
Sparse Normalized Loal AlignmentNadav Efraty� Gad M. LandauyApril 18, 2005AbstratGiven two strings, X and Y both of length O(n) over alphabet �, a basi problem (loalalignment) is to �nd pairs of similar substrings, one from X and one from Y . For substringsX 0 and Y 0 from X and Y , respetively, the metri we use to measure their similarity is normal-ized alignment value: LCS(X 0; Y 0)=(jX 0j + jY 0j). Given an integer M we onsider only thosesubstrings whose LCS length is at least M . We present an algorithm that reports the pairsof substrings with the highest normalized alignment value in O(n log j�j + rM log logn) time(r� the number of mathes between X and Y). We also present an O(n log j�j + rL log logn)algorithm (L = LCS(X;Y)) that reports all substring pairs with a normalized alignment valueabove a given threshold.1 IntrodutionSequene omparison is an extensively studied topi. Many textbooks are devoted to the subjet [5,9, 10, 12, 19, 20℄. Its appliations are numerous and inlude areas suh as �le omparison, searh forsimilarity between bio-sequenes, information retrieval and XML querying, musi retrieval, imageomparison and an almost in�nite number of other sequene omparison appliations.While for appliations suh as the omparison of protein sequenes the methods of soring aninvolve arbitrary sores for symbol pairs and for gaps among unaligned symbols, for uses in otherontexts suh as text omparison or sreening sequenes, simple unit sore shemes suÆe. Two ofthese, the Longest Common Subsequene (LCS) and the edit distane measures, have been studiedextensively, for the unit ost nature of their soring provides ombinatorial leverage not found inthe more general framework [6, 13, 14, 16℄.The Longest Common Subsequene measures the length of the longest idential subsequene ofthe two strings. Edit distane measures the minimal number of operations that are required totransform one string into the other one, when the permitted operations are substitution, deletion,and insertion. The goal is to �nd suh a sequene of operations of minimal length or of minimal�Department of Computer Siene, University of Haifa, Haifa 31905, Israel, phone: (972-4) 828-8367, FAX: (972-4)824-9331; email: nadave�s.haifa.a.il; partially supported by the Israel Siene Foundation grant 282/01, andby the FIRST Foundation of the Israel Aademy of Siene and Humanities.yDepartment of Computer Siene, University of Haifa, Haifa 31905, Israel, phone: (972-4) 824-0103, FAX: (972-4) 824-9331; Department of Computer and Information Siene, Polytehni University, Six MetroTeh Center,Brooklyn, NY 11201-3840; email: landau�poly.edu; partially supported by NSF grant CCR-0104307, by the IsraelSiene Foundation grant 282/01, by the FIRST Foundation of the Israel Aademy of Siene and Humanities, andby the IBM Faulty Award. 1

value when eah edit operation has an assigned value. These two algorithms basially rely ondynami programming tehniques.As the LCS and edit distane algorithms evolved, the notion of the sparsity of the essential datain the dynami programming table beame the key to the aeleration of the algorithms.The evolution of the LCS algorithms an be traked by examining [4, 6, 11, 18℄, whih an beregarded as the suessors of the lassi LCS algorithms of Hirshberg [13℄ and Hunt and Szyman-ski [14℄. For example, Eppstein et. al. [11℄ presented an O(n log j�j + d log log (min fd; nm=dg))algorithm, where n and m are the sizes of the input strings, j�j is the size of the alphabet and d isthe number of dominant mathes.While the LCS and edit distane algorithms are measures of the global similarity between twostrings, in many appliations, two strings may not be very similar in their entirety, but may ontainregions that are very similar. The task is to �nd and extrat a pair of regions, one from eah ofthe two given strings, that exhibit a strong degree of similarity. This is alled the loal similarityor the loal alignment problem, as de�ned in [12℄:De�nition 1 Given two strings, X and Y , �nd substrings X 0 and Y 0 of X and Y , respetively,whose similarity (optimal global alignment value) is maximum over all pairs of substrings from Xand Y .This de�nition an be extended to �nding not only the most similar substrings, but also, all pairsof substrings whose similarity value exeeds a ertain similarity level (e.g. 80%).The loal similarity problem is, in many senses, more hallenging than that of the global similarity.There are no lear starting and ending points, so any entry has the potential of being the �rst orthe last of an optimal alignment. In addition, one single math is always a perfet loal alignment.Thus, a loal alignment algorithm might report all the mathes as optimal alignments, while longerand more meaningful alignments that are imperfet will not be reported.One of the most important and ommonly used loal omparison tehniques was introdued bySmith and Waterman [21℄. Their algorithm is broadly used in moleular biology, as well as in other�elds where loal sequene omparison is pratied.Aording to a reent paper by Arslan, E�geio�glu and Pevzner [7℄, the Smith Waterman algorithmhas two weaknesses that make it non optimal as a similarity measure. The �rst weakness isalled the mosai e�et. This term desribes the algorithm's inability to disard poorly onservedintermediate segments, although it an disard poor pre�xes or suÆxes of a segment. The seondweakness is known as the shadow e�et. This term desribes the tendeny of the algorithm tolengthen long alignments with a high sore rather than shorter alignments with a lower sore anda higher degree of similarity.Some of the extensive work on the Smith Waterman algorithm as a measure of similarity is detailedin [1, 2, 3, 7, 23℄. Aording to these studies, the normalization of the values of the alignments bytheir length will yield a better measure of the similarity level of the loal alignments.De�nition 2 The normalized alignment value of two substrings, X 0 and Y 0, is S(X 0; Y 0)= (jX 0j+jY 0j), where S is the global alignment value (of X 0 and Y 0) aording to one of the soring shemes.Arslan et al. [7℄ suggested a measure designed for the purpose of �nding the most similar pair of2

substrings whose length is signi�ant. The measure is based on the reformulation of the abovede�nition of the normalized alignment's value. Their de�nition is as follows:De�nition 3 The normalized alignment value of two substrings is S(X 0; Y 0)=(jX 0j + jY 0j + L),where X 0 and Y 0 are substrings of X and Y , S(X 0; Y 0) is the global maximal sore of the alignmentof X 0 and Y 0, and L is a positive number that ontrols the amount of normalization.The ratio between L and (jX 0j+ jY 0j) determines the inuene of L on the value of the normalizedsequene alignment under that metri. For short alignments it might lower the normalized sequenevalue dramatially, while for long alignments the e�et on the value should be minor. Using thismeasure, it is less likely that short alignments will reeive high normalized sequene alignmentvalues.The weakness in this, otherwise e�etive, approah for disarding alignments whose length is in-suÆient is the reformulation of the original de�nition of the normalized value (de�nition 2). Byaltering the de�nition, the outomes will aordingly be di�erent than the expeted outomes ofthe original problem under the original de�nition.The time omplexity of the measure, suggested by Arslan et al., is O(n2 logn), where n is the size ofthe input strings. The spae omplexity of this measure, whih is O(n2), is derived from the spaeomplexity of the Smith Waterman algorithm, whih is utilized repeatedly in order to ompute thevalues of S(X 0; Y 0).In this paper, we present an algorithm designed for the omputation of the loal similarity nor-malized values of substrings of the two input strings whose lengths are not too short to be of sig-ni�ane. The presented algorithm utilizes the LCS metri for the omputation of the normalizedloal alignment value and exploits the sparsity of the essential data in the dynami programmingtables.De�nition 4 An entry (i; j) in the dynami programming table of two sequenes, jXj = n andjY j = m, is alled a math if and only if Xi = Yj. The number of suh entries in the table isdenoted by r where obviously, r � nm [4℄.The LCS, whih is a global measure rather than a loal measure, is made into a loal measure ofsimilarity by dividing the LCS value of the two substrings by the sum of their lengths. Substringsthat maximize that value are the most similar. Note that the alignment with the highest similaritylevel must begin and end in a math. Otherwise, there is a better alignment with the same LCSand a lower value of jXj+ jY j.Though the LCS appears, at �rst glane, to be a less powerful metri if ompared with other soringshemes, it an be used to apture alignments whose mathes density ratio is high, indiating thattheir similarity level is high. Clearly, the LCS metri with its simple soring sheme is suÆient tosolve numerous problems from a variety of domains. Indeed, even appliations and problems thatutilize more ompliated soring shemes, suh as omparisons of protein sequenes, may bene�tfrom this algorithm.LetX 0 and Y 0 be substrings of the input stringsX and Y , respetively. A minimal length onstraint,denoted herein byM , may be either a minimal length onstraint on the sum of the lengths jX 0j+jY 0j,or a minimal length onstraint on the length of the longest ommon subsequene (LCS) of X 0 and3

Y 0. We hose to refer to the onstraint on the LCS of X 0 and Y 0 beause it better suits an algorithmthat exploits the sparsity of the mathes in the dynami programming tables.The minimal length onstraint (M) is enfored in a straightforward fashion, without the need toreformulate the original problem that in the ase of normalized LCS is LCS(X 0; Y 0)=(jX 0j+ jY 0j).The value of that minimal onstraint is expeted to be problem related rather than input related,and it is expeted to be of a muh smaller sale than the lengths of the input strings.De�nition 5 Best(M)XY - the highest normalized alignment value of any of the substrings pairs,of strings X and Y , with LCS value higher than M .Results:Given two strings X and Y eah of length n, and a length onstraintM , we will introdue two algo-rithms that ompute the value of Best(M)XY . The �rst algorithm is disussed thoroughly in setion2. This normalized loal LCS algorithm reports substring pairs that ahieve the value Best(M)XYand whose ommon subsequene is longer than M . Alternatively, it may output substring pairswhose similarity is higher than a predetermined value and whose ommon sequene is longer thanM . The time omplexity of that algorithm is O(n log j�j+ rL log log n) and its spae omplexity isO(rL+ nL) where L = LCS(X;Y).The seond algorithm, disussed in setion 3, is similar to the �rst in its ability to ompute thenormalized value of Best(M)XY , as well as the substring pairs that ahieve that value. The time andspae omplexity of that algorithm are O(n log j�j+ rM log log n) and O(rM + nM), respetively.Sine we expet M to be muh smaller than L, the seond algorithm is more eÆient than the �rstone. But, it does not report long substring pairs whose similarity exeeds a predetermined value,if this value is lower than the normalized value of Best(M)XY .Note that for 100% similarity, we demand that LCS(X;Y) = jXj ^ LCS(X;Y) = jY j ; thus, thenormalized value is 12 . Similarly, any normalized value v represents a similarity level that is 200�v.Our algorithms avoid the shadow and mosai e�ets. The shadow e�et is avoided sine for anynumber of mathes, the shortest alignment is onstruted. Longer alignments would be preferableover shorter alignments only if the longer ones ontain more mathes, and their normalized value ishigher. The mosai e�et is avoided sine the normalized value of a suÆiently long alignment witha poor intermediate segments would be lower than the normalized values of its pre�x and suÆx,whih are omputed separately.2 The O(rL log logn) normalized loal LCS algorithmIn this setion we disuss our basi algorithm for the omputation of Best(M)XY and for the ompu-tation of the alignments that exeed a ertain similarity level, using the LCS metri. The disussionbegins with the de�nitions and lemmas that are needed for the understanding of the algorithm.Eah of the major stages of the algorithm, as well as the omplexity analysis, will be disussed ina separate subsetion. Finally, an alternative algorithm would be disussed.The input is two strings, jXj = n and jY j = m (m = O(n)). As in [4℄, our algorithm onstrutsa data struture that substitutes the dynami programming tables that are used by other loal4

similarity algorithms. Impliitly, many of the properties of the dynami programming tables aremaintained in our sparse representation of it. A math (i; j) is a math that will be in entry (i; j)in the analogous dynami programming table.A hain was de�ned in [8℄ as a sequene of mathes that is stritly inreasing in both omponents,i.e., two mathes (i; j) and (i0; j0) may be part of the same hain if and only if (i < i0 ^ j < j0) _(i > i0^ j > j0). Let us present the extended de�nition of a hain that will be used throughout thiswork.De�nition 6 A k-Chain(i;j)(i0;j0) denotes a sequene of k mathes that is stritly inreasing in bothomponents, whose head is the math (i; j) and whose tail is the math (i0; j0).� k = LCS(Xj:::j0; Yi:::i0). Xj:::j0 and Yi:::i0 are substrings of the input strings X and Y , respe-tively.� Length of k-Chain(i;j)(i0;j0): The length is the sum of the lengths of Xj:::j0 and Yi:::i0 (i.e. j0 �j + i0 � i).� k-Chain(i;j) denotes the best hain of k mathes starting from (i; j), i.e., the hain of theshortest possible length that has k mathes.� Normalize value of k-Chain(i;j)(i0;j0): The normalized value is kj0�j+i0�i .For eah math (i; j), the algorithm onstruts k-Chain(i;j) for every possible value of k (1 � k �LCS(X;Y)). The algorithm starts by marking the positions of the mathes between the inputstrings. Later, the mathes are proessed in dereasing row number order (bottom to top). Theproessing of eah row has two stages.1. First stage: The algorithm onstruts the best k-Chains of any possible value of k, startingfrom eah of the mathes in the row. This is done using data strutures that were preparedduring the proessing of previous rows.2. Seond stage: The mathes of the proessed row and additional information regarding theirk-Chains are inserted into the data strutures, in order to prepare them for future use duringthe proessing of the sueeding rows.A major obstale in the proess of onstruting k-Chains is that any attempt to onstrut (k+1)-Chain(i;j) simply by tying another math to the tail of k-Chain(i;j) (whih is the best hain of kmathes starting from (i; j)) will not neessarily produe optimal results, as seen in �gure 1 wherethe 2-Chain, 3-Chain and 4-Chain of the math (2; 2) do not share ommon mathes. One wayto deal with that diÆulty is to try to add one math to the tail of all the possible hains of kmathes starting from (i; j). This solution would, indeed, onstrut (k + 1)-Chain(i;j), but it mayprove overly omplex. We take the opposite approah. From among all of the k-Chains that startlower than and to the right of (i; j), we hoose the one that, when onatenated to (i; j) as its head,reates (k + 1)-Chain(i;j). The following lemma proves the orretness of this strategy.Lemma 1 For any given value of k, and for a math (i; j), (k+1)-Chain(i;j) is a hain that startsfrom (i; j) and ontinues with k-Chain(i0;j0), i0 > i ^ j0 > j.5

a b c a d e c f h c

0 1 2 3 4 5 6 7 8 9 10

g
b
f
h
e
c
g
g
g
f
d
e
f

1
2
3
4
5
6
7
8
9

10
11
12
13

0

Figure 1: The dynami programming table of the strings abadefh (X) and gbfhegggfdef (Y). Themathes are marked as irles. 2-Chain(2;2)(6;3), whih is 2-Chain(2;2), is marked with a solid line. Its length is6� 2 + 3� 2 = 5 and its normalized value 25 . 3-Chain(2;2), 4-Chain(2;2) and 5-Chain(2;2) are marked withdashed lines, dotted lines, and arrowed lines, respetively.Proof: Assume that instead of using k-Chain(i0;j0) we use another hain of k mathes starting from(i0; j0) whih yield a better hain of k+1 mathes for (i; j). Sine the length of the hain from (i; j)to (i0; j0) remains idential, regardless of the k mathes' suÆx starting from (i0; j0), the di�erenein the length between two potential hains depends only on the length of the hain of k mathesstarting from (i0; j0). Thus, if (k + 1)-Chain(i;j) passes through (i0; j0), but its suÆx is di�erentthan k-Chain(i0;j0), it implies that we have onstruted a better hain of k mathes starting from(i0; j0), thereby ontraditing the de�nition of k-Chain(i0;j0) (de�nition 6).The above lemma provides a simple O(r2L) time omplexity algorithm for the problem. For eahmath (i; j), this algorithm would onstrut (k + 1)-Chain(i;j), 1 � k < L, by examining all O(r)potential heads of k-Chains and tying (i; j) to the most appropriate k-Chain. The next subsetionwill demonstrate how to improve that time omplexity by narrowing the searh performed by (i; j)to a single math whih must be the head of the appropriate k-Chain.Let us present the skeleton of the algorithm. The �rst stage, whih is the preproessing stage, issimilar to the typial preproessing of the sparse LCS algorithms [4℄. Its output is a list of thedi�erent symbols of �, where eah symbol has a list of the indies of its appearanes in the inputstring X. After exeuting this stage, we an view the mathes of eah row i by examining the listof symbol � = Yi (� 2 �). The two stages of the algorithm and the Report Best(M)XY proedurewill be disussed in the following subsetions. 6

O(rL log logn) normalized loal alignment algorithmFor eah row, orresponding to a symbol Yi, reate an ordered list of the mathes in the row.i mRepeat until i = 0k 1Stage oneRepeat while hains with growing k values are onstrutedConstrut (k + 1)-Chains(mathes of row i; k)k k + 1Stage twoRepeat while k > 0Insert Mathes(mathes of row i; k)k k � 1i i� 1Report Best(M)XY2.1 Stage two - The reation and updating of rangesThe purpose of this stage is to insert the hains that were onstruted during the �rst stage into adata struture that will enable us to narrow the searh performed by eah of the sueeding mathesto a single k-Chain. L data strutures are maintained for k-Chains of eah number of mathes k(1 � k � L). Our disussion ommenes with formal de�nitions of the intuitive onepts of rangeand owner.De�nition 7 Range: A range of a math (i; j) is an area of the dynami programming table thatstrethes from olumn j�1 and to the left and from row i�1 and above, i.e., it is (i0:::i�1; j0:::j�1)for eah i0 and j0, 0 � i0 < i ^ 0 � j0 < j. Hene eah math has i� j suh ranges.De�nition 8 Mutual range: The range of one math may partially or fully ontain a range ofanother math. The overlap area that is part of the range of both of the mathes is alled a mutualrange.De�nition 9 Owner of a range: The math (i; j) is the owner of a range if k-Chain(i;j) is thesuÆx of all (k + 1)-Chains that start inside the range.L separated lists of ranges and their owners are maintained by the algorithm. The following lemmaprovides the key to determining the orret ranges and their owners in eah of these lists.Lemma 2 A mutual range of two mathes is owned ompletely by one of them.7

(i,j)

(i’,j)

0
0

J’ n

i

i’

m

J

(i’,j’)
(i,j’)

Y

X

Case 1

(i,j)
(i’,j’)

0
0

n

i

i’

m

Y

X
J’ J

Case 2Figure 2: The two ases from lemma 2. In the �gure representing ase 1, the range that is surrounded bythe dashed line is owned by (i; j). In the �gure representing ase 2, the mutual point is marked with a starand the mutual range is surrounded by a dashed line.Proof: The k-Chain that is headed by a math (i; j) may be the suÆx of any k + 1 mathes hainstarting from any of the mathes in the ranges of (i; j). Note, however, that these hains are notneessarily the (k + 1)-Chain of these mathes. For all mathes that are in a range of a singlemath (i; j) (i.e., they are not in a mutual range), the only way to onstrut a (k + 1)-Chain is topass through (i; j). Thus, (i; j) will be the owner of that range. Let us deal with the two di�erentsettings of two mathes that share a mutual range. These mathes will be p (i; j) and q (i0; j0).1. i � i0^j � j0: The mutual range of p and q is (0:::i�1; 0:::j�1). Aording to their positions,p may use the k� 1 suÆx of k-Chainq as part of a possible k-Chain from it. Hene, for eahmath in the mutual range, a (k + 1)-Chain through p is either equal to or better than thehain through q. Thus, p owns the mutual range.2. i < i0 ^ j > j0: The mutual range of p and q is (0:::i � 1; 0:::j0 � 1). Let us de�ne theentry (i � 1; j0 � 1) as the mutual point (MP) of p and q. MP is the bottommost andrightmost entry of the mutual range, and it is not a math. The length of the hain fromany math z in the mutual range to either p or q is equal to the length of the hain fromz to MP (whih is equal for both p and q) plus the length of the hain from MP to eitherp or q (for math z in oordinates (i00; j00), i00 < i ^ j00 < j0, the length of the hain to pis (i � i00) + (j � j00), and the length of the hain from z to p that passes through MP is(i � (i � 1) + j � (j0 � 1)) + ((i � 1) � i00 + (j0 � 1) � j00) = (i � i00) + (j � j00)). Sine thedistanes from MP to both p and q are predetermined (they are j� j0+2 and i0� i+2 for pand q, respetively), the one whose tail is loser to MP also forms a shorter hain with anymath z in the mutual range. Let the length of k-Chainp be Lp and the length of k-Chainqbe Lq. p will be the owner of the mutual range if Lp + (j � j0) � Lq + (i0 � i) and q will beits owner otherwise.
8

Observations:1. For the given mathes p (i; j) and q (i0; j0), suh that i < i0 ^ j > j0, and for the given lengthsLp and Lq of k-Chainp and k-Chainq, respetively, if Lp + (j � j0) > Lq + (i0 � i) then theowner of the mutual range is q and the range owned by p is bloked from the left by therange of q. If Lp + (j � j0) < Lq + (i0 � i), then the owner of the mutual range is p and therange owned by q is bloked from row i and above by the range of p. Sine the algorithmproesses the mathes in dereasing row number order, mathes whose row oordinate valueis higher than i will not be proessed later by the algorithm. Thus, the range owned by q(i.e., (i:::i0 � 1; j00:::j0), j00 < j) is no longer relevant, and it would not beome relevant later.No range above row i would be owned by q, and therefore, it may be extrated from the datastruture of the heads of k-Chains. In the ase of an equality (Lp + (j � j0) = Lq + (i0 � i)),we prefer p over q as the owner of the mutual range beause it gives us the opportunity toextrat q from the data struture without the loss of important information.2. The range owned by any math (i; j) is (0:::i � 1; j0:::j � 1), 0 � j0 < j. The range alwaysreahes row 0 beause if the range is ompletely bloked from above at row i0 < i, then forany math above it this range is no longer relevant. The range is extrated, and thereforeeases to exist. If the range is partially bloked from above at row i0 < i and olumn j00 < j(see the �rst setting in the above lemma), the range (0:::i� 1; j00 :::j� 1) whih is equal to theright part of the of the original range, still reahes row 0.3. For a given group of mathes that are the heads of k-Chains, the mathes whose row numberis the lowest (at a given time) must own (at that time) the ranges that streth between theirrow and row 0.The data struture: LROk denotes the list of ranges and their owners that are the heads ofk-Chains. Suh a list is maintained for eah value of k, 1 � k � L. Eah suh list of rangeowners is ordered by the olumn. The range of an owner in LROk, whose position is (i; j), is(0:::i� 1; j0:::j � 1), where j0 < j is the olumn of the left neighbor of (i; j) in LROk. An exampleof an LROk is given in �gure 3. In addition to eah owner, we keep the length of the k-Chainstarting from it.The LROks are implemented as Johnson Trees [15℄. Expliitly, LROk is held in data strutures forintegers in the range [0; n℄. These data strutures support the operations insert, extrat and lookfor the range that a given math is in.The algorithm proesses the rows in dereasing row number order. Thus, row i is proessed onlyafter rows m to i + 1 were proessed and mathes that are the heads of k-Chains were insertedinto LROk. When the math p (i; j), whih is the head of a k-Chain, is proessed, then aordingto observation 3 above, it will always be inserted into LROk as the range whose right boundary isolumn j � 1. Later, the following update operations are performed in LROk:� Right boundary: If LROk has another math q (i0; j0) suh that i < i0^j = j0, then by lemma2, the range of q that is above row i is owned ompletely by p and thus, q is extrated fromLROk.� Left boundary: The left neighboring range, whose owner is q (i0; j0) (i0 � i ^ j0 < j), isexamined. If i0 = i, the left boundary of the range of p is j0 (lemma 2, ase 1). If i0 > i, we9

Row i

Row 0

Figure 3: The LROk. Mathes that are heads of k-Chains are marked by irles. The white irlesare the owners of the ranges that are in LROk. Eah white irle is the owner of the range to itsleft. The blak irles are owners that were extrated from LROk. The stars represent the mutualpoints, where the boundary of ranges were set aording to lemma 2, ase 2.use observation 1 to determine the owner of the mutual range of p and q. If q is the owner ofthe mutual range, it sets the left boundary of the range of p. If p is the owner of the mutualrange, q is extrated from the data struture (impliitly, the range of p was extended) andthe left neighbor of q is examined in the same fashion.Insert Mathes(mathes of row i; k)Repeat until all mathes of row i that are the heads of k-Chains are inserted into LROk.Insert the math (i; j) into LROk in the appropriate position for j.If LROk has a previous math with olumn oordinate j, then extrat it.Repeat while for (i0; j0), whih is the left neighbor of (i; j) in LROk,(the length of k-Chain(i0;j0) + i0 � i) � (the length of k-Chain(i;j) + j � j0)Extrat (i0; j0) from LROk.2.2 Stage one - The onstrution of (k + 1)-ChainsIn this stage, we will ompute the (k + 1)-Chains of all mathes of row i, where 1 � k � L and1 � i � m. The input for this stage is the list of ranges and their owners (LROk) that wereomputed for rows m to i+ 1 and were disussed in the previous subsetion.For a math p, (k + 1)-Chainp is onstruted simply by onatenating p to the math q, whih isthe owner of the range ontaining p. Expliitly, q is the math in LROk whose olumn oordinateis the losest to that of p from the right.The data struture: All the mathes are ordered aording to their positions. Every math has10

information regarding all the k-Chain, 1 � k � L, starting from it. For a given math p, the datastruture maintains a reord where for any given k value, the length of k-Chainp is reorded, alongwith a pointer to a math q, suh that (k � 1)-Chainq is the suÆx of k-Chainp. Owners of rangesthat were extrated from LROk are not deleted from that data struture.Construt (k + 1)-Chains(mathes of row i; k)Repeat until all mathes of row i are proessed.Add the k's element of the list of (i; j).- Its pointer points to the math (i0; j0), the owner of the range of (i; j) in LROk- Its length value = length of k-Chain(i0;j0) + (i0 � i+ j0 � j)2.3 Report Best(M)XYAfter the mathes of row 1 have been proessed, the data struture wherein every math p hasa reord with all of the k-Chainp and their lengths, is ompleted. Now, the reords of all of themathes are examined, the normalized value of any of the k-Chains, k �M , is omputed, and thehighest valued k-Chain, Best(M)XY , and its normalized value are omputed. Best(M)XY and itsorresponding substrings X 0 and Y 0 of the input strings X and Y , respetively, may be reportedby traversing the pointers of the data struture of mathes.Alternatively, it is possible to report all of the hains and the orresponding substrings whosenormalized value is higher than a given normalized value, e.g. 80%. Suh sequenes may also bereported on the y during the operation of the algorithm.2.4 Complexity AnalysisLet us analyze the omplexity of eah of the stages of the algorithm.Preproessing stage: The omplexity of the preproessing stage is O(n log j�j), j�j � m, and theolletive spae onsumed for the lists of all individual symbols is O(n). This stage is similar tothe typial preproessing of the sparse LCS algorithms [4℄.First stage: During the �rst stage of the proessing of eah math, attempts are made to onstrutk hains, 1 � k � L, where L = LCS(X;Y) is the highest possible number of mathes in anyof the hains. Eah suh attempt requires one query for the nearest neighbors on eah of theorresponding LROks. The LROks are implemented as Johnson Trees [15℄. The time omplexityof eah suh query is O(log logG), where G is the gap between the integer that was the subjet ofthe operation (i.e., the olumn number of the proessed math) and its right and left neighbors inthe list. In suh lists when a pointer to one of the owners of the ranges is given, its predeessor andsuessor are reported in O(1) time omplexity beause a onneted list of the owners of rangesis also maintained. The spae omplexity of suh a tree is O(n). Sine it is diÆult to assess themean value of G beause of the onstant hanges in LROk, we refer to it as n. For all pratialpurposes, however, the mean value of G is lower than n. Hene, the total omplexity of all theiterations of all the r mathes is O(rL log log n).11

Seond stage: Eah math is inserted and extrated no more than one from eah of the LROks.The total time omplexity of this entire operation is again O(rL log log n).Report Best(M)XY : For the retrieval of the highest normalized value and for the onstrution of theoptimal sequene (or the orresponding substrings), the algorithm must examine all the elementsin the reord of eah math with a total time omplexity of O(rL).Heneforth, the time omplexity of the algorithm is O(n log j�j+ rL log logn)The spae omplexity is O(rL+nL). It is ditated by the size of the data struture for the matheswhere eah math has a reord with pointers to no more than L other mathes, with one additionallength value reorded with eah suh pointer, and the spae needed for L LROk data struturesthat are, in fat, Johnson Trees of O(n) spae eah.2.5 An alternative algorithm for the management of the data strutureAn alternative tehnique for managing the LROks that enables both queries and update operationsand does not defer the time omplexity of the above algorithm was presented in M�akinen [17℄. Asin the algorithm presented above, this tehnique is based on the insertion of mathes that are theheads of k-Chains into an array Ak[1:::n℄ wherein the math in eah olumn (if any) is the onewith the lowest row oordinate among the mathes of the olumn that have already been proessed.This is done aording to the �rst ase of lemma 2.In order to onstrut (k+1)-Chains, queries are made in the array of k-Chains. Eah suh queryis, in fat, a range minimum query (RMQ) in the k's array, where the range for the query is [j+1; n℄for a query of a math (i; j).(k + 1)-Chain(i;j) is obtained by �nding a math (i0; j0) that is the head of a k-Chain, suh thatthe sum of the distane between (i; j) and (i0; j0), plus the length of k-Chain(i0;j0), denoted byL(i0;j0), is the minimum possible. Formally, we wish to �nd a math (i0; j0) suh that the expressioni0 � i+ j0 � j + L(i0;j0) is minimized.Let us rearrange the expression i0 � i + j0 � j + L(i0;j0) to [i0 + j0 + L(i0;j0)℄ � [i + j℄. In the laterexpression, it is lear that the right (left) side of the expression depends only on the math (i; j)((i0; j0)). The value of the right (left) side remains the same, regardless of the math (i0; j0) ((i; j)).Thus, to minimize the expression, all that is neessary is to �nd a math (i0; j0) from the array ofmathes that are the heads of k-Chains whih minimizes the expression [i0 + j0 + L(i0;j0)℄. Afterthat minimal value and its orresponding math (i0; j0) are found, we need only to sum the valueof the left side of the expression with that of the right side in order to ompute the length of(k + 1)-Chain(i;j).Let Ak denote the array of mathes that are the heads of k-Chains, Ak[j0℄ = [i0 + j0 + L(i0;j0)℄.Finding the position in the array with the minimum value is analogous to �nding the math (i0; j0)whih minimizes the expression i0 � i+ j0 � j + L(i0;j0).Time omplexity: Aording to [17℄, the position with the minimum value is reported through aone dimensional range minimum query. Suh queries may be performed in O(log log n) time if thedata struture in use is a Johnson Tree. An insertion of a math into the Johnson Tree is alsoperformed in O(log logn) time.To onlude, the omplexity of the algorithm presented in this subsetion is idential to that of the12

algorithm presented in the previous subsetions.3 The O(rM log logn) normalized loal LCS algorithmIn this setion we present an algorithm for the omputation of the normalized value of Best(M)XY .Suh an algorithm may be ideal for sreening input strings that do not reah a desired similaritylevel. Later, we will show that this algorithm may atually do more than just ompute the normal-ized value of Best(M)XY . It may also be used to onstrut the longest hain that is Best(M)XY .The algorithm that was presented in the previous setion is apable of omputing Best(M)XY andits orresponding normalized value by onstruting the k-Chains, 1 � k � LCS(X;Y), startingfrom eah of the mathes. In this setion we will prove that onstruting k-Chains for k � 2M � 1is suÆient for the omputation of the value of Best(M)XY .Let us start with the de�nition of a sub-hain, that will be followed by the laim that the normalizedvalue of a hain annot be higher than the normalized value of its best sub-hain.De�nition 10 sub-hain: A sub-hain of a k-Chain is a path that ontains a sequene of x � konseutive mathes of the k-Chain.Note that unlike a k-Chain, whih always starts and ends with a math, any sub-hain, exept the�rst and the last of a given k-Chain, may start and end at any entry of the hain, even if it is nota math. The �rst sub-hain, whih is the pre�x of the k-Chain, always starts at the head of thek-Chain, and the last sub-hain, whih is its suÆx, always ends at the tail of the k-Chain.Note also that a sub-hain of x mathes has a normalized value that is less than or equal to thenormalized value of the x-Chain omprised of the same mathes, sine the sub-hain may have anadditional length (at its front and rear).Aording to de�nition 6, the normalized value of a given k-Chain whose length is ` is k̀ . Letus split this k-Chain into any number � k of non overlapping onseutive sub-hains, suh thatk =P ki and ` =P `i. Hene, k̀ = P kiP `i . The normalized value of eah suh sub-hain is ki`i .Claim 1 k̀ � max(ki`i).Proof: Let ki�`i� = max(ki`i). Thus, for any i, ki`i � ki�`i� . The value of `i that represents the length ofthe i's sub-hain must be positive, hene, ki`i � ki�`i� ! ki � `i� � ki� � `i. Sine it holds for any i,we get P(ki � `i�) �P(ki� � `i). Hene, k̀ = P kiP `i � ki�`i� = max(ki`i).Note that if k̀ = max(ki`i), then for any sub-hain, ki`i = k̀ .Aording to laim 1, onstruting all of the short sub-hains is suÆient to �nd the value ofBest(M)XY . Very short sub-hains may have normalized values that are extremely high (e.g., ifwe onsider 1-Chains, then eah suh hain would have a normalized value of 12 whih is equal to100% similarity) but do not reet signi�ant similarity between the input strings. Thus, in orderto ompute the value of Best(M)XY , it is neessary to onstrut sub-hains of at least M mathes.13

Lemma 3 Construting all (2M � 1)-Chains is suÆient for the omputation of the value ofBest(M)XY .Proof: Any k-Chain (k � M) an be split into onseutive non overlapping sub-hains of M to2M � 1 mathes. Chains with less than M mathes are not suÆient, and (2M � 1)-Chains annot be split to sub-hains of at least M mathes. Aording to laim 1, the normalized value of thek-Chain is not better than the normalized value of its best sub-hain.This onludes our laim that by onstruting hains of no more than 2M�1 mathes, the algorithman report the value of Best(M)XY . Now, let us turn to the laim that the O(rM log log n) algorithmmay also be used to report the longest hain that is Best(M)XY .When the normalized value of Best(M)XY equals 12 (100% similarity), the Best(M)XY hains andthe orresponding substring alignments an be found using the suÆx tree of the two input strings.The onstrution of suh a suÆx tree is aomplished in O(n log(�)) time [22℄. In fat, it may beworthwhile to onstrut a suÆx tree and hek whether there is a substring of at least M mathesthat is ommon to both the input strings even before we turn to the O(rM log log n) algorithm forthe omputation of the normalized value of Best(M)XY .We will prove that when the normalized value of Best(M)XY is lower than 12 , the longest Best(M)XYwill be a hain of no more than 2M � 1 mathes. This would imply that the O(rM log logn)algorithm is also suÆient for the onstrution of the longest Best(M)XY .Lemma 4 If the normalized value of Best(M)XY is lower than 12 , the longest Best(M)XY is a hainof no more than 2M � 1 mathes.Proof: Consider a hain with more than 2M�1 mathes with normalized value Best(M)XY , denotedby LB.� Aording to lemma 3, we may split LB into a number of sub-hains of M mathes, followedby a single sub-hain of between M and 2M � 1 mathes.� Aording to laim 1, the normalized value of eah of these sub-hains must be equal to thenormalized value of LB.� Aording to the de�nition of a sub-hain (de�nition 10), if one of the above sub-hains of LBdoes not start or end with a math, the hain omprised of the same mathes has a normalizedvalue that is higher than that of the sub-hain, and thus, higher than the normalized valueof LB itself. Hene, all of these sub-hains of LB must start and end with a math.Let M -Chain(i;j)(i0;j0) be one of these M mathes sub-hains of LB. This sub-hain is, in fat, a hainbeause it starts and ends at a math. Let the length of M -Chain(i;j)(i0;j0) be ` (` = i0� i+j0�j). Thenormalized value of M -Chain(i;j)(i0;j0), whih is equal to the normalized value of LB, is M̀ . The sub-hain next to M -Chain(i;j)(i0;j0) must also start at a math. Thus, (i0+1; j0+1), whih is the positionof the head of the next sub-hain, must be a math, and the length of (M + 1)-Chain(i;j)(i0+1;j0+1),whih is omprised of the mathes of M -Chain(i;j)(i0;j0) and the math (i0 + 1; j0 + 1), is ` + 2. Sine14

M̀ < 12 ! M̀ < M+1`+2 , the normalized value of (M + 1)-Chain(i;j)(i0+1;j0+1) is higher than that ofM -Chain(i;j)(i0;j0) alone, and thus, it is also higher than that of LB. Hene, if LB has more than2M � 1 mathes, and if its normalized value is lower than 12 , LB must have a sub-hain of at leastM mathes whose normalized value is higher than the normalized value of LB. Therefore, suhLB annot be Best(M)XY .This onludes our laim that the O(rM log log n) algorithm may be used for the onstrution ofthe longest Best(M)XY .The O(rM log log n) algorithm: The algorithm is idential to the O(rL log logn) algorithm fromthe previous setion in all aspets exept one; it onstruts k-Chains for 1 � k � 2M � 1. Thus,only 2M�1 LROks are maintained and updated, and the reord of eah math in the data strutureof mathes has at most 2M � 1 elements listed.Complexity analysis: In order to onstrut hains of at most 2M � 1 mathes, eah math hasto issue queries at 2M � 1 LROks. Eah math is inserted into and extrated from eah LROk atmost one. Thus, the total time omplexity of the algorithm is O(n log j�j + rM log log n). Thespae omplexity is O(rM + nM). O(rM) is also the time omplexity of retrieving Best(M)XY .4 Conlusions and open problemsThe normalized sequene alignment approah enables us to loalize the LCS algorithm, whih isglobal by its nature. This tehnique enabled us not only to design an algorithm that is both loaland sparse, but also to eliminate the mosai and the shadow e�ets from whih non normalized loalsimilarity algorithms su�er. In addition, the issue of minimal length onstraint on the length of theoutput alignments, whih is trivial in the non normalized algorithms, but tends to be problemati fornormalized algorithms, was handled simply and without the reformulation of the original normalizedalignment problem.As proved in setion 3, the O(rM log logn) algorithm is apable of omputing the normalized valueof Best(M)XY and onstruting the longest Best(M)XY . Still, for many pratial appliations, suhas loal text similarity, the O(rL log logn) algorithm that an ompute all the substring pairs whosesimilarities are higher than a prede�ned value and whose length has no upper bound (exept bythe length of the input strings) may be the preferred algorithm. Nonetheless, it may be useful touse the O(rM log log n) algorithm �rst to sreen out input strings that do not ahieve the desiredloal similarity values.The modi�ation of the soring sheme of these algorithms from the LCS metri to other unit ostsorings shemes suh as the edit distane remains an open problem.AknowledgmentThe authors would like to thank Kunsoo Park for introduing the problem to us. We are alsograteful to Alberto Apostolio, Klara Kedem, Yuri Rabinovih, Miha Sharir, Alek Vainshtein andMihal Ziv-Ukelson for fruitful disussions. 15

Referenes[1℄ Alexandrov, N.N., V.V. Solovyev. Statistial signi�ane of ungapped alignments . in: Pai� Symposium onBioinformatis, 463-472, R. Altman, A. Dunker, L. Hunter, T. Klein, editors, (1998).[2℄ Altshul, S.F., B.W. Erison. Loally optimal subalignments using nonlinear similarity funtions. Bull. Math.Biol., 48, 633-660, (1986).[3℄ Altshul, S.F., B.W. Erison. Signi�ane levels for biologial sequene omparison using nonlinear similarityfuntions. Bull. Math. Biol., 50, 77-92, (1988).[4℄ Apostolio, A. String editing and longest ommon subsequene. in: Handbook of Formal Languages, Vol. 2,361-398, G. Rozenberg and A. Salomaa, editors, Springer Verlag, Berlin, (1997).[5℄ Apostolio, A., Z. Galil. Pattern mathing algorithms. Oxford University Press, 1997.[6℄ Apostolio, A., C. Guerra. The Longest Common Subsequene Problem Revisited. Algorithmia, 2, 315-336,(1987).[7℄ Arslan, A.N., �O. E�geio�glu, P.A. Pevzner. A new approah to sequene omparison: normalized sequenealignment. Bioinformatis, 17(4), 327-337, (2001).[8℄ Claus R. EÆient Computation of All Longest Common Subsequenes. SWAT 2000, 407-418, (2000).[9℄ Crohemore M., W. Rytter. Text Algorithms. Oxford University Press, 1994.[10℄ Crohemore M., W. Rytter. Jewels of Stringology. World Sienti�, 2002.[11℄ Eppstein, D., Z. Galil, R. Gianarlo, G.F. Italiano. Sparse Dynami Programming I: Linear Cost Funtions.JACM, 39, 546-567, (1992).[12℄ Gus�eld, D., Algorithms on strings, trees, and sequenes. Cambridge University Press (1997).[13℄ Hirshberg, D.S. Algorithms for the longest ommon subsequene problem JACM, 24(4), 664-675 (1977).[14℄ Hunt, J.W., T.G. Szymanski. A fast algorithm for omputing longest ommon subsequene. Communiationsof the ACM, 20, 350-353 (1977).[15℄ Johnson, D.B. A priority queue in whih initialization and queue operations take O(loglog D) time. Math. Syst.Theory, 15, 295-309 (1982).[16℄ Levenshtein, V.I., Binary odes apable of orreting, deletions, insertions and reversals. Soviet Phys. Dokl, 10,707-710 (1966)[17℄ M�akinen, V., Parameterized approximate string mathing and loal similarity based point pattern mathing.University of Helsinki, Finland, Report A-2003-6, 2003.[18℄ Myers, E.W. Inremental Alignment Algorithms and their Appliations. Teh. Rep. 86-22, Dept. of ComputerSiene, U. of Arizona (1986).[19℄ Navarro G., M. RaÆnot. Flexible pattern mathing in strings pratial on-line searh algorithms for text andbiologial sequenes. Cambridge University Press, 2002.[20℄ Sanko� D., J.B. Kruskal, editors. Time warps, string edits, and maromoleules: The theory and pratie ofsequene omparison. Addison-Wesly Publishing Company, 1983.[21℄ Smith, T.f., M.S. Waterman. The identi�ation of ommon moleular subsequenes. J. Mol. Biol., 147, 195-197(1981).[22℄ Ukkonen E., On-line onstrution of suÆx trees. Tehnial Report No A-1993- 1, Department of ComputerSiene, University of Helsinki, 1993[23℄ Zhang, z., P. Berman, T. Wiehe, W. Miller. Post-proessing long pairwise alignments Bioinformatis, 16,1012-1019, (1999).
16

