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Abstract

Let a text string T of n symbols and a pattern string P of m symbols from alphabet ¥ be
given. A swapped version T" of T is a length n string derived from T by a series of local swaps,
(i.e. t, < toy1 and t),, « t;) where each element can participate in no more than one swap.

The Pattern Matching with Swaps problem is that of finding all locations ¢ for which there
exists a swapped version T” of T' with an exact matching of P in location ¢ of T”. It has been
an open problem whether swapped matching can be done in less than O(nm) time.

In this paper we show the first algorithm that solves the pattern matching with swaps problem
in time o(nm). We present an algorithm whose time complexity is O(nm'/?logmlog o) for a
general alphabet X, where 0 = min(m, |Z|).

Key Words: Design and analysis of algorithms, combinatorial algorithms on words, pattern
matching, pattern matching with swaps, non-standard pattern matching.

1 Introduction

1.1 Background

String Matching is one of the most widely studied problems in computer science [9]. Part of
its appeal is in its direct applicability to “real world” problems. The Boyer-Moore [5] algorithm
is directly implemented in the emacs “s” and UNIX “grep” commands. The longest common
subsequence dynamic programming algorithm [6] is implemented in the UNIX “diff” command.

*A preliminary version of this paper appeared in FOCS 97.
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The largest overlap heuristic for finding the shortest common superstring [28] has been used in
DNA sequencing, and there are many other examples.

Advances in Multimedia, Digital libraries and Computational Biology have shown that a much
more generalized theoretical basis of pattern matching could be of tremendous benefit [26]. To
this end, pattern matching has to adapt itself to increasingly broader definitions of “matching”. In
computational biology one may be interested in finding a “close” mutation, in communications one
may want to adjust for transmission noise, in texts it may be desirable to allow common typing
errors. In multimedia one may want to adjust for lossy compressions, occlusions, scaling, affine
transformations or dimension loss.

All above applications motivated the Generalized Pattern Matching problem. In generalized match-
ing the input is still a text and pattern but the “matching” relation is defined differently. The output
is all locations in the text where the pattern “matches” under the new definition of match. The
different applications define the matching relation. An early generalized matching was defined by
Fischer and Paterson [8]. They allow a special “don’t care” character that serves as a wildcard.
It matches every other alphabet symbol. A text location where the pattern matches under these
conditions is an exact match.

Even under the new matching relation there is still a distinction between exact matching and
approximate matching. In the latter case, a metric is defined on the text. A text location is
considered a match if the distance between it and the pattern, under the given metric, is within
the tolerated bounds.

The fundamental question is what type of approximations are inherently hard computationally, and
what types are faster to compute. This question motivated much of the pattern matching research
in the last twenty years.

The earliest, and by now classic, metrics for approximate matching are the following. Leven-
shtein [18] identified three types of errors, mismatches, insertions, and deletions. These operations
are traditionally used to define the edit distance between two strings. Lowrance and Wagner [20, 29]
added the swap operation to the set of operations defining the distance metric. The swap, where
the order of two consecutive symbols is reversed, is one of the most typical typing errors. More
complex versions of the swap occur in nature. The phenomenon of swaps occurs in gene mutations
and duplications (e.g. the region of human chromosome 5 that is implicated in the disease called
Spinal Muscular Atrophy, a common recessive form of muscular dystrophy [19]). While the Biolog-
ical swaps occur at a gene level, and have several additional constraints and characteristics, which
make the problem much more difficult, they do serve as a convincing pointer to the theoretical
study of swaps as a natural edit operation for the approximation metric.

Using the edit distance or extended edit distance as a metric, one may then define a “match” to be
a text location where the pattern matches with no more than a given number of allowed operations.

The lower bound story is rather short. Muthukrishnan and Ramesh [24] prove that practically all
general matching relations, where the generalization is in the definition of single symbol matches,
are equivalent to the boolean convolutions, i.e. it is unlikely that they could be solved in time
faster than O(nlogm), where n is the text length and m is the pattern length. Furthermore,
Muthukrishnan and Palem [23] proved that in the boolean convolutions model there are non trivial
lower bounds on the number of necessary convolutions for several non-standard string matching
problems.



Most research success in generalized and approximate pattern matching lies with faster upper
bounds. Let n be the text length and m the pattern length. Lowrance and Wagner proposed an
O(nm) dynamic programming algorithm for the extended edit distance problem. In [11, 16, 17]
O(kn) algorithms are given for the edit distance with only k allowed edit operations. Sahinalp and

Vishkin [27] presented an O(nk8+$(%)@) algorithm for this problem. A faster algorithm
was presented by Cole and Hariharan [7] with O(nk*/m + n) running time.

Since the upper bound for the edit distance seems very tough to break, attempts were made to
consider the edit operations separately. If only mismatches are counted for the distance metric, we
get the hamming distance, which defines the string matching with mismatches problem. A great
amount of work was done on finding efficient algorithms for string matching with mismatches [1,

10, 13, 14, 15, 4].

1.2 Isolating the Swap Operation

In this paper we attempt to isolate the swap operation from the rest of the extended edit opera-
tions, in the manner that the mismatch operation had been isolated in the past, to enable careful
analysis of the inherent difficulty of the swap operation alone. We present the first algorithm whose
complexity beats the naive O(nm) bound.

The existing lower bounds in non-standard stringology do not apply in the case of the String
Matching with Swaps problem, because of its contextual nature. The only exception is a new result
reducing boolean convolutions to string matching with swaps [22]. However, there were no known
upper bounds better than the naive O(nm) algorithm. Indeed, this problem was formulated and
described as one of the open problems in non-standard string matching [21].

The way we tackle the problem is by first finding a solution to the generalized matching problem
with swaps (see [21]). In this problem one seeks all text locations where the pattern matches
allowing swaps in the text, regardless of the number of swaps. We present an algorithm whose time
complexity is O(nm!/3logmlogo) for a general alphabet X, where o = min(m, |X|).

Our method is as follows. We first reduce the general alphabet swapped matching problem to a
two letter alphabet problem with a complexity penalty of only an O(logo), multiplicative factor,
where o = min(m, |X|). We then concentrate our efforts on the swapped matching problem over
alphabet ¥ = {a,b}. We prove a structural concatenation lemma that defines the conditions under
which it is permissible to “put together” swapped matches of consecutive pattern substrings to get
a swapped match of the entire pattern. We show that the less-than matching problem ([2]) can
be used to efficiently handle the concatenation conditions. Finally, we solve our special case of
less-than matching with “don’t cares” in time O(nm'/3logm).

Now that we have an efficient solution to the swapped matching problem as a generalized matching
problem, we consider the number of swaps as a distance metric. We show how our algorithm can
be used to provide a O(n+/m polylog(m)) algorithm for the approximate string matching problem
where the distance metric is the number of swaps.

Paper organization. This paper is organized in the following way. In section 2 we give basic
definitions and prove some crucial traits of the problem. In section 3 we prove that reduction to a
two-symbol alphabet merely causes a multiplicative log o degradation in time complexity. In section



4 we concentrate on solving the swapped matching problem over alphabet ¥ = {a,b} and achieve a
O(nm1/3 logm) algorithm. Coupled with the result of section 3 this gives a solution to the swapped
matching problem over general alphabets in time O(nm'/3logmlog o)), where o = min(m,|3|).

2 Problem Definition and Preliminaries

Definition: Let T = t1,...,t, be a tert string over alphabet X. A swap permutation for T is a
permutation 7 : {1,...,n} — {1,...,n} such that

1. if () = j then 7(j) = ¢ (characters are swapped).
2. for all ¢, w(i) € {i — 1,7,7 4+ 1} (only adjacent characters are swapped).

3. if w(i) # 4 then t,(;) # t; (identical characters are not swapped).

For a given swap permutation 7 and text 1" we denote 7(T') = t;(1),tx(2),- - - tr(n)- We call 7(T) a
swapped version of T'. For pattern P = p1,...,pm and text 1T', we say that P has a swapped match
(SM) at location i if there exists a swapped version 7" of T' such that P has an exact match with
T' starting at location i, i.e. pj = t;,,; ; for j =1,...,m.

The Pattern Matching with Swaps Problem is the following:
INPUT: Text string T' = t1,...,t, and pattern string P = p1,...,pm over alphabet 3.
OUTPUT: All locations ¢ where P has a swapped match in 7'.

For ease of the exposition we consider the following restriction on the matching.

Restriction: We say that pattern P has a swapped match with internal starting symbol (SMg;y,)
at location i, if P exactly matches a swapped version «(T') starting at location 4, and 7 (i) > 7 (i.e.
symbol 7 was not swapped to “outside” the pattern).

Note that any swapped match either has a swapped match with internal starting symbol or ps...pm,
does. Therefore, it follows that:

Lemma 1 If the Swapped Pattern Matching with Internal Starting Symbol Problem can be solved
in time O(f(n,m)) then the Pattern Matching with Swaps problem can also be solved in time

O(f(n,m)).

Further Restriction: We further add the restriction that the ending symbol is not allowed to
swap externally, i.e. 7(i+m —1) <i+4+m —1. We call a match for which both the starting symbol
and the ending symbol do not swap externally a swapped match with internal endpoints (SM;, ).

In a similar manner to Lemma 1, one can show that any solution of time complexity O(f(n,m)) for
the Swapped Pattern Matching with Internal Endpoints problem, can be used to derive a solution
for the general Swapped Matching problem in time O(f(n,m)). From now on, in all our algorithms
we use any of the internal endpoints versions of the problem as convenience dictates.



Uniqueness of the swap permutation. For a string S = s1...s; we denote S[i,j] =s;...s;.
The following lemma proves the uniqueness of the swap permutation in the case of internal starting
point swapped match. The uniqueness is needed in section 3 where we show the reduction of general
alphabets to the binary alphabet case.

Lemma 2 Consider an alphabet ¥, text T and pattern P, |P| = m. If there ezists a swapped
match with internal starting symbol of P in T at location © then the swap permutation providing
this match 1is unique on the set {i,...,i+m}, i.e. there exists a unique swap permutation T :
{ty.oyi+m} —={i,...,i+m} such that try) = ps for £ =14,...,i+m—1

Proof:

Since the match is with an internal starting point we may assume w.l.o.g. that : = 1. We prove by
contradiction.

Say m is the smallest length of a pattern P for which this does not hold. It is easy to verify that
m > 1. Let m and 7 be two different swap permutations producing this match. Consider the
restriction, 7’ and 7/, of m and 7 (respectively), to {1,...,m}. Similarly, let 7’ and 7" be the
restriction of m and 7 (respectively), to {1,...,m — 1}. Note that #’ and 7/ both produce a match
for P[1,m — 1], and 7", 7" both produce a match for P[1,m — 2]. Also note that, in general, the
restrictions 7/, 7', 7", 7" are not necessarily permutations. There are three possible cases:

1. #(m+1) =7(m+1) = m+ 1: then both 7' and 7’ are permutations. Hence, by minimality
of m, ' = 7/. Thus, m# = 7, a contradiction.

2. 7(m+1) = 7(m+1) = m: then 7(m) = 7(m) = m+1 and both 7" and 7" are permutations.
Thus, by minimality of m, 7" = 7” and 7 = 7, a contradiction.

3. t(m+1)=m+1, 7(m+1) = m: then 7’ is a permutation. Moreover, since we do not swap
identical symbols and 7(m) # m, it must be that p,, # t,,. Hence 7n/(m) = m — 1. Define the
following swap permutation 7 on {1,...,m}: 7(i) = 7(3), for i < m and 7(m) = m (this is
well defined since 7(m) = m + 1). Note that 7#(T'[1,m — 1]) = 7(T[1,m — 1]) = P[1,m — 1].
Thus, both #' and 7 are swap permutation for P[1,m — 1|. However n/(m) # 7(m). Thus,
7! # 7, in contradiction to the minimality of m. O

Applying lemma 2 on P and T and then on P® and T% yields the following.

Corollary 1 For any alphabet X, text T and pattern P, if there exrists a swapped match with
internal endpoints of P inT at location i then the swap permutation providing this match is unique
on the set {i,...,1+m —1}.

3 Reducing General Alphabets to a Two Letter Alphabet

In this section we show how to reduce the swapped matching problem over unbounded alphabets to
the problem over a two letter alphabet. The reduction entails an O(log|X|) multiplicative overhead,
where |X| is the size of the alphabet. Here, we are assuming that |X| < m + 1. Otherwise, change
all text symbols that are not in the pattern to a single symbol that does not appear in the pattern.



Definition: Let ¥ be an alphabet, and let F' = {x1,..., xx} be a family of characteristic functions,
X; : ¥ — {0,1}. We say that F' is a separating family if for each ordered triplet of characters
(a,b,c) € X3, there exists a x; such that x;(a) # x;(b) = x;(c)-

A natural separating family is the set of projections {xs},ex, where
(2) = 1 ife=0
XA\ =3 0 ife #+0o

We extend the definition of the functions x; to a strings in the usual manner, i.e. for S = s1s5... sy,
x5 () = x;(s1)x;j(s2) - -- x5 (5n)-

Theorem 1 Let P be a pattern, T' a text, both over an arbitrary alphabet ¥, and let F = {x1,..., Xk}
be a separating family for 3. There 1s a SMy, for P inT at location i iff for all j there is a SMg;,
of xj(P) in x;(T) at location 1.

Proof: Wlo.g. ¢ =1.

Only if: The swap permutation providing the match for P in T yields a match for x;(P) in x;(7T)
for all j (technically, we eliminate from the permutation the swaps which swap identical symbols

in x;(T)).

If We show that if there is no SMy;, for P in T (at location 1) then there exists a j for which
there is no SMg;, . The proof is by induction on £, the length of the largest prefix P[1,4] of P, for
which there exists a SMy;, of P[1,£] in T (at location 1). For this £ we show that there exists a j
for which there is no SMg;, of x;(P[1,£+ 1]) in x;(T) at location 1. Thus, there is also no SM;,
of x;(P) in x;(T) at location 1.

Base Case { = 0: This happens in case P[1,1] does not have a SMy;, at location 1. Thus,
p1 = a # b=t], and t2 = ¢ # a. By definition of separating family there exists a j such that
x;j(a) # x;(b) = x;j(c). For this j there is no SMg;y, of x;(P[1,1]) in x;(7T") at location 1.

Inductive Step: Assume that P[1,/] is the longest prefix of P that has a SMg;, at location 1. Let =
be the permutation that provides the match for P[1,£]. The following cases need to be considered:

1. 7 does not swap t; to the right (externally). Let pyy1 = a, ty41 = b and ty40 =c.

(a) a=bor a =c: in this case P[1,{+ 1] has a SMy;, , violating the maximality of £.

(b) a # b and a # c: by assumption there exists a j such that x;(a) # x;(b) = x;(c). For
this j there is no SMyy, for x;(P[1,£+1]) in x;(T") at location 1. This is because if there
were a match, then, by the uniqueness of the swap permutations (Lemma 2) the swap
permutation, 7, providing such a match must agree with = of T'[1,£]. Thus, x;(pe+1)
must match x;(te41) or x;(te42), which it does not.

2. m swaps ty to the right. Let py = ty41 = a, ty = b and py41 = c.

(a) b=c: then P[1,£+ 1] has a SMg,, , violating the maximality of £.

(b) b # c: let j be such that x;(b) # x;(a) = x;(c). For this j there is no SM,j, for x;(P) in
x;(T) at location 1 (the reasoning is similar to that of 1.(b)). O



We now show how to construct a small separating family for an alphabet.

Definition: An (n,k)-universal set is a set S of n-digit binary vectors such that for any set of
positions L C {1,...,n}, |L| = k, the projection of S on L gives all possible 2¥ combinations of
0—1s.

In [25] it is shown how to construct (n, k)-universal set of cardinality 20(%) log n with the same time
bounds. Note that a (|X|,3)-universal set is a separating family for ¥.. This yields the following
corollary.

Corollary 2 If the Swapped Pattern Matching (with Internal Endpoints) problem can be solved over
alphabet {a,b} in time O(f(n,m)) then the Swapped Pattern Matching (with Internal Endpoints)
problem can be solved in time O(log |X|f(n,m)) over a general alphabet ¥.

Proof. This follows from Theorem 1 and the existence of an O(log|X|) size separating family. O

4 Swapped Matching over a Two Letter Alphabet

Following Corollary 2, from here on we only consider a two letter alphabet ¥ = {a, b}.

Definition: Let S = s1...s,, be a string. We say that S is alternating if Vi > 1,s,_1 # s;. For a
given pattern P we say that P[i,j] is a mazimal alternating substring of P if P[i, j] is alternating
and no other alternating substring of P strictly includes locations ¢ through j in P.

Since P is a pattern over {a,b}, it is obvious that there is a unique partition P = P*P?... Pt such
that each P’ is a maximal alternating substring of P. This partition can easily be constructed in
O(n) time.

To find the match of P in T our algorithm checks for a match of each maximal alternating substring
separately. The following lemma shows that this is sufficient.

Lemma 3 (Concatenation Property) Let P be a pattern and P = P... Pt be the partition of
P into maximal alternating substrings. For text T, P has a swapped match with internal endpoints
at location i iff for each j =1,...,t, PI has a swapped match with internal endpoints in T at the
corresponding locations (i.e. at location i+ E%;} |P4)).

Proof: Denote m; = | P7| and 1, =1+ Zi;% my.

If: Let m; be the swap permutation providing the SM;, of P7 in T at location 1;. We construct
a joint swap permutation m for P, by pasting the segments of the 7;’s on the P7’s. Formally,
n(k) = mj(k) for i; < k < i;41 and w(k) = k for all other k. Since the m; are internal endpoints
swap permutations, 7 is also an internal endpoints swap permutation for P.

Only if: Let 7 be the swap permutation providing the SM;,, of P in T" at location :. We show that
for each j, 7 provides a SM;, for P7 at location 1j. In contradiction assume that 7 does not provide
a SM,, for P/, Clearly m provides a regular swapped matching for P? in T at location 1j. Thus,
it must be that 7 either swaps ¢; with ¢; — 1 or i; + m; — 1 with i; + m;. The first case would
only happen if p;; # pi;—1 in which case P7 could be extended one symbol to the left for a longer
alternating substring in contradiction to the maximality of P’/. The second case is similar. O



It thus remains to show how to check that all maximal substrings have an SMy, . In the next
section we present the notion of streams and their construction. The streams are the fundamental
building block in the algorithm for finding the matches of alternating substrings.

4.1 Streams

Given a text 7" and a pattern P, we are interested in finding all SM;, of maximal alternating
substrings of P in T'. As a first step we ignore P, and for each location 7 in 7" find the longest
alternating string that has a SMy,, at this location. To this end we define the notion of streams.

Definition: For text T a stream S starting at location ¢ is an alternating string S with a SM,, at
location i. A stream S starting at location i is mazimal if there is no other stream S’ at location
7’ < i such that S is a proper substring of S/, and S and S’ agree on the overlapping locations, i.e.
sj = 52—i'+j’ j=1,...,]5|. Following is an example of a maximal stream starting at location 1.
The arrows show the swap permutation providing the match.

Example:
S1 =
T= a

a b a
«— — «—
b a b

ol o
ol o

a
(—
b a a b a b

We distinguish between two types of streams. In the odd-a type stream, the a’s of the stream match
the odd locations of the text, and in the even-a type streams, the a’s match the even text locations.

The above example is of an odd-a type stream. Generally, there may be more than one maximal
stream of the same type at any text location. This can be seen in the following example.

Example:
S1 = b a b a a b = 53
— — —
T = a b a b a a b a b b
5 = 5 S e o o«
Sy = a b a b b a b a b

In this example the text appears in the middle line. 57,52 and S3 are maximal streams of type
odd-a. The arrows provide the corresponding swap permutation (no arrow indicates an identity).
Note that in locations 3,4 and 5 of the text there is an overlap of the two different streams .S; and
Sy and in locations 9 and 10 there is an overlap between S; and Sj3.

Fortunately, it turns out that there can be no more than two different overlapping maximal streams
of the same type at any text location.

Lemma 4 For any location i in the text and a given stream type, there are at most two distinct
maximal streams of that type that cover location 1.

Proof: In contradiction, assume that S7, S3 and Ss3 are distinct maximal streams of the same
type all covering the same location. Let i1, 19, i3 be the starting points, and ji1, j2, j3 the ending
points of S1, So and S3, respectively. Note that since all three streams are of the same type they
correspond on overlapping locations. Thus, since they are all maximal, we may assume w.l.o.g.
that 47 < 42 < i3 and j; < j2 < j3 (otherwise one string would subsume the other). Let 71, 7o, 73
be the swap permutations for S1, .52, 53, respectively. Consider the following two cases:



1. Both 7 and 79 swap i3 with i3 — 1. Then we can combine w1 up to i3 with 79 from 73 + 1
and on, and obtain a swap permutation for a stream from i; to jo, violating the maximality

of S, Ss.

2. Either 7y or w3 do not swap i3 to the left. W.l.o.g. assume it is m9. Note that since the match
of S3 is with an internal starting symbol, by definition w3 does not swap i3 to the left. Thus,
we may combine 7y up to 73 — 1 with w3 from i3 and on, and obtain a swap permutation for
a stream from is to j3, violating the maximality of Sa, S3. O

Thus, we have the following algorithm for finding all streams.

Algorithm for Finding All Streams

Run through the text from left to right. Keep a list of “active” streams. At each location location i.

1. Extend each of the active streams if possible.

2. Start all new possible streams.

End Algorithm

Note that Lemma 2 guarantees that at each location there is only one possible extension of a given
stream. Thus, by Lemma 4 the time complexity of the algorithm is O(n).

Once we have the maximal streams of T, we can easily determine for each location 7 in T the
longest stream of a given type that has a SMy;, starting at this location. Thus, for each ¢ we define
odd-a(T i)=(maximal length of odd-a stream starting at location ) and

even-a(T,i)=(maximal length of even-a stream starting at location 7).

For example, in the above example odd-a(T,2) = 4, odd-a(T,3) = 10 and odd-a(T,9) = 2. Given
the set of all maximal streams we can determine odd-a(T,7) and even-a(T,1) for all i in O(n) steps.
Next we produce two new strings

OddEven(T)=o0dd-a(T,1),even-a(T',2),...,0dd-a(T,2i-1), even-a(T,21),...
EvenOdd(T)=even-a(T,1),0dd-a(T,2),...,even-a(T",2i-1), odd-a(T2i),...

OddEven(T) and EvenOdd(T) are the basis for the algorithm for finding the partitioned SMg;p,

match, as described in the next section.

Note that odd-a(T,7) is only an upper bound on the length of a odd-a stream of that matches at
location ¢. In fact, for any k£ < odd-a(T,%) there is a SMy;, for an odd-a stream of length k at
location i. Similarly for even-a type streams.

4.2 Determining SM,;, for all Maximal Alternating Substrings of a Pattern

Consider a text T and pattern P. Let P = P!... P! be the partition of P into maximal alternating
substrings. We now show how to find all locations ¢ for which, if P is placed over 1" at location 1,
then each P? has a SMy;, starting at its corresponding location. (Formally, all locations , for which
for each j, P7 has a SM;, starting at location i + Eé;i | P%|.) We call such a “match” a partitioned



SMg;, match. Note that this type of match is “almost” sufficient for applying the concatenation of
Lemma 3. There we need an SMy,, for all P?’s rather than a SMy;, . In the next section we show
how to make this final step.

Let OddEven(T) and EvenOdd(T) be as defined in the previous section. Set m; = |P?|. For
the pattern P and substring P’ set o = my if P7 starts with an a and o = ¢ otherwise.
Set B; = m; if P7 starts with a b and Bj = ¢ otherwise. For the pattern P define Psteta —
a1¢™ Loagg™2 L. qupm Tl poterth — g gmimlgygma—l . g gmi—l where ¢f is the string of £
¢’s, and ¢ is a “don’t care” symbol.

Lemma 5 Let P be a pattern and T a text. Consider location 1. There is a partitioned SMy;,
match for P in T at location 1, iff for allk =1,...,m:

1. (pstertay, = ¢ or (P59, < (OddEven(T))izr—1, and

2. (Pstrtb) = ¢ or (PSttY), < (EvenOdd(T))ish—1,

Proof: The pattern locations which are ¢ always have a match. Consider the partition P3| and
suppose that P7 starts with an a. Let 1 =1+ E%;i my. If i; is odd then a SMy;, match for pi
at location ¢; corresponds to odd-a stream starting at location 7;. Thus, there is a SMg;, for P7 at
the location i; iff (P***"); = m; < odd-a(T,1;) = (OddEven(T));,. Similarly, if i; is even then
there is a match iff (P**"*); < even-a(T,i;) = (OddEven(T));,. If PJ starts with a b then the
same hold with regards to FvenOdd(T). O

Thus, we have reduced the problem to that of two less-than matching problem. The less-than
matching problem is defined as follows [2]:

INPUT: Text T =t1,...,t,, pattern P =p1,...,pm, ti,pi € NU{o}.

OUTPUT: All locations ¢ for which py = ¢ or py, < t;4—1, forall k=1,...,m.

We have obtained the following algorithm for finding all location for which there is a partitioned
SMg;, match of P in T.

Begin Algorithm

1. Compute all the less-than matches of:

a Start-a¢ an ven
pstart d OddE T
(b) Pstart-b and Even0dd(T)

2. Foreachi=1,...,n—m+1do

If at location i both Psta™4 is less-than OddEven(T) and P***"*? |ess-than EvenOdd(T),
then output 2.

End algorithm

In section 5 we show how to take advantage of our special case, which has a large number of ¢’s in
the pattern, in order to compute the necessary less-than matchings in O(nml/ 3logm) steps.
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4.3 From Partitioned SM,;, Match to a Full SM,,, Match

In the previous section we showed how to find all locations for which there is a partitioned SM;y,
of P in T. This is almost what we need for applying Lemma 3, but not quite. Lemma 3 requires
that each partition have a SMy, , rather than a SMy;,, . We now show how to isolate the locations
for which the partitioned SMg;, match is actually a SM;;,, match for each partition. The following
immediate lemma provides the basic tool:

Lemma 6 Let T' be a text and S a string, with |S| = m, and suppose that S ends with an a. If
there is a SMg;y, for S inT at location i then

(number of a’s in S) > (number of a’s in T[i,i +m —1])

and equality holds iff the match is a SM;, . The same hold also if S ends with b, with the weak
inequality reversed.

Thus, in order to check that the partitioned SMy;, match is actually a SM;, match we only have
to check that the number of a’s (b’s) in the corresponding substrings are identical. Note that since
the inequality is always in one direction, an excess in one substring cannot be canceled by another.
Thus, it is sufficient to count the total number of a’s (b’s) in the corresponding sections. This we
can easily do with two convolutions, as follows.

Given P = P!... P!, we define a-end(P) to be the string obtained from P by replacing all symbols
of a-ending P?’s with 1’s and of b-ending symbols with 0’s. Let b-end(P) be the bitwise complement
of a-end(P). Now, we perform the convolution of 7' (with a’s replaced by 1’s and b’s by 0’s) with
a-end(P) and b-end(P). Let A(a) be the total number of a’s in the a-ending P?’s, and B(a) be the
total number of A’s in the b-ending P7’s. At any location i, the convolution of T and a-end(P) is
exactly A(a) iff for each a-ending P’ the number of a’s in P’ is equal to that in the corresponding
locations of 7. Similarly, the convolution of 7" and b-end(P) is exactly B(a) iff for each b-ending
P7 the number of a’s in P7 is equal to that in the corresponding locations of 7. Combining Lemma,
6 with Lemma 3, we obtain:

Corollary 3 For text T' pattern P and location i, P has a SM;, in T at location i iff: (i) P has
a partitioned SMy;, in T' at location i, and (ii) the convolution of a-end(P) and T at location i is

A(a), and (iii) the convolution of b-end(P) and T at location i is B(a).

4.4 Putting It All Together

We summarize the steps of the algorithm:

Input: Text T, pattern P.
Output: All locations ¢ for which P has a SMy, in T'.

Algorithm

1. Partition P into maximal alternating substrings . Time: O(n).

2. Find streams and create EvenOdd(T") and OddEven(T) (Section 4.1). Time: O(n).
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3. Using EvenOdd(T) and OddEven(T) find all locations i for which P has a partitioned SMg;,
match in T (Section 4.2). Time: O(nm'/3logm).

4. Using convolutions isolate from locations found in step 3, the locations for which there is a SM;,
(Section 4.3). Time: O(nlogm).

End algorithm.

Thus we have obtained:

Theorem 2 The swapped match problem can be solved in O(nml/3 logm) steps over a constant
size alphabet and O(nm/3logmlog o)) steps over a general alphabet X, where o = min(m,|%|).

5 Less-Than Matching

The less-than matching with don’t cares problem is defined as follows: Input: Text string T =
t0,--s-tn—1 and pattern string P = pq,...,pm—1 where t;,p; € N U {¢}. Output: All locations 7 in
T where for all k = 1,...,m either t;; 51 = ¢, pr = ¢, or t;xx—1 > pi. In words, every matched
element of the pattern is not greater than the corresponding text element, unless either of them is
a don’t care element.

Assume that there are g elements in the pattern that are not ¢ (i.e. m — g elements are ¢). A
minor adjustment to the algorithm of [2] allows us to solve the less-than matching with don’t cares
problem in time O(,/g nlogm).

Notation: For 0 € N,z € N U {¢} let
(2) = 1 fe=0
Xel®I=1 0 ife#o

(z) = 1 ifze<o
X<o\®I =19 0 ife>corz=¢

If X =x,...,2, then x,(X) = xo(21),- -, Xo(Tn)- Similarly define x<,(X).

We would like to know for each non-¢ element of the pattern, where it is lined up with something
less than it. We can achieve this by computing, for each o in P, x<o(T) ® xo(P®) (where ® is
polynomial multiplication), and considering all non-zero locations.

Let ¥ = {01,09,...,04} be the set of all different numbers appearing in P. Let M; = x<,(T) ®
Xo;(PE) (where ® is polynomial multiplication). Then M; is non-zero at position t iff there is
a o0; in the pattern matched with something smaller than o; when the pattern is lined up at ¢.
These cases are exactly when we get a mismatch. If we let M be the sum of all the M,;’s we get a
non-zero if there was a mismatch caused by any o € ¥. By using FFT we can calculate each of the
polynomial multiplications in time O(nlogm) (assuming a computer word of O(logm) bits), for a
total of O(g nlogm).
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Following [1, 14], Amir and Farach [2] use the multiplication technique on a limited alphabet of size
y/m and then “fine tune” by another method. We point out that in reality the limited alphabet is
of size \/g and the “fine tuning” algorithm works on blocks of size O(,/g).

Algorithm

Input T = tg,...,tn—1; P =1pg,...,Pm—1. Assume that the text alphabet is the same as the pattern
alphabet (this can be easily achieved by replacing every text number by the largest pattern number
that does not exceed it).

1. For every a € ¥ that appears more than ,/g times in P (a frequent element), use FFT to
disqualify all text locations where there is a text element that is smaller than its corresponding
pattern element.

2. Let pjg,...,pj, be the non-frequent, non-¢ elements of P. Consider L = (pj,,Jo), (Pj1,J1),
cvs (Pjg > Jg1)- [Every non-¢ pattern element is considered a pair (s,d) where s is a number
and d is the location of the number in the array P.]

3. Sort L lexicographically. [There are no more than g elements in L.] Call the sorted array L’.

4. Divide L' into go < /g blocks, each containing no more than 2,/g elements, in a manner that
no number appears in more than one block. [We are assured that such a division is possible
because all remaining numbers are non-frequent.]

5. For each block B;, i =0,...,92 < /g let b; be the smallest (leftmost) element in the block;
call b; the representative of block B;.

6. Let 7" and P’ be T and P such that every ¢; and p; is replaced by the representative of the
block it is in. [Implemented by a sequential scan of L'.]

7. Find all less-than matches of P’ in T".

[P! and T" can be considered “flattened out” versions of P an T. When we seek all less-than
matches of P’ in T’ we only detect the “large” mismatches, i.e., those between elements that
are so different that they are in different blocks. However, mismatches between elements of
the same block are undetected. At this stage we must “fine tune” our approximate solution.
We scan T and for every element t; of T' we only compare it to the O(,/g)) elements of P
that are in ¢;’s block.]

8. Fort=0ton—1ift; # ¢ do
Let By, be the block of L’ that ¢; is in,
Let PB4 « {(s,d)|(s,d) € B:,}
For every element (s,d) in P5
(at most 2,/g elements)
ift; < sthen Mt —d] + M[i—d]+1
end
end

[The vector M is now correct since the first part of the algorithm included all the errors
between blocks and the last part found all the errors within a block.]

end Algorithm
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Time: O(glogg) for sorting
O(n,/glogm) for less-than matching of the
representatives
O(n,/g) for correcting mismatches within
blocks

Total: O(n,/glogm)

5.1 The Case of Lengths

In our case the numbers represent lengths of streams, therefore we are guaranteed that following
each number 7 in the pattern there are at least 7 don’t cares.

In order to solve the less-than matching problem under these circumstances we first eliminate all
the cases where a match of P in T causes one of the numbers 1,2,...,m!/3 in the pattern to

3

mismatch with the corresponding text position. This can be done by m!/3 convolutions for a total

time of O(nm'/3logm).

We now have to eliminate the cases where there are mismatches in the remaining numbers. Ex-
change all numbers in the text and pattern that are not greater than m!/3 by ¢’s. The smallest
remaining number is m/3 4+ 1, and it is followed by m/3 + 1 ¢’s. Thus there are at most m2/3

non-¢ elements in the pattern (g = m2/3).

By the previous section we can find all locations where the new pattern is less than the new text,

in time O(nVm2/3logm) = O(nm'/3logm).

The intersection of all these locations and the ones where there is no mismatch of the numbers
1,...,mt/3 gives the required result.

6 The Approximation Problem

We have seen an o(nm) algorithm for solving the swapped matching problem as a generalized
matching problem. This algorithm can easily be adapted for solving the approximation problem
with the number of swaps as the distance metric. Until now, the definition we gave for swapped
matching was a generalized matching definition. However, we can view a swap permutation oper-
ationally, as resulting from a sequence of swaps of adjacent pairs, with no symbol participating in
more than one swap. We are now interested in counting the number of swap operations that a text
location needs to undergo in order to equal the pattern. Let us, for the moment, restrict ourselves
to the swapped pattern matching with internal endpoints problem. It is clear that the number of
such operations is exactly half the numbers of mismatches between the text and its swapped version
(recall that we never swap a pair of equal symbols). For the general case, where the allowed swaps
are not only internal, we need to count half of the mismatches resulting from internal swaps and
then take care of the start and end point, in case there occurred external swaps there. Formally,

Definition: Let T' = t1,...,t, be a text string over alphabet ¥.. Let 7 be a swap permutation for 7.
The number of swaps in 7(T')[i, j] (the substring . (i), .., tr(;)) is I_%d(T[i,j], ~(T)[i,7])] + L+ R— B,
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where d(T'[4,j],7(T)[4,]) is the number of mismatches between T'[¢, 7] and = (T)[3, j],

L:{L 1f7r(z):z—1;, R:{l, lfﬂ'(]):j-{-l;, andB:{l’ 1fR=L=1;'

0, otherwise. 0, otherwise. 0, otherwise.

The Pattern Matching with Swaps Metric Problem is the following:

INPUT: Text string T' = t1,...,t, and pattern string P = p1,...,pm over alphabet X.

OUTPUT: For every location 7 where P has a swapped match in T', where T” is the swapped version
of T, write the number of swaps in 7"[¢,7 + m — 1].

Theorem 3 The Swaps Metric problem can be solved in O(n/mlog®m) steps.

Proof: Pattern matching with mismatches as a metric is well-known to run in O(n+/mlog®m)
time [1, 14]. Now, consider a text location where the pattern matches with k& mismatches and
the pattern also has a swapped matching. If the swapped match has internal endpoints then the
number of swaps is exactly % If exactly one of the endpoints swaps externally then the number
of swaps is k%l If both swap externally there are inz swaps. It is straightforward to adapt the
solution to the swapped match problem to announce for each swapped match whether it matches
with an external swap on either endpoint. Therefore we can implement pattern matching with

swaps as a metric in O(ny/mlog®m) time. O
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