resource Management
a system owner wants his equipment to be utilized
a system is composed of many elements — processors,
memories, peripherals etc.
as in factory with many machines we would like the
system to “produce” as much as possible
as an application is not using all the system resources
(e.g., when waiting for I/O the processor is not used) we
could “schedule” several applications to run on the
system
coordinating resource usage by different programs is
done by the operating system
coordination is necessary both for conflicting as well as
for cooperating programs (sharing)

– p.19/42

O. Goldshmidt (Haifa U): Operating Systems

Automated Operation
a function often overlooked
a system owner/user would like to have unmanned
system operation
in large organizations efficient operation requires
exception handling and system supervision to be done
by a small number of people for a large number of
machines
system management an essential ingredient in every
component including OS
setup, tuning, boot, reconfiguration — automatic
scheduled tasks (e.g., backup) — automatic
OS has to be designed for management

– p.20/42

O. Goldshmidt (Haifa U): Operating Systems

Computer System Architecture

– p.21/42

O. Goldshmidt (Haifa U): Operating Systems

Computer System Interfaces

– p.22/42

O. Goldshmidt (Haifa U): Operating Systems

OS Services
program services

program execution
data I/O
persistent storage functions (files)
communications (with other programs)
exception handling (faults, errors, etc.)

operating services
resource allocation
activity logging (accounting, auditing, tracing, quota
enforcement, etc.)
protection and access control

– p.23/42

O. Goldshmidt (Haifa U): Operating Systems

How OS Services Are Provided
system calls — used for for most of the program
services

process control
file manipulation
device operation
information maintenance
communications

system programs (system utilities)
file, status, communication, and other utilities
editors
programming language environments and libraries
program manipulation (compilers, linkers, loaders)
command interpreters (shells)

– p.24/42

O. Goldshmidt (Haifa U): Operating Systems

OS Parts and Structure
major functions (components)

process management
memory management
storage management
I/O management
file system
protection and access control
networking
command interpreter

structure
monolithic
microkernel
virtual

– p.25/42

O. Goldshmidt (Haifa U): Operating Systems

Process Management
a program in execution is a process
a process is a “dynamic” entity — it is the program
execution, not the program instructions
a process can create other processes
a process has associated resources (memory, files,
devices etc.) that are given to him either when it is
created or upon request
OS in charge of:

process creation and deletion (kill)
suspension/resumption, scheduling
IPC and synchronization

threads

– p.26/42

O. Goldshmidt (Haifa U): Operating Systems

Memory Management
to execute a program the machine must have it loaded
in memory and must have memory for its data
except in very early systems we keep several programs
in memory
allocating an freeing main memory is done by the OS
OS has to keep track of allocated memory
programs and data are located by the CPU through
absolute addresses
allocating main memory is a hard problem
virtual memory removes much of the complexity of
memory allocation

– p.27/42

O. Goldshmidt (Haifa U): Operating Systems

Storage Management
Main storage is not sufficient to hold all programs and
data: expensive and volatile
disks are used used to hold what is “spilled” over from
main memory (temporary) or what has to be persistent
(files, databases)
programs are stored on disk and use disk as source
and destination for data
OS does:

free space management
disk and space allocation
content organizations in structures with fast access
and resiliency to power failures
disk caching and swapping

– p.28/42

O. Goldshmidt (Haifa U): Operating Systems

Device Operation
one of the purposes of OS is to hide diverse hardware
peculiarities — it is important that even the OS sees the
devices in a uniform way
this is accomplished by having the I/O accessed
through a common set of interfaces (APIs) even within
the system (I/O subsystem in UNIX, I/O manager in NT)
devices are manipulated by device drivers that
“look the same” to the rest of the OS and act differently
on hardware — numerous, expensive
OS has to offer (common) services to the driver builder,
such as buffer management, memory mapping (user
space/system space/I/O space)
layered driver structure (block/SCSI/specific disks)

– p.29/42

O. Goldshmidt (Haifa U): Operating Systems

File Systems
a file is viewed as an indiscriminate sequence of bytes
(some systems add some structure — e.g., records on
OS390 and AS/400)
hierarchical organization (directories)
mask the actual data organization on media
OS must provide:

creation and deletion of files and directories
file access (open, close, read, write, seek)
file access control and coordination
file mapping to media
utilities for backup/restore, export/import

general abstraction in some OS (UNIX): “everything is a
file” — e.g., special “device files”

– p.30/42

O. Goldshmidt (Haifa U): Operating Systems

Protection
if a system holds several programs in memory they
must be protected against accidental or malicious
misuse
memory protection ensures that a process can access
only the memory areas allocated to it
I/O devices allocated to one process should be
protected against use by other processes; in general
users don’t do I/O by themselves
a process should be prevented to gain control of the
CPU at the expense of others
access to files (data, programs etc.) is controlled
extension: correct use of interface between subsystems

– p.31/42

O. Goldshmidt (Haifa U): Operating Systems

Networking
with very few exceptions today machines are
interconnected through various communication
networks (LAN, WAN) and various protocols
OS should provide different levels of hiding the network
complexity
present users with simple paradigms like remote file
access, remote program execution, etc.
provide programmers with a communication
mechanism suited to the application developed
(protocol, types of connection etc.)
provide administrators with means to monitor and
actively manage networks (connections, routers etc.)

– p.32/42

O. Goldshmidt (Haifa U): Operating Systems

Command Interpreters
an essential component in a system
in most modern systems it is not part of the OS (the
“kernel”) but an application through which the user
communicates with the system
command interpreter accepts commands:

as interactive control statements or scripts
as a graphical interface (GUI) set of actions (e.g.,
mouse movements, “clicks”, etc.)

command languages are powerful programming
languages by themselves
allow direct invocation of system utilities for process
management, file system manipulation, protection,
networking etc.

– p.33/42

O. Goldshmidt (Haifa U): Operating Systems

System Calls
the programming interface to the OS services
historically in assembly, in most modern OS they are
available directly from HL programming languages,
often wrapped into library calls
system calls are frequently invoked through software
interrupts and parameters are passed through registers
and/or through stack
system calls are used for:

process control
file manipulation
device control
information and configuration manipulation
communication

– p.34/42

O. Goldshmidt (Haifa U): Operating Systems

How To Use System Calls (I)
On UNIX (and Linux) systems:
#include <sys/types.h>
#include <unistd.h>
will give you the necessary (in ANSI C) data types and
function prototypes, such as
int close (int fd);
ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf,

size_t count);
pid_t getpid(void);
pid_t getppid(void);
pid_t fork(void);
When in doubt, use Section 2 of the “man pages”, e.g.,
man 2 read

– p.35/42

O. Goldshmidt (Haifa U): Operating Systems

How To Use System Calls (II)
Often it is better to use library facilities rather than “naked”
system calls, e.g., after
#include <stdio.h>
standard C I/O library facilities such as
FILE *fopen(const char *path,

const char *mode);
size_t fread(void *ptr, size_t size,

size_t nmemb, FILE *stream);
size_t fwrite(const void *ptr, size_t size,

size_t nmemb, FILE *stream);
int fflush(FILE *stream);
int fclose(FILE *stream);

become available. Cf. man 3 fopen etc.

– p.36/42

O. Goldshmidt (Haifa U): Operating Systems

System Calls vs. Library Calls (I)
what is the difference?
from the user’s point of view, not much:

both syscalls and library calls are normal C functions
both can be used anywhere in your code
both exist to provide services to application
programmers

realize that you can replace library functions as desired,
but not system calls

– p.37/42

O. Goldshmidt (Haifa U): Operating Systems

System Calls vs. Library Calls (II)
example: consider memory allocation — no single
technique is optimal for every program.

behind the scenes the system call sbrk(2) is
normally used

actually, sbrk may be a C library wrapper around
brk(2), but that’s an implementation detail

however, we usually call malloc(3) from libc
(that calls sbrk(2) as necessary)
if necessary, we can write a custom allocator that will
likely use sbrk(2)

key distinction: mechanism vs. policy — (general
purpose) OS usually implement mechanism, not policy

– p.38/42

O. Goldshmidt (Haifa U): Operating Systems

System Calls vs. Library Calls (III)
system calls usually provide a minimal interface, while
libraries provide more elaborate functionality
process control system calls (fork(2), exec(2),
wait(2)) are usually used directly
library routines often simplify certain common cases,
e.g., system(3), popen(3)
throughout the course we will use the word function
for both system and library calls, except when the
distinction is necessary

– p.39/42

O. Goldshmidt (Haifa U): Operating Systems

What Syscalls Does This Program Use?
strace cat foo
execve("/bin/cat", ["cat", "foo"],

[/* 64 vars */]) = 0
...
open("/lib/tls/libc.so.6", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0"..., 512) = 512
...
close(3)
...
open("foo", O_RDONLY|O_LARGEFILE) = 3
...
read(3, "foo\n", 4096) = 4
write(1, "foo\n", 4096) = 4
read(3, "", 4096) = 0
close(3) = 0

– p.40/42

O. Goldshmidt (Haifa U): Operating Systems

Relevant Standards: ANSI C
a practically necessary condition to make your code
portable between “platforms” (including different OS)
the OS kernels are exceptions (sometimes), e.g., Linux
is gcc-dependent
but any normal OS “distribution” will provide the user
with ANSI C facilities (libraries, headers, etc.)
compilers are crucial — most are approximations to the
standard

– p.41/42

O. Goldshmidt (Haifa U): Operating Systems

Relevant Standards: POSIX
defines the services an OS must provide
obviously important to assist application portability
defines interface, not implementation — no distinction
between system calls and library calls, both called
functions
OS are usually some approximations of POSIX (as
compilers are for ANSI C), e.g. Linux is “mostly
compliant”, Windows is not compliant at all
there are other standards, and often “implementation
families” (such as System V and BSD in the UNIX
world) are regarded as de facto standards
the UNIX man pages normally have a “CONFORMING
TO” section

– p.42/42

	What Is An (Intel)
Computer?
	An Example of a Computer
	Components of a Computer
	How Computers Work: Execution
	How Computers Work: Peripherals
	How Computers Work: Interrupts (I)
	How Computers Work: Interrupts (II)
	How Computers Work: Interrupts (III)
	Direct Memory Access
	Memory Hierarchy and Storage
	Multiprogramming and Protection
	Does This Look Simple?
	Bare Metal Is Too Complex (I)
	Bare Metal Is Too Complex (II)
	What Is An Operating System?
	The Need for Operating Systems
	High Level Abstraction
	Resource Management
	Automated Operation
	Computer System Architecture
	Computer System Interfaces
	OS Services
	How OS Services Are Provided
	OS Parts and Structure
	Process Management
	Memory Management
	Storage Management
	Device Operation
	File Systems
	Protection
	Networking
	Command Interpreters
	System Calls
	How To Use System Calls (I)
	How To Use System Calls (II)
	System Calls vs. Library Calls (I)
	System Calls vs. Library Calls (II)
	System Calls vs. Library Calls (III)
	What Syscalls Does This Program Use?
	Relevant Standards: ANSI C
	Relevant Standards: POSIX

