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ABSTRACT
Motivation: One of the major features of genomic DNA
sequences, distinguishing them from texts in most spoken
or artificial languages, is their high repetitiveness. Variation
in the repetitiveness of genomic texts reflects the presence
and density of different biologically important messages.
Thus, deviation from an expected number of repeats
in both directions indicates a possible presence of a
biological signal. Linguistic complexity corresponds to
repetitiveness of a genomic text, and potential regulatory
sites may be discovered through construction of typical
patterns of complexity distribution.
Results: We developed software for fast calculation of
linguistic sequence complexity of DNA sequences. Our
program utilizes suffix trees to compute the number
of subwords present in genomic sequences, thereby
allowing calculation of linguistic complexity in time linear
in genome size. The measure of linguistic complexity
was applied to the complete genome of Haemophilus
influenzae. Maps of complexity along the entire genome
were obtained using sliding windows of 40, 100, and
2000 nucleotides. This approach provided an efficient way
to detect simple sequence repeats in this genome. In
addition, local profiles of complexity distribution around
the starts of translation were constructed for 21 complete
prokaryotic genomes. We hypothesize that complexity
profiles correspond to evolutionary relationships between
organisms. We found principal differences in profiles of
the GC-rich and other (non-GC-rich) genomes. We also
found characteristic differences in profiles of AT genomes,
which probably reflect individual species variations in
translational regulation.
Availability: The program is available upon request from
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INTRODUCTION
Prokaryotic and eukaryotic genomes contain multiple
repetitive signals for transcription and replication regula-
tion and other cellular functions. Genomic regions with
high level of repetitiveness are called low-complexity
zones (LCZ). Eukaryotic genomes are more repetitive
than prokaryotic genomes; nevertheless, the latter also
exhibit a number of repeats (Debrauwere et al., 1997; van
Belkum et al., 1998). Moreover, compactness of prokary-
otic genomes suggests full usage of low-complexity
zones for varying biological purposes. The simplest, but
frequent case of a low-complexity zone in prokaryotes, is
a region of simple sequence repeats (SSRs), which usually
consists of homopolymeric tracts, especially poly(A) and
poly(T), of di-, tri-, and tetranucleotide repeats, and of
more rare multimeric repeats of longer length. SSRs
are encountered in many prokaryotes enabling genetic:
consequently phenotypic flexibility. SSRs function at
various levels of gene expression regulation (van Belkum
et al., 1998). The complete genome of H. influenzae
(Fleischmann et al., 1995) has been widely studied from
this point of view (Field and Wills, 1998; Hood et al.,
1996; van Belkum et al., 1998).

There are numerous available computer programs
useful for searching repeats in biological sequences.
For example, REPEATS (Benson, 1999; Benson and
Waterman, 1994); two programs from the EMBOSS
package (http://www.uk.embnet.org/Software/EMBOSS/)
named etandem and equicktandem; Approximate Tandem
Repeat Program (Landau et al., 2001) at Haifa University
(http://csweb.haifa.ac.il/library/appro try1.html). These
programs work by scanning a DNA sequence, looking
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for tandemly repeated patterns. We propose an effective
way to search complete genomic sequences for zones
of lower complexity. As an example, we demonstrate
an effectiveness of the linguistic complexity method,
applying it to the complete genome of H. influenzae
(Fleischmann et al., 1995).

Genomic sequences can be successfully analyzed by
linguistic measures, (e.g. Brendel et al., 1986; Gelfand,
1993; Konopka, 1994; Pesole, 1994; Pesole et al., 1996;
Pietrokovski, 1994; Searls, 1997). One fundamental
characteristic of linear symbolic sequences (texts, strings)
is sequence complexity, which has been defined by many
methods, based on either algorithmic complexity or
Shannon entropy. These methods were adopted and used
in genomic analysis (Konopka, 1990, 1994; Konopka and
Chatterjee, 1988; Lauc et al., 1992; Wan and Wootton,
2000; Wootton and Federhen, 1996).

This work utilizes linguistic complexity (LC), a mea-
sure different from the above-mentioned methods, to an-
alyze genomic sequences. A genetic sequence is gener-
ally characterized by very high variability in repetitive-
ness. This feature leads to a straightforward definition of
the sequence complexity as a richness of its vocabulary—
how many different substrings of length k (k-mers) appear
in the sequence. The notion of linguistic complexity was
introduced in 1990 (Trifonov, 1990), and we have previ-
ously used it in the studies of nucleosomal pattern and
promoters (Bolshoy et al., 1997; Gabrielian and Bolshoy,
1999). This measure was also described in Pesole et al.
(1996) and implemented in the EMBOSS package (http://
www.uk.embnet.org/Software/EMBOSS/). Here we used
a modified version, wherein linguistic complexity (LC) is
defined as the ratio of the number of substrings of any
length present in the string to the maximum possible num-
ber of substrings. Our algorithm uses implicit suffix trees
constructed by Ukkonen’s algorithm (Ukkonen, 1995) to
count the number of substrings in the string.

As we demonstrate below, our software provides an
effective way to reveal variations in linguistic complexity
of genomic texts. One useful application is in searching
for lower-complexity zones. These regions are dispersed
along the genome and may be revealed as exclusions from
the typical picture of LC variation, as we demonstrate
in our study of the complete genome of H. influenzae.
Another application of the tool is to discover potential
regulatory sites through the construction of typical pat-
terns of LC distribution in certain regions. To demonstrate
this, we examined the patterns of sequence complexity
around the flanks of coding sequences. When the re-
gions around the flanks of coding sequences in many
available complete prokaryotic genomes are examined,
well-defined profiles of LC are observed, which divide
all prokaryotic genomes into a small number of distinct
groups. Such gene-flanking LC distribution can serve

as a genomic identifier of the coding regions or as a
genomic profile. Presented prokaryotic genomic profiles
carry the most general complexity properties typical for
all studied AT-biased and AT-balanced prokaryotes, as
well as reflection distinguishing individual properties of
species.

METHODS AND ALGORITHMS
Linguistic complexity
Linguistic complexity (LC) is defined as the ratio of the
number of subwords (substrings) present in the string of
interest to the maximum number of subwords for a string
of the same length over the same alphabet. (We use the
terms words and subwords as synonyms of strings and
substrings, respectively.) Let us count, for example, the
number of different subwords for the DNA sequence S1
= ACGGGAAGCTGATTCCA. The length of S1 is equal
to 17. It contains 15 of 16 possible different dinucleotides;
15 of 15 possible different trinucleotides in a string of
length 17, maximum possible number of tetranucleotides
(14), and so on. In summary, S1 contains 4 + 15 +
15 + 14 + · · · + 1 = 119 different subwords. LC(S1)
= 119/120 = 0.992. Another sequence of length 17, S2 =
ACACACACACACACACA, contains only two different
mononucleotides, two different dinucleotides AC and CA,
two different trinucleotides ACA and CAC, and so on. S2
contains 2+2+2+2+· · ·+1 = 33 different subwords, and
LC(S2) = 33/120 = 0.275. LC(A17) = 17/120 = 0.142
is a minimal LC-value for the strings of length 17.

Our program utilizes suffix trees to compute the number
of substrings present in strings of DNA. Linguistic com-
plexity is then calculated for each window, with window
size (m) determined by the user (sliding window approach
with a step size of 1). The results are outputted in the form
that allows for easy plotting and analysis.

Because the sequence analyzed was a DNA sequence,
the alphabet � is defined as /A, T, C, G/, all other
characters that occur in genomic sequence (s, w, n, etc
and present badly sequenced nucleotides) are converted
into the most likely equivalent out of �. In Table 1 a
simple way of conversion, which we used in our computer
program, is shown.

The maximum vocabulary over word sizes 1 to m can be
calculated according to the following formula (where l is
the alphabet size and k is the word length):

m∑

k=1

min( lk, m − k + 1)

Counting the number of subwords with suffix trees
To calculate the number of subwords in a string, we utilize
suffix trees (Gusfield, 1997). The key feature of a suffix
tree is that the suffix of S, starting at position i (S[i . . . m]),
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Table 1.

Ambiguous code S W R Y M K B D H V N

Nucleotide C, G A, T A, G C, T A, C G, T C, G, T A, G, T A, C, T A, C, G A, C, G, T

Probability 1 1
3

2
3 1 1 1 1

3
2
3 1 1

3
2
3 1 1 1

Conversion C A T G C A G T C A T C C C

can be obtained by concatenation of the labels on the path
from the root to leaf i . This property makes suffix trees
a natural choice for the task of calculating the number of
subwords in a string. The implicit suffix tree for S is a
rooted directed tree, which has at most m leaves and at
most m internal vertices, with each internal node having
at least two children. Each edge of the tree is labeled with
a substring of S and no two edges out of a node can have
labels starting with the same character.

This work utilizes compressed suffix trees, where each
edge is labeled with a pair of indices instead of explicitly
written characters. The indices specify beginning and end
positions of the substring within S. As a copy of S is
always available, any character in S can be located in
constant time. Because the number of edges in the suffix
tree for a string of length m is at most 2m−1, compression
of the edge labels allows the reduction of the suffix tree to
only O(m) space.

Since by definition, suffix tree T for string S contains
all possible suffixes of S, every non-terminal character on
the edge labels of T represents a prefix to some suffix in
S. By suffix tree construction, repeated prefixes are only
represented once in T and the number of subwords in S is
equal to the number of prefixes in suffixes of S. Thus the
number of characters on the edge labels of T is equal to the
number of unique subwords in S. Therefore, the number of
non-terminal characters represented on the edges of suffix
tree T for string S is equal to the number of different
subwords contained in S.

Several linear-time algorithms for suffix tree construc-
tion exist (Farach, 1997; McCreight, 1976; Ukkonen,
1995; Weiner, 1973). Our software utilized Ukkonen’s
algorithm (Ukkonen, 1995), which is based on construct-
ing a sequence of implicit suffix trees, the last of which,
Ť for S, is converted to a true suffix tree by adding the
termination character. To obtain the number of characters
on the edges of Ť, no separate counting procedure is
necessary, as all explicit additions of characters to the tree
can be counted in the process of suffix tree construction.
This is possible because once a character is added to
an edge label; it will never be removed within the same
window. Therefore, this algorithm allows are to calculate

the number of subwords in string S in the time needed for
the construction of the suffix tree for that string, which is
linear time.

Performance
For each subsequence of the genome (window), the
number of subwords can be calculated in linear time using
the suffix tree construction. Vocabulary size for a given
alphabet and maximum word length (window size) is
only calculated once for a given genome, therefore this
calculation doesn’t have much impact on the performance
of the program. Hence, each window of length m is
processed in O(m) time. We then utilize the algorithm for
efficient linear time sliding of the window described in
(Larsson, 1996, 1999), which eliminates the necessity to
build a separate suffix tree for each window. Larsson also
provided the code we use in our software. Therefore, we
can calculate linguistic complexity for a genome of size
n in time O(n). Using an AMD 1200 MHz machine the
running time was about 1 s per Mbase of DNA sequence.
This running time does not take into account creating
an output file for the results (complexity per window).
Creating the file takes about 9 s per Mb of information
(the size of the file is about 13 Mb per Mbase of DNA
sequence). The running time, when testing the program
on an Intel Pentium 550 MHz, was about 2 s per Mb
of information (again, without time of creating an output
file).

RESULTS AND DISCUSSION
1. Repetitive sequences in H. influenzae
An effective way to find practically all simple sequence
repeats in a long genomic sequence is to apply a measure
of linguistic complexity to it for detecting all zones of
low complexity. To illustrate this approach, we examined
the complete genome of H. influenzae (Fleischmann et
al., 1995) using our software. We chose the H. influenzae
genome to test our software because this genome has
been well studied with respect to repeated sequences.
In Figure 1, we present plots of complexity distribution
along the genome using window sizes of 40, 100, and
2000 bases (further referred to as LC40, LC100, and
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Fig. 1. Complexity distribution along the complete genome of
Haemophilus influenzae (Fleischmann et al., 1995). Red line
corresponds to the window size of 40 nucleotides, green line
corresponds to the window size of 100 bases, and blue line
corresponds to the window size of 2000 bases. The size of
H. influenzae is 1 830 138 bases. Variation of linguistic complexity
measured with window of 40 bases (LC40) rests in the range of 0.2
to 0.999; range of LC100 is from 0.1 to 0.99; range of LC2000 is
from 0.91 to 1.0.

LC2000). By varying the window size, we can obtain a
more complete picture of the repeated region. A small-
size sliding window reveals indication of relatively short
repeats, while a big window may include long dispersed
and degenerate repeats. The local minima indicate various
repeats.

The minima regions revealed by LC2000, a relatively
large window size, should correspond to long and adja-
cent repeats. Let us investigate the region with the lowest
value of LC2000 (Figure 2). This global minimum is sit-
uated around the location 250,500. Three putative genes
overlay this region: HI0221 (inosine-5’-monophosphate
dehydrogenase—guaB), HI0221.1 (brute force ORF),
and HI0222 (GMP synthase—guaA). HI0221.1 con-
sists of two sequence modules identical to its nearest
neighbors, which explains the low complexity of the
region. Alignment of the appropriate regions of these
three genes revealed that the first 50 amino acids of the
hypothetical protein HI0221.1 (labeled Y in Figure 2) are
100% identical to the first 50 amino acids of the following
protein HI0222 (guaA), and the rest 114 amino acids of
HI0221.1 (notated X) are 100% identical to the tail of
the preceding gene HI0221 (guaB). The head Y of this
centaur came from guaA and the bottom part X is a tail
of guaB. The intergenic regions (spacers of length 109

Fig. 2. Region in genome of Haemophilus influenzae includ-
ing genes HI0221 (location 248948–250414), HI0221.1 (250524–
251015), and HI0222 (251125–252696). http://research.haifa.ac.il/
∼genom/ComplexityArticle/Figures.html Distribution of sequence
complexity measured with running window of 2000 bases in the re-
gion around the location 250 700 is shown. The predicted coding
region HI0221.1 consists of two domains X and Y, where Y is the
head domain of the gene guaA (GMP synthase), and X is identical
to the tail of the gene guaB (inosine-5′-monophosphate dehydroge-
nase).

bases) between HI0221, HI0221.1, and HI0222 are also
identical. Actually, the centaur HI0221.1 is a tandemly
repeated region of the ‘X-spacer-Y’ of the total length
150 + 109 + 342 = 601 nucleotides. Our procedure of
mapping the genome using a large LC window allows
one to recognize such potentially interesting outcomes
of duplication (or artifacts of the sequence assembly
procedure).

The complexity map of H. influenzae genome with the
LC window of 100 bases is shown in green in Figure
1. The typical range of LC100 values of H. influenzae
is 0.97 to 0.99. The four global minima in Figure 1 all
have an LC value equal to 0.08. Many local minima
with LC100 values lower than 0.95 are observed as
well. These minima indicate low-complexity zones in
H. influenzae. In Table 2, we describe 18 simplest regions
of H. influenzae revealed by complexity mapping with
LC100 and corresponding to the local minima of the
complexity map of LC100 values in Figure 1. Notably, all
simplest sequences that we identified are SSRs; practically
all of them are perfect tandem repeats. However, SSRs # 8
and # 18, located around positions 746724 and 1,668,482
respectively, are imperfect long tandem repeats. Appendix
1 (http://research.haifa.ac.il/∼genom/ComplexityArticle/

682



Sequence complexity profiles of prokaryotic genomic sequences

Appendix.doc) shows the locations and translations of the
simplest regions of H. influenzae, with annotation of the
regions both according to Fleischmann et al. (Fleischmann
et al., 1995) and Hood et al. (Hood et al., 1996) the
distribution of sizes of SSRs is of interest as well. Eleven
SSRs in Table 2 are repeated tetranucleotides. The SSR
#10 is a 12 times repeated pentamer; #1 and #4 are 12-
mers, #12–a 15-mer, #13 and #8 are repeats 36 and 39
nucleotides in length, respectively. (More data may be
found in Appendix 1.)

The linguistic complexity method thus allows us to
identify biologically significant SSRs of varying sizes, as
well as imperfect repeats, that may be missed by other
methods. Analysis of complexity with larger window sizes
(2000 base pairs) may allow identification of potentially
interesting regions of duplications, as well as tagging
potential genome assembly artifacts.

2. Linguistic complexity profiles around 5′ and 3′ ends
of prokaryotic CDS
Obviously, direct comparison of average complexity
values calculated for different genomes may yield only
limited results. However, typical distribution of sequence
complexity around the flanks of genes exists and may
serve as a kind of ‘genome signature’. To obtain com-
plexity distributions around the ends of protein coding
sequences typical to an individual prokaryotic genome,
we used LC50 distributions averaged over the CDSs with
sufficient flanking non-coding regions. The window size
of 50 nucleotides was empirically chosen among window
sizes of 20, 50, 100, and 200 bases. This window size best
highlighted the most common features for all individual
genomes.

In Figure 3 (http://research.haifa.ac.il/∼genom/
ComplexityArticle/Figures.html), we present the av-
erage distributions around the ends of CDS. We find
a difference in the complexity profiles between the
GC-rich genomes (D. radiodurans, M. tuberculosis, and
T. pallidum) and other genomes (from here on denoted
as AT genomes). All the AT genomes are rather similar
in their main features: lower LC for non-coding regions
with local complexity minima close to the ends of CDS
(close to 0). In most AT genomes, the minimum of
averaged LC distribution that is adjacent to the start of
translation is very well pronounced. A small number of
exclusions from this rule among AT genomes include
E. coli, H. influenzae, and M. pneumoniae. The mini-
mum of averaged LC distribution adjacent to the end of
translation is less common or missing in C. pneumoniae,
E. coli, H. influenzae, M. pneumoniae, R. prowazekii,
Synechocystis, and T. maritima.

According to the LC profile, we can cluster genomes as
‘++’, ‘+-’, ‘-+’, and ‘–’, where ‘+’ refers to the presence
of the minimum before or after the CDS, respectively.

Group I, ‘++’, is characterized by both minima and
contains: A. fulgidus, A. aeolicus, M. jannaschii, P. abyssi,
P. horikoshii, M. thermoautotrophicum, H. pylori, and
M. genitalium. Group IV, ‘–’, is characterized by absence
of both minima and contains: E. coli, H. influenzae, and
M. pneumoniae. Group II, ‘+-’, is characterized by the
absence of a minimum adjacent to the end of CDS and
contains: Synechocystis, C. pneumonia, R. prowazekii,
and T. maritima. Group III, ‘-+’, is empty. According to
this rough classification B. subtilis, C. trachomatis, and
B. burgdorferi should be included in Group I. However,
they show much wider minima in comparison with other
members of the group, and resemble overall profile of
Group IV.

In Figure 4, the prokaryotic representative linguistic
complexity profile is shown. Seventeen LC profiles, 17
out of 21 genomes, were averaged to make a consensus
(D. radiodurans, M. tuberculosis, T. pallidum, and T. mar-
itima were excluded). Naturally, this plot mainly carries
features of the dominating Group I. We obtained in a
similar way consensus profiles for Caenorhabditis elegans
and Saccharomyces cerevisiae (the study is in progress
and data not shown). Interestingly, these profiles have
common features missing in prokaryotic profiles—they
belong to Group III.

Different complexity profiles thus roughly correspond
to evolutionary relationships between organisms, and may
reflect individual variations in translational regulation. As
these profiles are conserved in the groups of organisms,
the variations in sequence repetitiveness may indicate
important regulatory sites. Linguistic complexity methods
may therefore aid in comparative studies of translational
regulation across genomes.

CONCLUSIONS
This study demonstrates usefulness of global complex-
ity profiles of DNA sequences as large as complete
genomes or chromosomes. We show that the method
of linguistic complexity is effective for description
of typical genomic features through applying the LC
measure to 21 entire prokaryotic genomes. We found
principal differences in the complexity profiles of the
GC-rich genomes (D. radiodurans, M. tuberculosis, and
T. pallidum) and other (AT) genomes. Major features
of profiles of AT prokaryotic genomes are the location
of relatively simple regions of about 50 bp immediately
before the starts of translation and immediately after
the ends of CDS. In some prokaryotes, especially in
hyperthermophiles, these minima are remarkably sharp.
In fact, all Archea that we examined by the linguistic
complexity method have similar LC profiles and belong
to Group I described above. In some bacteria, for example
E. coli, there are no significant minima after the end
of translation, and there is an additional minimum of
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Fig. 3. Cont.
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Fig. 3. Profiles of complexity distributions in the neighborhoods of the starts and ends of translation. http://research.haifa.ac.il/∼genom/
ComplexityArticle/Figures.html Complexity was measured by a running window of 50 bases. Only the starts of CDS longer than 125
nucleotides and flanked by upstream intergenic regions longer than 125 nucleotides were processed. Zero corresponds to ‘the start of CDS’
for complexity (LC) distribution around 5′-end of CDS (red line), and to ‘the end of CDS’ for LC distribution around 3′-end of CDS (green
line). All the neighborhoods of the starts and ends of genes were constructed from strictly noncoding–coding and, correspondingly, coding–
noncoding pairs of regions. The mean distributions (profiles shown) were obtained by averaging the distributions of all fragments from the
same genome.

complexity in promoter regions—around −200–230
bp upstream from the start of translation. (Compare
with Gabrielian and Bolshoy, 1999; Gabrielian et al.,
1999. It is interesting to note that prokaryotic LC pro-
files are distinct from those we observe for eukaryotic
genomes (study in preparation), possibly reflecting

differences in translational machinery. This topic re-
quires further investigation and the study is currently in
progress.

This ‘complexity fingerprint’ is also a fast and effective
method to reveal low-complexity zones, which in many
cases are SSRs. Application of the method of linguistic
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Table 2. The simplest sequence repeats of H. influenzae revealed by linguistic complexity using a sliding window of 100 bp. Values in the column ‘Complexity’
are related to fragments of 100 bp size centered on locations indicated in the column ‘Location’

# Location Complexity Repeat Length Length of # of exact
of repeat SSR repeats

1 234001 0.85 CTTACCAGCGAG 12 52 4

2 289383 0.25 CTGT 4 108 22

3 380160 0.08 TTGA 4 135 33

4 550299 0.92 AATTTAGGTTCA 12 63 3

5 571431 0.21 TTGA 4 92 23

6 677767 0.37 TTGG 4 84 21

7 706532 0.38 TTGG 4 84 20

8 746724 0.90 CATCTTCATCATCAA 39 90 2
AAAATTCCCCATCGT
CACCGTATT

9 761165 0.08 TTGG 4 150 37

10 922713 0.68 TTATC 5 65 12

11 1123559 0.08 TGAC 4 128 32

12 1152772 0.88 AAAGTTATAGAGAGG 15 55 3

13 1303146 0.73 CTTGTGCAGTAGTAT 36 144 2
CAGGAGCTGCTGCCT GTGGTG

14 1481834 0.62 AACC 4 66 16

15 1543789 0.08 TTGC 4 100 25

16 1608642 0.56 CAAT 4 72 17

17 1633831 0.49 CCAA 4 76 19

18 1668482 0.77 AGCAGATTTAGCTTT 51 160 2
GTCTGCACCGCATTT
GCCTTCACCACATTT ACCTTC

complexity mapping to the complete genome of H. in-
fluenzae reveals all known SSRs; practically all of which
are perfect tandem repeats. Our method is sensitive to long
imperfect repeats, as well.
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