.

O. Goldshmidt (Haifa U): Operating Systems

File Systems

Operating Systems

Oleg Goldshmidt

ogoldshmidt@computer.org

Lecture 10

—p.1/3

File Concept 1
-

back to general principles: OS hides complexity from
users

® how information is stored on devices is none of the
user’s business

o present the user with a logical view of stored information

#® file: a named collection of related information recorded
on a storage device

s the smallest logical information unit: all stored data
are in files

s an example of “raw” data not using files: databases

o -

O. Goldshmidt (Haifa U): Operating Systems —p.2/3

File Concept 11

o .

(normally) on high-capacity non-volatile storage
» maintain data past program termination or failure

» manipulate large quantities of data (larger than
virtual memory)

» sharing data between processes

files may contain programs and/or data

data files: numeric, alphabetic, alphanumeric, binary
formatted or unformatted data

© o o o

file types: source code, object code, executables, text,
graphics, sound, etc.

o -

O. Goldshmidt (Haifa U): Operating Systems - p.3/3

File Types
-

different file types may be supported differently
s complicates the OS implementation considerably
type specified by extension, or by a combination of

filesystem tests, “magic number” tests, and language
tests (file(1))

o filesystemtests (stat(2), sys/stat.h): empty
or special files (sockets, symlinks, pipes, etc.

» “magic number” tests: stored in a particular place
near the beginning of the file, usually describes a
binary format

s If not special or binary, it is either “text” (ASCII etc.)
or “character data” (EBCDIC etc.)

.

O. Goldshmidt (Haifa U): Operating Systems

=

—p.4/3

Determining File Type
|7___#include <sys/types.h> ___1

#include <sys/stat.h>

struct stat Dbuf;

char *S;

if (lstat(filename, &buf) < 0)
exit (EXIT_FAILURE)

if (S_TISREG(buf.st _mode)) s = "regular";

else 1if (S_ISDIR(buf.st_mode)) s = "directory";

else if (S_ISCHR(buf.st _mode)) s = "character special";
else 1if (S_ISBLK(buf.st_mode)) s = "block special";
else 1f (S_ISFIFO(buf.st_mode)) s = "fifo";

else 1if (S_ISLNK(buf.st_mode)) s = "symbolic 1link";
else 1f (S_ISSOCK(buf.st_mode)) s = "socket";

else s = "unknown";

printf ("%$s\n", s);

o -

O. Goldshmidt (Haifa U): Operating Systems —p.5/3

File Attributes

name: case-sensitive or not
type: if different types are supported
location: storage device and location on the device

size: in bytes, words, or blocks; possibly also the
maximal allowed size

© o o o

access control information

time, date, user: for creation, modification, access
s Security

s usage monitoring and statistics

o audit

o -

O. Goldshmidt (Haifa U): Operating Systems — p.6/3

L

Directory
f # the attributes of all files are kept in a directory T
o directory must also be kept on non-volatile storage

on many systems (e.g., UNIX) directory is also kept in
file(s), on others it is a special data structure

Read Write
directory pointer pointer
filel |, filel
file2 |, file2

o -

O. Goldshmidt (Haifa U): Operating Systems —p.7/3

File Operations I
-

afile is an abstract data type

basic file operations

s create: allocate space, make a directory entry,
assign some of the attributes (e.g., access
permissions)

s write: a system call specifying the file name and the
data to write; the filesystem provides the storage
location to write to, must keep a write pointer per file

s read: a system call that specifies the file name and
the memory location to put the data in; the directory
IS searched, and the system needs a read pointer
per file
s usually afile is either read from or written to —
o one current position pointer is enough .

O. Goldshmidt (Haifa U): Operating Systems — p.8/3

File Operations 11

o .

Dbasic file operations (cont.)

» seek: the current position pointer is set to the given
value; no actual I/O is performed

» delete: release the space and erase the directory
entry

s truncate: sometimes we want to keep the file
attributes but erase the contents of a file; instead of
deleting and then recreating the file we reset the
length to zero

other common operations

s rename: keep the data and the attributes, change

the name

L s Qet/set attributes J

O. Goldshmidt (Haifa U): Operating Systems - p.9/3

File Operations III
- -

examples of compound operations

s append: seek the end, write

s overwrite: truncate, write

s copy: create a new file, read from old, write to new
optimizations

s open: avoid searching the filesystem directory each
time a file is accessed
s keep an “open file table”, use the table index (“file
descriptor”) throughout
s some systems may open a file on first reference
s usually there is open(2) and fopen (3) that

returns a file descriptor or a pointer to the open file
table entry

L s close: removes the file from the open file table J

O. Goldshmidt (Haifa U): Operating Systems —p.10/3

File Operations 1V

o .

open and close in multiuser environments (e.g., UNIX)
» several users may open a file at the same time

s 2 levels of file tables

s per-process table containing the files that the
process has open; stores the usage information on
each file (e.g., the current position)

s each entry in the process file table points to a
global open file table that contains
process-independent information: location, size,
access times, etc.; also has open count

other operations

s lock: whole files or sections thereof (f1lock(2))
s map: map file to virtual memory (mmap(2),

_ munmap(2)) -

O. Goldshmidt (Haifa U): Operating Systems —p.11/3

Access Methods

o .

sequential access — record by record in order
s by far the most common

direct (a.k.a. relative, random) access

s fixed length logical records, a program can skip a
number of records forward or backward — similar to
block access to disk

o either include block number in read () and write()
or use seek () to position correctly

s user usually deals with blocks numbered relative to
the beginning of the file
indexed access
s search the index, go directly to the record
L s index may be kept in memory (if small enough) J

O. Goldshmidt (Haifa U): Operating Systems —p.12/3

Directories And Directory Operations

o .

we store huge amounts of data — need some structure
physical disks and partitions, or logical volumes
each logical partition stores information on its files

#® operations

s search (by name or pattern) (find (1)
create/delete (mkdir (1), rmdir (1))
list a directory (1s (1), readdir(2))
rename afile (mv (1), rename(2))
traverse the file system (ftw(3), nftw(3))

o -

O. Goldshmidt (Haifa U): Operating Systems —p.13/3

Reading Directory Contents

o, .

include <unistd.h>
#include <limits.h>
#include <sys/types.h>
#include <dirent.h>

char buf [PATH _MAX] ;

DIR «dp;

struct dirent xdirp;

1f ((dp=opendir(getcwd(buf,PATH _MAX)) == NULL)
ex1t (EXIT FAILURE);

while ((dirp=readdir(dp)) != NULL)

printf("%$s\n", dirp->d_name);
closedir(dp);

o -

O. Goldshmidt (Haifa U): Operating Systems —p.14/3

Directory Structure I

f’ single level directories T
s all files lumped together in one directory

s not scalable
s not suitable for multiple users (unigue names etc.)

two-level directories
s let each user have a directory
s still not scalable
s what Iif users want to share files
s other directories are needed for system files

o -

O. Goldshmidt (Haifa U): Operating Systems —p.15/3

-

K

© o o o o o @

.

Directory Structure 11

o directory tree

root directory and subdirectories
current directory (pwd (1))

changing directories (cd, chdir(2))
directory stack (pushd, popd)

home directory for user

absolute and relative paths

do we delete non-empty directories?
how do we search for executables?

O. Goldshmidt (Haifa U): Operating Systems

—p.16/3

°

o

.

Directory Structure 111

acyclic graph directories

s linking files and directories
s sharing a directory between two users
s using different implementations
s efc.

s hard links — duplicating information

s soft (symbolic) links — the directory entry contains
the target

multiple names per file (aliases)

deleting files — dangling links, hard links especially
problematic

reference counting for hard links (unlink (2))

-

O. Goldshmidt (Haifa U): Operating Systems —p.17/3

Directory Structure 1V
- -

general graph directory

s acyclic graphs are simple
s easy 1o traverse
s easy to count references

» general graphs may have self-referencing structures
s garbage collection

s traverse the entire file system marking everything
that can be accessed

s make a second pass, freeing everything that is not
marked

s Similar to garbage collection in Lisp, Java, etc.

o -

O. Goldshmidt (Haifa U): Operating Systems —p.18/3

Filesystem Hierarchy Standard I
-

http://www.pathname.com/fhs/

°

requirements and guidelines for file and directory
placement for UNIX-like OS

support for interoperability, system administration,
documentation

°

root filesystem: enough to boot, restore, repair
/boot: static files for bootloader (e.g., kernel)
/bin: essential command binaries (for all users)
/dev: device files

© o o o @

/et c host-specific configuration (scripts, but no
binaries)

o -

O. Goldshmidt (Haifa U): Operating Systems —p.19/3

http://www.pathname.com/fhs/

Filesystem Hierarchy Standard 11

o .

/home: user home directories (optional)
/1ib: essential libraries and kernel modules
/mnt: for temporary mounts

/opt: add-on software and data

/tmp: temporary files

/sbin: system binaries (not for regular users)

/usr: shareable, read-only data
s /usr/include: system headers

© © o o o o ©

°

other (non-UNIX) systems have their own rules that
may or may not be observed

o -

O. Goldshmidt (Haifa U): Operating Systems —p.20/3

Access Control

f’ traditional UNIX T

s owner, group, all

s read, write, execute

o chmod(1), chown(1l), chgrp(1)

s directories must be executable for chdir(2)
s watch write permissions on directories!

s default permissions (umask)

other operations may be controlled
s append, delete, list, rename, copy, edit, etc.

» On many systems these operations are implemented
via read, write, execute, and control is exercised at
the lower level only

o -

O. Goldshmidt (Haifa U): Operating Systems —p.21/3

Access Control 11

-

accell control lists
» list allowed operations on a per-user basis

s allows very fine-grained control
s e.g., all members of group students except for
users john and jane can read this file

s difficult to use, maintain
s directory entry is now of variable size — more
complicated space management
other approaches

s password protection for files or trees, possibly
different passwords for different operations

o -

O. Goldshmidt (Haifa U): Operating Systems —p.22/3

Consistency Semantics

o -

what happens when users access a file simultaneously*
s especially if multiple users modify the same file

® session: the series of file accesses between open and
close

® UNIX semantics

s writes to an open file are visible immediately to all
the other users who have the file open

s all users share the pointer to the current location in a
file

s single file image — contention — processes may be
delayed

o -

O. Goldshmidt (Haifa U): Operating Systems —p.23/3

Consistency Semantics 11

o .

session semantics (Andrew Filesystem)

» writes to an open file are not visible to other users
who have the file open

» once a file is closed the changes made during the
session are visible only in sessions starting later;
already open sessions do not see the changes

s multiple images — no contention — no delays

® immutable shared files

s once a file is declared shared by its creator it cannot
be modified

s neither contents nor name may be changed
s simple implementation

o -

O. Goldshmidt (Haifa U): Operating Systems — p.24/3

Mapping And Mounting

o .

#» Windows: mapping a drive
» files on different devices have different namespaces
s the full path name always contains the physical
device where the file is stored
UNIX: mounting
s single directory tree, single namespace

s a filesystem must be mounted before it can be
accessed (like a file must be opened)

s attach the root of the filesystem on a given device to
a particular node of the mail filesystem tree

s verify that there is a valid filesystem on the device

o -

O. Goldshmidt (Haifa U): Operating Systems —p.25/3

Filesystem Internal Organization I

=

°

device drivers and interrupt handlers do basic block I/O

the basic file system issues the appropriate 1/O
commands to the device driver

the file organization module maps the file’s logical
blocks to the physical blocks on the disk
» knows the location of the file
s knows how the disk space was allocated
s manages free space

|ogical filesystem

s works with the directory structure given a symbolic
file name

o handles access control, etc.

-

O. Goldshmidt (Haifa U): Operating Systems — p.26/3

Filesystem Internal Organization 11

o .

the layered structure allows
s using more than one filesystem on a single machine

s replace the physical filesystem with a layer calling a
remote system
s NFS on UNIX, Linux
s CIFS (samba) on Windows, Linux
s AFS, GPFS, etc.

s implement “virtual” filesystems such as /proc,
shared memory segments, etc.

Linux VFS layer

s presents a common interface to the upper software
layers, specific filesystems override default file
operations (like base and derived classes in OOP)

o -

O. Goldshmidt (Haifa U): Operating Systems —p.27/3

Metadata

o “data about data”
s data location on disk
s creation date/time
» last modification date/time
» last access date/time
» ownership information
» access control information

the above info is often held in a specialized data
structure (UNIX: inode) which is a part of dirent

the file name, the parent directory, etc. are included in
the directory entry directly

o -

O. Goldshmidt (Haifa U): Operating Systems — p.28/3

Data Layout
-

designed with two criteria in mind
s availability
s performance

availability in presence of failures
s minimal: power failure should not result in data loss
s stronger: how much time is needed to “restart” a

filesystem
» metadata are stored differently from data, for
availability
o performance — through clever space allocation and
caching

o -

O. Goldshmidt (Haifa U): Operating Systems —p.29/3

Space Allocation I

o .

contiguous allocation
» each file occupies a contiguous set of blocks on disk

s linear ordering — no head movement for seeks when
access is sequential — good performance

s algorithms similar to memory allocation (same
problem)

s external fragmentation is a problem

» how much space will be needed for a file?
s can relocate files dynamically into a larger hole
s Internal fragmentation

o modification: allocation in extents

o -

O. Goldshmidt (Haifa U): Operating Systems —p.30/3

Space Allocation 11

o .

#® linked allocation

o each file is a linked list of blocks
s a bit of overhead — the address of the next block
s reduce overhead by clustering blocks, at the cost
of internal fragmentation

s directory entry has a pointer to the first block —
initially ni1 (empty file)
s free space management finds new blocks to add

s efficient only for sequential access (random access
to a linked list is lousy)

s pointers can be damaged by bugs
s doubly-linked lists may help, but overhead is larger

o -

O. Goldshmidt (Haifa U): Operating Systems —p.31/3

Linked Allocation

directory

file start end
jeep 9 25

16[]17[]18[]19[]

2021 J22[]23[]
24[] 25126 _]27[_]
28[] 29[]30[]31[]
- — o

O. Goldshmidt (Haifa U): Operating Systems —p.32/3

Space Allocation 111

f o FAT: File Allocation Table T
s a variant of linked allocation (DOS, OS/2)
s atable at the beginning of a partition

s table indexed by block number, the value is the next
block in the file

» unused blocks have 0 value
o a lot of disk seeks, unless the table is cached
o better random access time

o -

O. Goldshmidt (Haifa U): Operating Systems —p.33/3

Space Allocation IV

o .

® indexed allocation

s like linked allocation, but bring all pointers together
into the index block

s each file has an index block — an array of disk block
addresses

o the i-th element contains the address of the i-th
block

s similar to paging
s random access without external fragmentation

s overhead is larger than for linked allocation
s consider a small file — how much space is needed
for the block pointers?

L s the table may be multi-level J

O. Goldshmidt (Haifa U): Operating Systems — p.34/3

Inodes 1

o .

combined single level and multi-level indexing
s Inode structure
contains some metadata
contains n (e.g., 12) direct block pointers
pointers to single, double, and triple indirect blocks

small files (up to 48 K for 4 K blocks) can be
accessed directly, no need for a separate index block

s larger files will use the index tables
s can be cached in memory
» data blocks scattered over the disk
|oss of a directory entry can be disastrous — cache

Inodes for reads, but write inode to disk before the
- newly allocated data blocks .

O. Goldshmidt (Haifa U): Operating Systems —p.35/3

e o o o

Inodes 11

mode

owners (2)

timestamps (3

—>| datd

size block

data

—
j data
direct blocks = :

count

—P| (il

P data I
single indirect -—>|E : data
> dafa - ‘
double indirect {—'_ dala
tiple indirect : ¥ 42
| dala

O. Goldshmidt (Haifa U): Operating Systems

—p.36/3:

Performance Considerations

o .

space vs. speed

s speed favors allocation in large chunks

s space favors allocation in small chunks

s know thy workload!

» new types of data (e.g., video) shift the balance
L

type of access (sequential or random) may be
declared when the file is created
s use linked allocation for sequential access
s use contiguous allocation for direct (or sequential)
access
- maximal size must be declared
s can convert from one type to another

s combine contiguous (for small files) and indexed

L allocation J

O. Goldshmidt (Haifa U): Operating Systems - p.37/3

Free Space Management

o .

bitmap
s Dbit per block: 1 if free, 0 if allocated

s many architectures have instructions to find the first
0 or 1 in a bit sequence

s must be kept in memory (and occasionally written to
disk for recovery purposes)

s nheed 20 M for 80 G disk

linked list
o normally sequential access is sufficient
o FAT incorporates it asis

grouping — list free blocks in the 1st free block

counting — keep the number of consecutive free blocks
L following the current one J

O. Goldshmidt (Haifa U): Operating Systems — p.38/3

	File Concept I
	File Concept II
	File Types
	Determining File Type
	File Attributes
	Directory
	File Operations I
	File Operations II
	File Operations III
	File Operations IV
	Access Methods
	Directories And Directory Operations
	Reading Directory Contents
	Directory Structure I
	Directory Structure II
	Directory Structure III
	Directory Structure IV
	FS Hierarchy Standard I
	FS Hierarchy Standard II
	Access Control
	Access Control II
	Consistency Semantics
	Consistency Semantics II
	Mapping And Mounting
	FS Internal Organization I
	FS Internal Organization II
	Metadata
	Data Layout
	Space Allocation I
	Space Allocation II
	Linked Allocation
	Space Allocation III
	Space Allocation IV
	Inodes I
	Inodes II
	Performance Considerations
	Free Space Management

