
O. Goldshmidt (Haifa U): Operating Systems

File Systems

Operating Systems

Oleg Goldshmidt
ogoldshmidt@computer.org

Lecture 10

– p.1/38



O. Goldshmidt (Haifa U): Operating Systems

File Concept I
back to general principles: OS hides complexity from
users
how information is stored on devices is none of the
user’s business
present the user with a logical view of stored information
file: a named collection of related information recorded
on a storage device

the smallest logical information unit: all stored data
are in files
an example of “raw” data not using files: databases

– p.2/38



O. Goldshmidt (Haifa U): Operating Systems

File Concept II
(normally) on high-capacity non-volatile storage

maintain data past program termination or failure
manipulate large quantities of data (larger than
virtual memory)
sharing data between processes

files may contain programs and/or data
data files: numeric, alphabetic, alphanumeric, binary
formatted or unformatted data
file types: source code, object code, executables, text,
graphics, sound, etc.

– p.3/38



O. Goldshmidt (Haifa U): Operating Systems

File Types
different file types may be supported differently

complicates the OS implementation considerably
type specified by extension, or by a combination of
filesystem tests, “magic number” tests, and language
tests (file(1))

filesystem tests (stat(2), sys/stat.h): empty
or special files (sockets, symlinks, pipes, etc.
“magic number” tests: stored in a particular place
near the beginning of the file, usually describes a
binary format
if not special or binary, it is either “text” (ASCII etc.)
or “character data” (EBCDIC etc.)

– p.4/38



O. Goldshmidt (Haifa U): Operating Systems

Determining File Type
#include <sys/types.h>
#include <sys/stat.h>
struct stat buf;
char *s;
if (lstat(filename, &buf) < 0)
exit(EXIT_FAILURE)

if (S_ISREG(buf.st_mode)) s = "regular";
else if (S_ISDIR(buf.st_mode)) s = "directory";
else if (S_ISCHR(buf.st_mode)) s = "character special";
else if (S_ISBLK(buf.st_mode)) s = "block special";
else if (S_ISFIFO(buf.st_mode)) s = "fifo";
else if (S_ISLNK(buf.st_mode)) s = "symbolic link";
else if (S_ISSOCK(buf.st_mode)) s = "socket";
else s = "unknown";
printf("%s\n", s);

– p.5/38



O. Goldshmidt (Haifa U): Operating Systems

File Attributes
name: case-sensitive or not
type: if different types are supported
location: storage device and location on the device
size: in bytes, words, or blocks; possibly also the
maximal allowed size
access control information
time, date, user: for creation, modification, access

security
usage monitoring and statistics
audit

– p.6/38



O. Goldshmidt (Haifa U): Operating Systems

Directory
the attributes of all files are kept in a directory
directory must also be kept on non-volatile storage
on many systems (e.g., UNIX) directory is also kept in
file(s), on others it is a special data structure

– p.7/38



O. Goldshmidt (Haifa U): Operating Systems

File Operations I
a file is an abstract data type
basic file operations

create: allocate space, make a directory entry,
assign some of the attributes (e.g., access
permissions)
write: a system call specifying the file name and the
data to write; the filesystem provides the storage
location to write to, must keep a write pointer per file
read: a system call that specifies the file name and
the memory location to put the data in; the directory
is searched, and the system needs a read pointer
per file

usually a file is either read from or written to —
one current position pointer is enough

– p.8/38



O. Goldshmidt (Haifa U): Operating Systems

File Operations II
basic file operations (cont.)

seek: the current position pointer is set to the given
value; no actual I/O is performed
delete: release the space and erase the directory
entry
truncate: sometimes we want to keep the file
attributes but erase the contents of a file; instead of
deleting and then recreating the file we reset the
length to zero

other common operations
rename: keep the data and the attributes, change
the name
get/set attributes

– p.9/38



O. Goldshmidt (Haifa U): Operating Systems

File Operations III
examples of compound operations

append: seek the end, write
overwrite: truncate, write
copy: create a new file, read from old, write to new

optimizations
open: avoid searching the filesystem directory each
time a file is accessed

keep an “open file table”, use the table index (“file
descriptor”) throughout
some systems may open a file on first reference
usually there is open(2) and fopen(3) that
returns a file descriptor or a pointer to the open file
table entry

close: removes the file from the open file table
– p.10/38



O. Goldshmidt (Haifa U): Operating Systems

File Operations IV
open and close in multiuser environments (e.g., UNIX)

several users may open a file at the same time
2 levels of file tables

per-process table containing the files that the
process has open; stores the usage information on
each file (e.g., the current position)
each entry in the process file table points to a
global open file table that contains
process-independent information: location, size,
access times, etc.; also has open count

other operations
lock: whole files or sections thereof (flock(2))
map: map file to virtual memory (mmap(2),
munmap(2))

– p.11/38



O. Goldshmidt (Haifa U): Operating Systems

Access Methods
sequential access — record by record in order

by far the most common
direct (a.k.a. relative, random) access

fixed length logical records, a program can skip a
number of records forward or backward — similar to
block access to disk
either include block number in read() and write()
or use seek() to position correctly
user usually deals with blocks numbered relative to
the beginning of the file

indexed access
search the index, go directly to the record
index may be kept in memory (if small enough)

– p.12/38



O. Goldshmidt (Haifa U): Operating Systems

Directories And Directory Operations
we store huge amounts of data — need some structure
physical disks and partitions, or logical volumes
each logical partition stores information on its files
operations

search (by name or pattern) (find(1)
create/delete (mkdir(1), rmdir(1))
list a directory (ls(1), readdir(2))
rename a file (mv(1), rename(2))
traverse the file system (ftw(3), nftw(3))

– p.13/38



O. Goldshmidt (Haifa U): Operating Systems

Reading Directory Contents
#include <unistd.h>
#include <limits.h>
#include <sys/types.h>
#include <dirent.h>

char buf[PATH_MAX];
DIR *dp;
struct dirent *dirp;

if ((dp=opendir(getcwd(buf,PATH_MAX)) == NULL)
exit(EXIT_FAILURE);

while ((dirp=readdir(dp)) != NULL)
printf("%s\n", dirp->d_name);

closedir(dp);

– p.14/38



O. Goldshmidt (Haifa U): Operating Systems

Directory Structure I
single level directories

all files lumped together in one directory
not scalable
not suitable for multiple users (unique names etc.)

two-level directories
let each user have a directory
still not scalable
what if users want to share files
other directories are needed for system files

– p.15/38



O. Goldshmidt (Haifa U): Operating Systems

Directory Structure II
directory tree

root directory and subdirectories
current directory (pwd(1))
changing directories (cd, chdir(2))
directory stack (pushd, popd)
home directory for user
absolute and relative paths
do we delete non-empty directories?
how do we search for executables?

– p.16/38



O. Goldshmidt (Haifa U): Operating Systems

Directory Structure III
acyclic graph directories

linking files and directories
sharing a directory between two users
using different implementations
etc.

hard links — duplicating information
soft (symbolic) links — the directory entry contains
the target

multiple names per file (aliases)
deleting files — dangling links, hard links especially
problematic
reference counting for hard links (unlink(2))

– p.17/38



O. Goldshmidt (Haifa U): Operating Systems

Directory Structure IV
general graph directory

acyclic graphs are simple
easy to traverse
easy to count references

general graphs may have self-referencing structures
garbage collection

traverse the entire file system marking everything
that can be accessed
make a second pass, freeing everything that is not
marked
similar to garbage collection in Lisp, Java, etc.

– p.18/38



O. Goldshmidt (Haifa U): Operating Systems

Filesystem Hierarchy Standard I
http://www.pathname.com/fhs/

requirements and guidelines for file and directory
placement for UNIX-like OS
support for interoperability, system administration,
documentation
root filesystem: enough to boot, restore, repair
/boot: static files for bootloader (e.g., kernel)
/bin: essential command binaries (for all users)
/dev: device files
/etc host-specific configuration (scripts, but no
binaries)

– p.19/38

http://www.pathname.com/fhs/


O. Goldshmidt (Haifa U): Operating Systems

Filesystem Hierarchy Standard II
/home: user home directories (optional)
/lib: essential libraries and kernel modules
/mnt: for temporary mounts
/opt: add-on software and data
/tmp: temporary files
/sbin: system binaries (not for regular users)
/usr: shareable, read-only data

/usr/include: system headers
other (non-UNIX) systems have their own rules that
may or may not be observed

– p.20/38



O. Goldshmidt (Haifa U): Operating Systems

Access Control
traditional UNIX

owner, group, all
read, write, execute
chmod(1), chown(1), chgrp(1)
directories must be executable for chdir(2)
watch write permissions on directories!
default permissions (umask)

other operations may be controlled
append, delete, list, rename, copy, edit, etc.
on many systems these operations are implemented
via read, write, execute, and control is exercised at
the lower level only

– p.21/38



O. Goldshmidt (Haifa U): Operating Systems

Access Control II
accell control lists

list allowed operations on a per-user basis
allows very fine-grained control

e.g., all members of group students except for
users john and jane can read this file

difficult to use, maintain
directory entry is now of variable size — more
complicated space management

other approaches
password protection for files or trees, possibly
different passwords for different operations

– p.22/38



O. Goldshmidt (Haifa U): Operating Systems

Consistency Semantics
what happens when users access a file simultaneously?

especially if multiple users modify the same file
session: the series of file accesses between open and
close

UNIX semantics
writes to an open file are visible immediately to all
the other users who have the file open
all users share the pointer to the current location in a
file
single file image → contention → processes may be
delayed

– p.23/38



O. Goldshmidt (Haifa U): Operating Systems

Consistency Semantics II
session semantics (Andrew Filesystem)

writes to an open file are not visible to other users
who have the file open
once a file is closed the changes made during the
session are visible only in sessions starting later;
already open sessions do not see the changes
multiple images → no contention → no delays

immutable shared files
once a file is declared shared by its creator it cannot
be modified

neither contents nor name may be changed
simple implementation

– p.24/38



O. Goldshmidt (Haifa U): Operating Systems

Mapping And Mounting
Windows: mapping a drive

files on different devices have different namespaces
the full path name always contains the physical
device where the file is stored

UNIX: mounting
single directory tree, single namespace
a filesystem must be mounted before it can be
accessed (like a file must be opened)
attach the root of the filesystem on a given device to
a particular node of the mail filesystem tree
verify that there is a valid filesystem on the device

– p.25/38



O. Goldshmidt (Haifa U): Operating Systems

Filesystem Internal Organization I
device drivers and interrupt handlers do basic block I/O
the basic file system issues the appropriate I/O
commands to the device driver
the file organization module maps the file’s logical
blocks to the physical blocks on the disk

knows the location of the file
knows how the disk space was allocated
manages free space

logical filesystem
works with the directory structure given a symbolic
file name
handles access control, etc.

– p.26/38



O. Goldshmidt (Haifa U): Operating Systems

Filesystem Internal Organization II
the layered structure allows

using more than one filesystem on a single machine
replace the physical filesystem with a layer calling a
remote system

NFS on UNIX, Linux
CIFS (samba) on Windows, Linux
AFS, GPFS, etc.

implement “virtual” filesystems such as /proc,
shared memory segments, etc.

Linux VFS layer
presents a common interface to the upper software
layers, specific filesystems override default file
operations (like base and derived classes in OOP)

– p.27/38



O. Goldshmidt (Haifa U): Operating Systems

Metadata
“data about data”

data location on disk
creation date/time
last modification date/time
last access date/time
ownership information
access control information

the above info is often held in a specialized data
structure (UNIX: inode) which is a part of dirent
the file name, the parent directory, etc. are included in
the directory entry directly

– p.28/38



O. Goldshmidt (Haifa U): Operating Systems

Data Layout
designed with two criteria in mind

availability
performance

availability in presence of failures
minimal: power failure should not result in data loss
stronger: how much time is needed to “restart” a
filesystem
metadata are stored differently from data, for
availability

performance — through clever space allocation and
caching

– p.29/38



O. Goldshmidt (Haifa U): Operating Systems

Space Allocation I
contiguous allocation

each file occupies a contiguous set of blocks on disk
linear ordering → no head movement for seeks when
access is sequential → good performance
algorithms similar to memory allocation (same
problem)
external fragmentation is a problem
how much space will be needed for a file?

can relocate files dynamically into a larger hole
internal fragmentation

modification: allocation in extents

– p.30/38



O. Goldshmidt (Haifa U): Operating Systems

Space Allocation II
linked allocation

each file is a linked list of blocks
a bit of overhead — the address of the next block
reduce overhead by clustering blocks, at the cost
of internal fragmentation

directory entry has a pointer to the first block —
initially nil (empty file)
free space management finds new blocks to add
efficient only for sequential access (random access
to a linked list is lousy)
pointers can be damaged by bugs

doubly-linked lists may help, but overhead is larger

– p.31/38



O. Goldshmidt (Haifa U): Operating Systems

Linked Allocation

– p.32/38



O. Goldshmidt (Haifa U): Operating Systems

Space Allocation III
FAT: File Allocation Table

a variant of linked allocation (DOS, OS/2)
a table at the beginning of a partition
table indexed by block number, the value is the next
block in the file
unused blocks have 0 value
a lot of disk seeks, unless the table is cached
better random access time

– p.33/38



O. Goldshmidt (Haifa U): Operating Systems

Space Allocation IV
indexed allocation

like linked allocation, but bring all pointers together
into the index block
each file has an index block — an array of disk block
addresses
the i-th element contains the address of the i-th
block
similar to paging
random access without external fragmentation
overhead is larger than for linked allocation

consider a small file — how much space is needed
for the block pointers?

the table may be multi-level

– p.34/38



O. Goldshmidt (Haifa U): Operating Systems

Inodes I
combined single level and multi-level indexing

inode structure
contains some metadata
contains n (e.g., 12) direct block pointers
pointers to single, double, and triple indirect blocks
small files (up to 48 K for 4 K blocks) can be
accessed directly, no need for a separate index block
larger files will use the index tables
can be cached in memory
data blocks scattered over the disk

loss of a directory entry can be disastrous — cache
inodes for reads, but write inode to disk before the
newly allocated data blocks

– p.35/38



O. Goldshmidt (Haifa U): Operating Systems

Inodes II

– p.36/38



O. Goldshmidt (Haifa U): Operating Systems

Performance Considerations
space vs. speed

speed favors allocation in large chunks
space favors allocation in small chunks
know thy workload!
new types of data (e.g., video) shift the balance
type of access (sequential or random) may be
declared when the file is created

use linked allocation for sequential access
use contiguous allocation for direct (or sequential)
access
· maximal size must be declared
can convert from one type to another

combine contiguous (for small files) and indexed
allocation

– p.37/38



O. Goldshmidt (Haifa U): Operating Systems

Free Space Management
bitmap

bit per block: 1 if free, 0 if allocated
many architectures have instructions to find the first
0 or 1 in a bit sequence
must be kept in memory (and occasionally written to
disk for recovery purposes)
need 20 M for 80 G disk

linked list
normally sequential access is sufficient
FAT incorporates it as is

grouping — list free blocks in the 1st free block
counting — keep the number of consecutive free blocks
following the current one

– p.38/38


	File Concept I
	File Concept II
	File Types
	Determining File Type
	File Attributes
	Directory
	File Operations I
	File Operations II
	File Operations III
	File Operations IV
	Access Methods
	Directories And Directory Operations
	Reading Directory Contents
	Directory Structure I
	Directory Structure II
	Directory Structure III
	Directory Structure IV
	FS Hierarchy Standard I
	FS Hierarchy Standard II
	Access Control
	Access Control II
	Consistency Semantics
	Consistency Semantics II
	Mapping And Mounting
	FS Internal Organization I
	FS Internal Organization II
	Metadata
	Data Layout
	Space Allocation I
	Space Allocation II
	Linked Allocation
	Space Allocation III
	Space Allocation IV
	Inodes I
	Inodes II
	Performance Considerations
	Free Space Management

