
O. Goldshmidt (Haifa U): Operating Systems

I/O

Operating Systems

Oleg Goldshmidt
ogoldshmidt@computer.org

Lecture 8

– p.1/38



O. Goldshmidt (Haifa U): Operating Systems

What Is An (Intel) Computer?

– p.2/38



O. Goldshmidt (Haifa U): Operating Systems

Basic I/O Concepts I
controlling the variety of I/O devices is a major function
of an OS

a wide variety of hardware devices
huge differences in speed (slow compared to CPU)
different protocols, register sets, etc
user interaction

most of the OS code is related to I/O
device drivers for all the supported devices

– p.3/38



O. Goldshmidt (Haifa U): Operating Systems

Basic I/O Concepts II
basic hardware-related concepts

port — connection through which a device
communicates with the computer
bus — common set of wires and a common protocol
used by a number of devices
controller — a collection of electronics that can
operate a device, a port, or a bus

a single chip (e.g., for a serial port)
a circuit board (e.g., a SCSI controller)
host adapters and device built-in controllers

device drivers
encapsulate the oddities of specific devices
present a convenient I/O interface to OS

– p.4/38



O. Goldshmidt (Haifa U): Operating Systems

I/O Device Operation I
controllers communicate with the CPU through a set of
registers

data registers
control registers

I/O instructions: specify the transfer of a byte or a word
to an I/O port address
memory-mapped I/O: controller registers are mapped
into the address space of the CPU; CPU uses normal
reads and writes for I/O
combination (e.g., graphics adapters): I/O ports for
control, memory-mapped region to hold the screen
contents

– p.5/38



O. Goldshmidt (Haifa U): Operating Systems

I/O Device Operation II
programmed I/O and DMA

controller registers are usually accessed through
programmed I/O
data can be accessed via either programmed I/O
(typical for character devices) or DMA (typical for
block devices)

host may poll the controller’s status register to get
access to the device

controller indicates state through the busy bit in the
status register (notation: status:busy)
host sets the command-ready bit in the control
register when a command is available
reasonable for fast controllers and devices

– p.6/38



O. Goldshmidt (Haifa U): Operating Systems

Polling Example
busy-wait cycle for write

host reads the status:busy bit until clear
host sets the control:write bit
host writes a byte into the data-out register
host sets the control:command-ready bit
controller sets the status:busy bit
controller reads the control register, sees write
controller reads the data-out register, transfers the
data to the device
controller clears the control:command-ready bit
controller clears the status:error bit
controller clears the status:busy bit

– p.7/38



O. Goldshmidt (Haifa U): Operating Systems

Interrupts I
CPU checks a special wire (“interrupt request line”)
after every instruction
if there is a signal (raised by a controller)

saves state
jumps to interrupt handler, executes
restores state, continues

response to an asynchronous event
requirements

deferred during critical processing
efficient dispatch to proper handler
multiple interrupt priority levels

– p.8/38



O. Goldshmidt (Haifa U): Operating Systems

Interrupts II
maskable and nonmaskable interrupts

nonmaskable — unrecoverable errors
maskable — used by controllers to request service

interrupt vector and chaining
boot time probing and configuration
generic mechanism

exceptions, VM paging, system calls

– p.9/38



O. Goldshmidt (Haifa U): Operating Systems

Interrupt Cycle

– p.10/38



O. Goldshmidt (Haifa U): Operating Systems

DMA: Direct Memory Access
for large data transfers it is wasteful to use the main
CPU to watch status bits and feed individual bytes to
the controller (PIO)
solution: offload some work to a special purpose
processor — DMA controller

host initiates data transfer, provides the DMA
controller with an address to transfer the data
from/to, transfer size
DMA controller reads or writes the right amount of
data accessing the main memory directly
raises an interrupt when done

– p.11/38



O. Goldshmidt (Haifa U): Operating Systems

DMA Example
reading from disk

device driver initiates transfer of C bytes of data from
disk to a buffer at address X
DMA controller is programmed accordingly, does
handshaking with the disk controller

disk controller raises a signal on DMA-request
wire when a word is available for transfer
DMA controller seizes the memory bus and raises
a signal on the DMA-acknowledge wire
disk controller transfers the data and clears
DMA-request

The hardware knows to increment the address X and
decrement count C until done
when done the DMA controller interrupts the CPU

– p.12/38



O. Goldshmidt (Haifa U): Operating Systems

DMA Details

when the DMA controller seizes the memory bus the
CPU is prevented from accessing the main memory
(but it can still access the caches) — “cycle stealing”

– p.13/38



O. Goldshmidt (Haifa U): Operating Systems

Principles of I/O Software I
device independence

we would like to have as much software as possible
— at least the user applications — to be
device-independent
device classes

character
block
network
IDE
SCSI
USB
etc.

error handling as close as possible to the source of
errors (retries, resends, etc.)

– p.14/38



O. Goldshmidt (Haifa U): Operating Systems

Principles of I/O Software II
character and block devices

character: get/put + buffers + libraries
block: read/write (and seek for random access),
memory mapping.

sequential and random access
synchronous and asynchronous

synchronous — easy to understand and use
asynchronous — more efficient

blocking and non-blocking I/O
non-blocking — does what it can and returns
asynchronous — will do everything, but later

sharable and dedicated devices: is simultaneous
access by more than one process or thread possible?

– p.15/38



O. Goldshmidt (Haifa U): Operating Systems

Structure of I/O Software
4 basic layers

interrupt handlers
device drivers
device-independent OS software (file systems, print
spool handlers, communication protocol stacks etc.)
user applications

– p.16/38



O. Goldshmidt (Haifa U): Operating Systems

Interrupt Handlers
almost all systems have them
mark the end of an I/O operation on a controller
sometimes signal an “independent” event (key pressed,
a mouse movement)
they should be short and effective
sometimes divided into two stages

quick essential treatment to clear the interrupt
heavier, longer tasks deferred for later handling
bottom-halves and top-halves (Linux)
deferred procedure calls (Windows)

– p.17/38



O. Goldshmidt (Haifa U): Operating Systems

Device Drivers
all device dependent code should go there
a device driver handles a specific device, a device type,
or a class of related devices
device drivers issue the commands to the controllers
and check that the results are as expected
device drivers accept device independent requests from
the software layers above and translate them in actual
“command” to the device
after an I/O operation is started the results may be
available immediately or after a time in which case the
driver will have to wait
an interrupt — indicating the end-of-operation will wake
up the driver

– p.18/38



O. Goldshmidt (Haifa U): Operating Systems

Device-Independent and User Software
device-independent I/O software

service libraries — e.g., for buffer manipulation;
might have device dependent parts but are common
to all

buffer allocation, buffering
storage allocation on block devices
allocation and release of non-shared devices
error reporting

interface software
uniform driver interfacing
device naming and location
device protection

user level I/O software: standard libraries, spoolers,
utilities

– p.19/38



O. Goldshmidt (Haifa U): Operating Systems

I/O Subsystem I
scheduling

queue I/O requests per device
queues reordered for efficiency, fairness

use of buffering
cope with speed mismatch

double buffering
deal with different data transfer sizes

fragmentation and reassembly of network packets
support “copy semantics” for application I/O

copy to a kernel buffer before writing to device

– p.20/38



O. Goldshmidt (Haifa U): Operating Systems

I/O Subsystem II
caching - fast memory holding copy of data

always just a copy with fast access
key to performance

spooling - hold output for a device
if the device cannot interleave data streams
a daemon process or a kernel thread

device reservation - provides exclusive access to a
device

system calls for allocation and deallocation
watch out for deadlock

– p.21/38



O. Goldshmidt (Haifa U): Operating Systems

Kernel Data Structures
kernel keeps state info for I/O components, including
open file tables, network connections, character device
state

lsof(8) (UNIX, Linux)
netstat(8) (UNIX, Linux)
...

many, many complex data structures to track buffers,
memory allocation, “dirty” blocks
some use object-oriented methods and message
passing to implement I/O

may add overhead compared to procedural
techniques using shared data structures
may simplify design, add robustness, flexibility

– p.22/38



O. Goldshmidt (Haifa U): Operating Systems

I/O Example: Reading A File
filesystem maps the file name to disk blocks

DOS: file access table
UNIX: inode structure

mapping a file name to a disk controller
DOS: part of the file name identifies the specific
hardware device (“C:\dir\file”)

“C:” → port address through device table
device and filesystem namespaces are separate

UNIX: “everything is a file” (“/dev/hda”)
single namespace — mount table identifies device
device major number identifies driver
device minor number → port address or
memory-mapped address of the controller (index
in the device table)

– p.23/38



O. Goldshmidt (Haifa U): Operating Systems

Life Of An I/O Transaction

– p.24/38



O. Goldshmidt (Haifa U): Operating Systems

I/O Performance I
I/O performance is critical as CPU speed increases
faster than I/O and I/O becomes critical bottleneck

programmed I/O can be more efficient than
interrupt-driven I/O in some cases

interrupt handling may be inefficient
blocking/unblocking involves context switch

Networking generates context switches
2 performance metrics

bandwidth (how much data can we move through the
system in a unit of time)
I/O operations/sec
other metrics (e.g., latency) may be relevant in some
cases (e.g., network I/O)

– p.25/38



O. Goldshmidt (Haifa U): Operating Systems

I/O Performance II
software is critical for I/O performance — it should
make best use of resources

reduce the number of context switches
reduce copying of data
reduce frequency of interrupts
offload to DMA, hardware
balance CPU, memory, bus, I/O performance

– p.26/38



O. Goldshmidt (Haifa U): Operating Systems

How Many Interrupts Can We Handle?
what if a device generates a lot of interrupts?
can happen, e.g., for network devices: a NIC flooded by
packets

high network load due to legitimate traffic
denial of service attack

if the interrupt handler eats all the cycles the device
consumer (ultimately, the application) will not run
(“livelock”)
the OS will lose interrupts (i.e., packets, data)
possible mechanism: set a timer, when it expires and
the device claims it is ready, it indicates an interrupt was
lost — invoke the handler manually

– p.27/38



O. Goldshmidt (Haifa U): Operating Systems

Interrupt Coalescing (Linux NAPI)
receive one packet, disable further receive interrupts,
raise an interrupt for the first packet
the interrupt signals the kernel that the NIC is to be
polled
the backlog will be processed, the maximal backlog size
that can be processed in one invocation is tunable
interupts are enabled again
interrupt-driven for low load, polled for high load
may reduce parallelism on SMP systems (only one
CPU polls)
interrupts (and packets) may be dropped — the network
infrastructure is relied upon to retransmit

– p.28/38



O. Goldshmidt (Haifa U): Operating Systems

Data Integrity
CPU, memory, etc. are (or should be) disposable
data are unique, irreplaceable, mission-critical
detach the disks from the computers: Fiber Channel,
iSCSI
what if your disk fails?
backup

what to back up?
how much to back up?
how often to back up?
when to back up?
where to back up?

what if your disk fails between backups?
– p.29/38



O. Goldshmidt (Haifa U): Operating Systems

RAID
Patterson, Gibson, Katz (1987, UC Berkeley): “A Case
for Redundant Arrays of Inexpensive Disks (RAID)”

combine multiple small, inexpensive disk drives into
an array of disk drives which yields performance
exceeding that of a Single Large Expensive Drive
(SLED)
the array of drives appears to the computer as a
single logical drive
improve fault tolerance by storing data redundantly
improve performance by parallelizing I/O

– p.30/38



O. Goldshmidt (Haifa U): Operating Systems

RAID 0 — Striping
write a 500 M to a 40 G disk – the disk is the bottleneck
what if you have 2 20 G disks, write 250 M to each?
or 5 8 G disks, write 100 M to each?
organize data in “stripes” in a round-robin fashion
stripes can be as small as a 512-byte sector, or can be
many M each
no redundancy, just performance improvement

one of the disks fails — you lose your data
use identical disks — the slowest is the bottleneck, the
smallest determines the size

– p.31/38



O. Goldshmidt (Haifa U): Operating Systems

RAID 1 — Mirroring
what about reliability?
make one disk automatic backup for the other in a RAID
of 2
the RAID controller writes to several disks automatically
can be more than 2 disks for multiple redundancy
obvious tradeoff — loss in capacity
again — use identical disks

– p.32/38



O. Goldshmidt (Haifa U): Operating Systems

RAID 0/1, 1/0 And Spanning
how to achieve both performance and reliability?
combine RAID 0 and RAID 1 — mirror 2 sets of striped
disks

set up a RAID 0 array
duplicate it, make one a mirror of the other

RAID 1/0 — a stripe of mirrors — is also possible
spanning

a convenience feature (not performance or reliability)
2 or more drives, possibly different, can be combined
to form a larger logical drive
some OS (e.g., WinNT) can do this on their own

– p.33/38



O. Goldshmidt (Haifa U): Operating Systems

RAID Levels 2 to 4
RAID 2: error correction for disks who cannot do it on
their own

rarely used, as most modern disks have error
correction

RAID 3: byte-level striping, with parity stored on a
separate disks

similar to RAID 4, byte-level striping requires HW
support for efficiency

RAID 4:
stores parity information on one drive
allows recovery from a single disk failure
efficient for reads, large or sequential writes
worse performance for small random writes

– p.34/38



O. Goldshmidt (Haifa U): Operating Systems

RAID 4: Parity

– p.35/38



O. Goldshmidt (Haifa U): Operating Systems

RAID 5
similar to RAID 4, but parity data is distributed among
the drives in the array
may speed up small random writes since the single
parity disk of RAID 4 is no longer a bottleneck
must skip the parity data for reads — lower performance
requires at least 3 disks, typically 5 disks.

– p.36/38



O. Goldshmidt (Haifa U): Operating Systems

RAID 5: Parity

– p.37/38



O. Goldshmidt (Haifa U): Operating Systems

Hardware vs. Software RAID
hardware RAID: the host sees a single disk instead of
the array

controller-based or external SCSI RAID
a RAID controller may span multiple SCSI channels

software RAID — dependent on the OS, not on
hardware

occupies host memory, consumes CPU
performance depends on the host CPU, load
what if the software fails to boot because of a failure
in one of the array drives?
may require a separate (not included in the array)
boot drive

– p.38/38


	What Is An (Intel)
Computer?
	Basic IO Concepts I
	Basic IO Concepts II
	IO Device Operation I
	IO Device Operation II
	Polling Example
	Interrupts I
	Interrupts II
	Interrupt Cycle
	DMA: Direct Memory Access
	DMA Example
	DMA Details
	Principles of IO Software I
	Principles of IO Software II
	Structure of IO Software
	Interrupt Handlers
	Device Drivers
	Device-Independent and User Software
	IO Subsystem I
	IO Subsystem II
	Kernel Data Structures
	IO Example: Reading A File
	Life Of An IO Transaction
	IO Performance I
	IO Performance II
	How Many Interrupts Can We Handle?
	Interrupt Coalescing (Linux NAPI)
	Data Integrity
	RAID
	RAID 0 --- Striping
	RAID 1 --- Mirroring
	RAID 0/1, 1/0 And Spanning
	RAID Levels 2 to 4
	RAID 4: Parity
	RAID 5
	RAID 5: Parity
	Hardware vs. Software RAID

