
Approximating the 2-Interval Pattern problemMaxime Crohemore?, Danny Hermelin??,Gad M. Landau? ? ?, Dror Rawitzy, and St�ephane VialettezAbstrat. We address the problem of approximating the 2-Interval Pattern problem over its var-ious models and restritions. This problem, motivated by RNA seondary struture predition, asksto �nd a maximum ardinality subset of a 2-interval set with respet to some prespei�ed geometrionstraints. We present several onstant fator approximation algorithms whose performane guaranteedepends on the di�erent possible restritions imposed on the input 2-interval set. In addition, we showthat our results extend to the weighted variant of the problem.Key Words: 2-interval, RNA seondary struture predition, ombinatorial approximation algorithms.1 IntrodutionThe Ribonulei aid (RNA) is a family of moleules whih have several important funtions inthe ell. An RNA moleule is a single stranded moleule whih an be viewed as a linear sequeneonsisting of four nuleotides: Adenine (A), Cytosine (C), Guanine (G), and Urail (U). The pairsof nuleotides A-U and C-G are known as omplementary nuleotide pairs whih often link togetherby their phosphodiester bonds to form a three dimensional folding struture. This folding strutureis aptured in many ways, in what is alled the seondary struture, the set of all hydrogen bondsformed by the nuleotides of the moleule. It is widely believed that for many interesting families ofRNA moleules, the funtionality of the moleule depends mostly on its seondary struture [18℄.Sine urrent biologial methods for extrating sequential data exeed by far methods for extratingstrutural data, there is a need to predit the seondary struture of an RNA given its sequene ofnuleotides. This is known as seondary struture predition [21℄.RNA seondary struture predition usually fouses on prediting the struture with minimumfree energy [21℄, i.e. the stablest struture possible, where eah nuleotide is assumed to bondwith at most one other nuleotide. There are many approahes to determine the free energy of agiven struture. One simpli�ed approah, hosen also in [15℄, is to onsider only the helies of thestruture, as they are believed to ontribute to the stability of the struture in the most signi�antway. A helix in an RNA moleule onsists of two disjoint onseutive sequenes of nuleotides, wherealmost every nuleotide in one sequene is paired with another nuleotide in the seond sequene.In [20℄, a geometri representation of a helix in an RNA moleule is proposed by means of anatural generalization of an interval, namely a 2-interval. There, intervals and 2-intervals represent,respetively, sequenes of ontiguous nuleotides and possible pairings between suh sequenes inthe RNA moleule (see Figure 1). The predition of a seondary struture under this approahonsists of two stages. In the �rst stage, the sequene of moleules is sanned in order to build a? Institut Gaspard-Monge, Universit�e de Marne-la-Vall�ee, Frane, and Department of Computer Siene, King'sCollage, London, UK. Partially supported by CNRS, Frane, and the Frenh Ministry of Researh through ACINIM. maxime.rohemore�univ-mlv.fr.?? Department of Computer Siene, University of Haifa, Israel. danny�ri.haifa.a.il.? ? ? Department of Computer Siene, University of Haifa, Israel, and Department of Computer and InformationSiene, Polytehni University, NY, USA. Partially supported by the Israel Siene Foundation grant 282/01.landau�s.haifa.a.il.y Caesarea Rothshild Institute, University of Haifa, Israel. rawitz�ri.haifa.a.il.z Laboratoire de Reherhe en Informatique (LRI), Universit�e Paris-Sud, Frane. vialette�lri.fr.



set of 2-intervals whih orrespond to all helixes that ould be involved in the moleule's seondarystruture. In the seond stage, a pairwise disjoint subset of 2-intervals is sought for, possibly undersome additional onstraints, so as to serve as an estimate of the atual seondary struture of themoleule. The problem we study in this paper, i.e. 2-Interval Pattern, is onerned with theseond stage of this proess.
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Fig. 1. Two segments of RNA moleules and the set of orresponding 2-intervals. In (a), the seondary struture ispseudoknot-free. In (b), any pair of bonds C �G and A� U is a pseudoknot.A 2-interval [14, 19℄ is the union of two disjoint intervals de�ned over a single line. Throughoutthe paper, a 2-interval is denoted byD = (I; J) where I and J are two (losed) intervals de�ned overa single line suh that I is ompletely to the left of J . Two 2-intervalsD1 = (I1; J1) andD2 = (I2; J2)are disjoint, if both 2-intervals share no ommon point, that is, if (I1 [J1)\ (I2 [J2) = ;. For suhdisjoint pairs of 2-intervals, three natural binary relations are of speial interest.De�nition 1 (Relations between 2-intervals). Let D1 = (I1; J1) and D2 = (I2; J2) be twodisjoint 2-intervals. Then{ D1 < D2 (D1 preedes D2), if I1 < J1 < I2 < J2.{ D1 � D2 (D1 is nested in D2), if I2 < I1 < J1 < J2.{ D1 G D2 (D1 rosses D2), if I1 < I2 < J1 < J2.A pair of 2-intervals D1 and D2 is R-omparable for some R 2 f<;�; Gg, if either (D1;D2) 2 Ror (D2;D1) 2 R. A set of 2-intervals D is R-omparable for some R � f<;�; Gg, R 6= ;, if anypair of distint 2-intervals in D is R-omparable for some R 2 R. The non-empty subset R isalled a model. Note that any two disjoint 2-intervals are R-omparable for some R 2 f<;�; Gg.Equivalently, any pairwise disjoint subset of D is f<;�; Gg-omparable.De�nition 2 (The 2-Interval Pattern problem [6, 20℄). Let D be a set of 2-intervals andlet R � f<;�; Gg, R 6= ;, be a given model. The 2-Interval Pattern problem asks to �nd amaximum ardinality R-omparable subset of D.By the above de�nition, any solution for the 2-Interval Pattern problem over a model Rorresponds to a seondary struture onstrained by R. For example, a solution for the 2-IntervalPattern problem over the f<;�g model orresponds to a pseudoknot-free struture. A pseudoknot



in an RNA sequene S = s1; s2; : : : ; sn is omposed of two interleaving nuleotide pairings (si; sj)and (si0 ; sj0) suh that i < i0 < j < j0 (see Figure 1).De�nition 3 (Restritions for 2-interval sets). Let D be a set of 2-intervals and let S(D) bethe set of intervals involved in D.{ D is a point 2-interval set if all intervals in S(D) are pairwise disjoint (note that in this ase,all intervals in S(D) may be onsidered as points).{ D is a unitary 2-interval set if all intervals in S(D) are of equal length.{ D is a balaned 2-interval set if any 2-interval in D is a pair of two intervals of equal length.{ D is an unlimited 2-interval set if none of the above restritions are imposed.
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D3Fig. 2. The di�erent possible restritions onsidered for 2-interval sets. Intervals are represented by dark thik linesand points, and 2-intervals are represented by a thin line onneting two intervals. (a) A point 2-interval set whereD1 G D2 and D1 < D3. The pair of 2-intervals D2 and D3 are not disjoint and thus are not omparable by anyrelation. (b) A unitary 2-interval set where D1 G D2, D1 < D3, and D2 < D3. () A balaned 2-interval set whereD3 � D2. The entire set is f<;�g-omparable. (d) An unlimited f<;�; Gg-omparable 2-interval set.The left part of Table 1 depits the urrent state of the art for the 2-Interval Patternproblem in terms of exat algorithms. In [20℄, 2-Interval Pattern over f�; Gg and f<;�; Ggis proved to be NP-hard even for unitary 2-interval sets. The proof for the f<;�; Gg model isobtained as a diret onsequene of the APX-hardness result for the Maximum IndependentSet problem in t-interval graphs [5℄. The results in [5℄ also provide approximation algorithms forthis model. In [6℄, an NP-hardness result for the f<; Gg model restrited to unitary 2-interval setsis given. The time omplexity for this same model when the input is restrited to point 2-intervalsets is still unknown. These results imply that in pratial terms, seondary strutures ontainingpseudoknots are hard to predit in our suggested mathematial model. This is onsistent withpreviously known NP-hardness results for RNA seondary strutures predition in other modelsonsidering arbitrary pseudoknots [1, 15, 16℄. Other works whih are similar to our line of researhinlude the Ar-Preserving Subsequene (APS) and Longest Ar-Preserving CommonSubsequene (LAPCS) problems studied in [8, 13℄, and the Contat Map Overlap problemdesribed in [11℄.1.1 Our resultsIn this paper we fous on the three NP-hard models of the 2-Interval Pattern problem. Morespei�ally, we design onstant fator approximation algorithms for the f<;�; Gg, f�; Gg, and f<; Ggmodels. The approximation fators obtained by our algorithms vary depending on the given modeland the restrition imposed on the input set of 2-intervals. Furthermore, we omplement the APX-hardness result for the f<;�; Gg model [5, 20℄, with an APX-hardness result for the f�; Gg model.



2-Interval Pattern - Classial ComplexityModel Unlimited Balaned Unitary Pointf<;�; Gg NP-omplete [5, 20℄ O(npn) [20℄f�; Gg NP-omplete [20℄ O(n2pn) [6℄f<; Gg NP-omplete [6℄ ?f<;�g O(n2) [20℄fGg O(n2 log n) [20℄f�g O(n log n) [6℄f<g O(n log n) [20℄
2-Interval Pattern- Approximation FatorsModel Unlimited Balaned Unitary Pointf<;�; Gg (Setion 2) 4a [5℄ 4b 3b [5℄ {f�; Gg (Setion 3) 4a 4 3 {f<; Gg (Setion 4) 6b 4b 3b 3ba Polynomial-time algorithm (linear programming).b O(n lg n) time algorithm. O(n2 lg n) time algorithm.Table 1. The 2-Interval Pattern problem over it's various models and restritions. Left part: omplexity resultsfor the 2-Interval Pattern problem, where n = jDj. The 2-Interval Pattern problem for the f<; Gg modelrestrited to point 2-interval sets is not known to be in P or NP-omplete. Right part: The approximation fatorswe obtain for the 2-Interval Pattern problem supporting the idea that the problem has varying approximationquality depending on the di�erent possible restritions imposed on the input 2-interval set.Another ontribution of this paper is a new restrition on the input set of 2-intervals, namelythe balaned restrition. By de�nition, unitary 2-interval sets are also balaned but the onverse isnot neessarily true. Consequently, the above mentioned hardness results also hold for the balanedase, and moreover, balaned 2-interval sets introdue a new ombinatorial objet whih requirespartiular onsideration. Our motivation for onsidering balaned 2-interval sets is very natural inthe biologial setting of the 2-Interval Pattern problem. Indeed in our suggested mathematialmodel, a 2-interval orresponds to a helix in a RNA seondary struture, whih is often onsideredto be omposed of two disjoint sequenes of nuleotides of equal length.Finally, we introdue a weighted variant of the 2-Interval Pattern problem, in whih eah2-interval is assoiated with a weight, and the goal is to �nd a maximum weight subset of a 2-interval set with respet to a prespei�ed model. Here, one an for instane, weight a 2-interval bythe total sum of the lengths of its intervals, thereby allowing more re�ned solutions in the biologialappliation of the problem. We show that our results an be extended to the weighted variant, whilestill maintaining the same approximation fators.This paper is organized as follows. In Setion 2, we onsider the 2-Interval Pattern problemover the the f<;�; Gg model. In Setion 3, we desribe an approximation algorithm for the problemover the f�; Gg model. In Setion 4, the f<; Gg model is onsidered, and di�erent approximationalgorithms are introdued for all possible restritions imposed on the input. In Setion 5 we showthat our results extend to the Weighted 2-Interval Pattern problem.2 Approximation algorithms for the f<;�; Gg model.We begin by onsidering the 2-Interval Pattern problem over the f<;�; Gg model. Reall thatin this ase, given an input set of 2-intervals D, the problem asks to �nd a maximum f<;�; Gg-omparable subset of D, or equivalently, to �nd a maximum pairwise disjoint subset of D.For point 2-intervals sets, 2-Interval Pattern an be solved in polynomial time by maximummathing [20℄. For unitary 2-interval sets, the problem is already APX-hard [5℄. Furthermore, theresults in [5℄ also yield approximation algorithms for our ase, diretly implying the following.Proposition 1 ([5℄). The 2-Interval Pattern problem over the f<;�; Gg model an be approx-imated within a fator of 4 when restrited to unlimited 2-interval sets, and a fator of 3 whenrestrited to unitary interval sets.



The approximation algorithm given in [5℄ that solves the ase of unitary 2-interval sets anbe exeuted in O(n lgn) time, where n is the size of the input set of 2-intervals. However, thealgorithm for unlimited 2-interval sets uses linear programming tehniques, whih in pratie arevery often too time ostly. Clearly, the ase of balaned 2-interval sets lies between the two asesand is arguably the most biologially important ase. In the rest of this setion, we desribe anO(n lgn) time 4-approximation algorithm for balaned 2-intervals sets.Given any balaned 2-interval set D, the smallest 2-interval in D is the 2-interval with theshortest left (or right, as they are both of equal length) interval among all left intervals involvedin D (ties are broken arbitrarily). We suggest a simple greedy algorithm that repeatedly piks thesmallest 2-interval in the input, adds it to the solution, and omits all other 2-intervals in the inputwhih interset it. A shemati desription of this algorithm, whih we all Bal-f<;�; Gg-Approx,is given in Figure 3.Algorithm Bal-f<;�; Gg-Approx(D)Data : A set of balaned 2-intervals D.Result : A f<;�; Gg-omparable subset of D.beginwhile D 6= ; do1. Let D0 be the smallest 2-interval in D.2. Add D0 to the solution.3. Omit D0 and all 2-intervals interseting D0 from D.endreturn the 2-intervals hosen for the solution.end Fig. 3. A shemati desription of algorithm Bal-f<;�; Gg-Approx.Lemma 1. Algorithm Bal-f<;�; Gg-Approx ahieves an approximation fator of 4 for the 2-Interval Pattern problem over the general model, restrited to balaned 2-interval sets.Proof. First note that Bal-f<;�; Gg-Approx omputes a f<;�; Gg-omparable set of 2-intervalsby onstrution. Now, let D be the set of remaining 2-intervals at any arbitrary iteration of thealgorithm, and let D0 2 D be the smallest 2-interval at this iteration. Sine D0 is the smallest2-interval in D, no interval involved in D an be properly ontained in the left or right interval ofD0. Thus, amongst all the 2-intervals omitted at this iteration, there an be no more than four2-intervals whih are mutually pairwise disjoint. It follows that at most four 2-intervals from anyoptimal solution are omitted at this iteration. Applying this argument for all iterations of thealgorithm yields the desired approximation fator guarantee. utImplementation remark. Note that as stated above, algorithm Bal-f<;�; Gg-Approx runs in O(n2)time. In the following we show that omitting 2-intervals whih are not in the solution in a slightlydi�erent way, allows reduing this time bound to O(n lgn).First, we sort D from the smallest 2-interval to the largest one (i.e. the 2-interval with thelargest left or right interval). Furthermore, we use an auxiliary binary searh tree that maintainsall endpoints of 2-intervals in our solution. The main idea is that in step 3 of eah iteration, weomit only D0. Any 2-interval interseting D0 is omitted at a later stage. In step 1 of eah iteration,we �rst hek if the urrent D0 is one of those 2-intervals that should have been omitted earlier,and it is omitted in suh a ase. Otherwise, in step 2 we add D0 to the solution, and we also insertits four endpoints to the auxiliary searh tree.



The only non-trivial omputation is the one in step 1 that heks if D0 should have been omittedearlier. Sine all 2-intervals in the solution are smaller than the urrent D0, if D0 has to be omitted,then at least one of its intervals ontains an endpoint of one of the 2-intervals in the solution. Thisan be heked using two O(lg n) query operations in our searh tree.Time omplexity. When implemented as above, algorithm Bal-f<;�; Gg-Approx runs in O(n lgn)time. Indeed, sorting the 2-intervals requires O(n lgn) time. Furthermore, eah iteration an bedone in O(lg n) time, sine we perform a onstant number of insertion and query operations on oursearh, and all other operations require O(1) time.3 An approximation algorithm for the f�; Gg model.We next onsider the 2-Interval Pattern problem over the f�; Gg model. Reall that for point2-interval sets there exists an O(n2pn) algorithm for the problem, while for unitary 2-intervals,the problem is already NP-omplete [20℄. We begin our disussion in this setion, by introduing asingle onstant approximation algorithm, whih ahieves di�erent approximation fators, dependingon the di�erent possible restritions imposed on the input 2-interval set. Following this, we showthat 2-Interval Pattern over f�; Gg is in fat APX-hard, even in the ase where the input isrestrited to a unitary 2-interval set.Our algorithm is a generalization of the O(n2pn) algorithm devised in [6℄ for 2-IntervalPattern over f�; Gg restrited to point 2-interval sets. As in [6℄, the notion of interval graphs isused extensively throughout the setion. An interval graph is an intersetion graph of a �nite familyof intervals, all de�ned over a single line [12, 17℄.Given a 2-interval D = (I; J), let C(D) denote the smallest interval that overs D, i.e., C(D) =[l(I) : r(J)℄ where l(I) and r(J) are the left and right endpoints of I and J , respetively. Blin et al. [6℄alled C(D) the overing interval of D. They also observed that any pair of disjoint 2-intervals aref�; Gg-omparable if and only if their orresponding overing intervals interset. Thus, given a setof 2-intervals D, and the set C(D) of all overing intervals of 2-intervals in D, any f�; Gg-omparablesubset D0 � D orresponds to a pairwise interseting subset of C0 � C(D). However, the onverse isnot true as a pair of non-disjoint 2-intervals have orresponding interseting overing intervals aswell. Hene, a pairwise interseting subset of C(D) an ontain orresponding 2-intervals whih arenon-disjoint in D. Figure 4 depits this relationship between 2-intervals and their orrespondingovering intervals.Let D be the input set of 2-intervals and C(D) be the set of overing intervals of all 2-intervalsin D. First, we onstrut the interval graph 
C(D) of C(D). Any pair of 2-intervals with overingintervals in a lique of 
C(D), are either nesting or rossing (but not preeding), or they are non-disjoint. Now, let OPT denote a maximum ardinality f�; Gg-omparable subset of D, and letC(OPT ) be the set of overing intervals of OPT . The subgraph of 
C(D) whih orresponds toC(OPT ) is a lique, and is thus a subset of some maximal (in inlusion order) lique of 
C(D).Furthermore, any 2-interval with a overing interval in this lique and not in OPT is neessarilynon-disjoint with at least one of the 2-intervals in OPT .Observation 1. OPT is a maximum pairwise disjoint subset of a set of 2-intervals D0 (OPT �D0 � D), suh that C(D0), the set of overing intervals of D0, orresponds to a maximal lique in
C(D).Sine 
C(D) is an interval graph, it has at most jV (
C(D))j = jDj maximal liques, and thesean be omputed in polynomial time [10℄. Furthermore, given the 2-intervals whih orresponds to
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Fig. 4. A set of 2-intervals, their orresponding overing intervals, and the interval graph of these overing intervals.Subsets fC1; C2; C3g and fC1; C3; C4g are the maximal interseting subsets of C(D) and therefore are maximal liquesin the interval graph. Subset fD1; D2; D3g is f�; Gg-omparable in D, while subset fD1; D3; D4g is not beause D3and D4 interset.a maximal lique in 
C(D), one an use the algorithms in Setion 2 to �nd an approximation ofthe maximum pairwise disjoint subset of these 2-intervals. A detailed shemati desription of ouralgorithm, whih is alled f�; Gg-Approx, is given in Figure 5.Algorithm f�; Gg-Approx(D)Data : A set of 2-intervals D.Result : A f�; Gg-omparable subset of D.begin1. Construt C(D), the set of overing intervals of all 2-intervals in D.2. Construt 
C(D), the interval graph of C(D).3. Compute all maximal liques of 
C(D) using [10℄.4. foreah maximal lique C of 
C(D) do(a) Compute DC � D, the 2-intervals with overing intervals in C.(b) Approximate the maximum pairwise disjoint subset of DC using the algorithms desribed in theprevious setion.endreturn the largest pairwise disjoint subset found in step 4(b).end Fig. 5. A shemati desription of algorithm f�; Gg-Approx.Lemma 2. Algorithm f�; Gg-Approx is a 4-approximation (3-approximation) algorithm for the 2-Interval Pattern problem for unlimited and balaned (unitary) 2-interval sets.Proof. Immediate from the above disussion and from Proposition 1 and Lemma 1. utTime omplexity. The number of sub-proedure invoations in step 4(b) of f�; Gg-Approx isbounded by O(n) where n denotes the size of the input set. Also, generating all maximal liques of
C(D) an be done in O(n2) time. Hene, we have a super-quadrati running time of O(n2 lgn) forunitary and balaned 2-interval sets, and a polynomial running time for unlimited 2-interval sets [5℄.Next we show that 2-Interval Pattern over f�; Gg is APX-hard. For this, we onsider aspeial lass of intersetion graphs, alled 2-union graphs [5℄. A 2-union graph is the union of two



interval graphs with the same vertex set. Thus, given two distint lines, a 2-union graph is anintersetion graph of a family of pairs of intervals, where eah pair onsists of two intervals, oneon eah line. Two verties are onneted in the graph if, and only if, the intervals of the pairs areinterseting on at least one of these lines.In [5℄, Bar-Yehuda et al. proved that the Maximum Independent Set problem for 2-uniongraphs is APX-hard, even if the input inludes a unitary representation of the graph. That is,it inludes a family of pairs of intervals, suh that eah interval in the family is of equal length.We show that �nding a maximum pairwise disjoint subset in suh a family, and hene a maximumindependent set in the graph, redues to �nding a maximum f�; Gg-omparable subset in a set ofunitary 2-intervals.Let G be a 2-union graph and let R(G) be its unitary representation. Construt a set of 2-intervals D by onsidering the two lines over whih the intervals in R(G) are de�ned over, as twodisjoint segments of the same line (see Figure 6). Clearly G is also the intersetion graph of D.Furthermore, D does not ontain any pair of 2-intervals whih is f<g-omparable. Hene, anyindependent set in G orresponds to a f�; Gg-omparable subset of D of equal size.
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D5Fig. 6. A unitary representation of a 2-union graph transformed into a unitary 2-interval set.Corollary 1. The 2-Interval Pattern problem over the f�; Gg model is APX-hard, even whenrestrited to unitary 2-interval sets.4 Approximation algorithms for the f<; Gg model.We now turn to onsidering the 2-Interval Pattern problem over the f<; Gg model. Reall thatthe problem is known to be NP-hard for unitary 2-interval sets, while for point 2-interval setsthe problem is not known to be polynomial-time solvable [6℄. Thus, in this setion we onsiderall possible restritions for this model. More spei�ally, we design a 3-approximation algorithmfor unitary 2-interval sets whih is also a 2-approximation algorithm for point 2-interval sets. Welater slightly modify this algorithm to obtain a 5-approximation algorithm for balaned 2-intervalsets. Finally, we introdue a slightly more involved modi�ation whih yields a 6-approximationalgorithm for the unlimited ase. Determining whether or not the problem is APX-hard, and if sounder what restritions, is left as an open problem.Throughout the setion, we will use the notion of trapezoid graph [7, 9℄. Consider two intervals,I 0 and J 0, de�ned over two distint horizontal lines. The trapezoid T = (I 0; J 0) is the onvex set ofpoints bounded by I 0 and J 0, and the two line segments onneting the right and left endpoints of I 0and J 0. We all I 0 the bottom interval and J 0 the top interval of T . A family of trapezoids is a �niteset of trapezoids whih are all de�ned over the same two horizontal lines. The above de�nitionsimply, that two distint trapezoids T1 = (I 01; J 01) and T2 = (I 02; J 02) in a family of trapezoids are



disjoint, i.e. they ontain no ommon point, if and only if (I 01 < I 02 and J 01 < J 02) or (I 02 < I 01 andJ 02 < J 01) holds. If T1 and T2 are indeed disjoint, then one trapezoid is ompletely to left of the other,say for instane T1, and this is denoted by T1 < T2. Finally, a trapezoid graph is an intersetiongraph of a family of trapezoids.4.1 Point and unitary 2-interval sets.We begin our disussion in this setion by desribing an approximation algorithm for point andunitary 2-interval sets. We all this initial algorithm f<; Gg-Approx. The general outline of f<; Gg-Approx onsists of the following stages: First T (D), a family of trapezoids representing the 2-intervals in D, is onstruted. Next, the maximum pairwise disjoint subset of T (D) is omputedusing the algorithm proposed in [9℄. Finally, trapezoids in this subset whih orrespond to non-disjoint 2-intervals in D are omitted, and the �ltered solution is outputted.De�nition 4 (Corresponding trapezoid family). Let D be a set of 2-intervals, and let � and� be two distint horizontal lines whih are aligned and suh that � is below �. The orrespondingtrapezoid family of D, denoted T (D), is de�ned as the family ontaining a single trapezoid T =(I 0; J 0) 2 D for eah 2-interval D = (I; J) 2 D, where I 0 is de�ned over �, J 0 is de�ned over �,and I 0 = I; J 0 = J .
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De�nition 6 (Clashing trapezoids). Let T1 = (I 01; J 01) and T2 = (I 02; J 02) be two distint trape-zoids in a family of trapezoids. The two trapezoids T1 and T2 lash, if either I 01 and J 02 lash or I 02and J 01 lash.Observation 3. Any pair of 2-intervals in D are f<; Gg-omparable if and only if their orrespond-ing trapezoids in T (D) are disjoint and do not lash.Observation 3 is the heart of algorithm f<; Gg-Approx. Note that the number of maximal(in inlusion order) pairwise disjoint subsets of T (D) an be exponential, so exhaustively searh-ing through all these for a maximum non-lashing subset is unfeasible. Now, let T 0 be themaximum pairwise disjoint subset of T (D). Sine the maximum f<; Gg-omparable subset of 2-intervals OPT � D orresponds to a pairwise disjoint non-lashing subset of trapezoids, we havejOPT j � jT 0j. Next we show that in ase D is a unitary 2-interval set, we an obtain a pairwisenon-lashing subset of T 0 whih is no more than a onstant fator smaller than T 0, and hene nomore than a onstant fator smaller than OPT .Consider the leftmost trapezoid T0 of T 0, and let D0 be its orresponding 2-interval in D. Byde�nition, any trapezoid in T (D) has a bottom interval whih is ompletely to the left of its topinterval. Hene, T0 only lashes with trapezoids on its right in T 0. Now, if D is a point 2-intervalset, then all 2-intervals with left intervals interseting the right interval of D0 have the same leftinterval, and as T 0 is pairwise disjoint, at most one of these has a orresponding trapezoid in T 0.Furthermore, if D is a unitary 2-interval set, distint intervals involved in D whih are non-disjointmust overlap. Thus, any trapezoid in T 0 lashing with T0 orresponds to a 2-interval with a leftinterval whih ontains either endpoints of the right interval of D0. Sine T 0 is pairwise disjoint,there an be at most two suh trapezoids in T 0.Algorithm f<; Gg-Approx �rst omputes T 0, the maximum pairwise disjoint subset of T (D), andthen repeatedly adds the leftmost trapezoids in T 0 to the solution, while omitting all trapezoidswhih lash with this trapezoid in T 0. A shemati desription of algorithm f<; Gg-Approx is givenin Figure 8.Algorithm f<; Gg-Approx(D)Data : A set of 2-intervals D.Result : A f<; Gg-omparable subset of D.begin1. Construt T (D), the orresponding trapezoid set of D.2. Compute T 0 � T (D), a maximum pairwise disjoint subset of T (D) using [9℄.3. while T 0 6= ; do(a) Let T0 be the leftmost trapezoid in T 0.(b) Add T0 to the solution.() Omit T0 and all trapezoids lashing with T0 from T 0.endreturn the set of 2-intervals orresponding to the trapezoids in the solution.end Fig. 8. A shemati desription of algorithm f<; Gg-Approx.Lemma 3. Algorithm f<; Gg-Approx is a 3-approximation (2-approximation) algorithm for the 2-Interval Pattern problem over the f<; Gg model restrited to unitary (point) 2-interval sets.Proof. First note that f<; Gg-Approx outputs a subset of 2-intervals whih orrespond to pairwisedisjoint non-lashing trapezoids. Hene, by Observation 3, this subset is f<; Gg-omparable. Now,



let OPT be a maximum f<; Gg-omparable subset of D. Prior to step 3 in the algorithm, we havejOPT j � jT 0j. Furthermore, if D is a point 2-interval set, for every trapezoid omitted from T 0 instep 3, a trapezoid is added to the solution. Hene f<; Gg-Approx is a 2-approximation algorithmin this ase. The ase where D is unitary is similar, exept that here two trapezoids may be omittedfor every trapezoid added to the solution. utTime omplexity. Let jDj = n. The family of trapezoids T (D) an be onstruted in O(n) time,and aording to [9℄, T 0 � T (D) an be omputed in O(n lgn) time. Furthermore, if we sort allthe right endpoints of intervals involved in D in an O(n lgn) preproessing stage, we an omputeeah iteration of step 3 in linear time with respet to the number of trapezoids omitted. As thereis only a onstant number of suh trapezoids in eah iteration, step 3 an be omputed in O(n lgn)time. This gives us a total of O(n lgn) running time for the entire algorithm.4.2 Balaned 2-interval sets.We next onsider balaned 2-interval sets. Bal-f<; Gg-Approx is a 5-approximation algorithm forthis problem. It di�ers from f<; Gg-Approx only by the fat that at eah iteration of step 3, insteadof hoosing the leftmost trapezoid in T 0 as T0, we hoose the smallest trapezoid (i.e. the trapezoidorresponding to the smallest 2-interval) as T0.Lemma 4. Algorithm Bal-f<; Gg-Approx is a 5-approximation algorithm for the 2-Interval Pat-tern problem over the f<; Gg model restrited to balaned 2-interval sets.Proof. The orretness of Bal-f<; Gg-Approx follows again from Observation 3. As for the approx-imation guarantee, onsider T 0 at an arbitrary iteration of step 3 in Bal-f<; Gg-Approx, and letT0 be the smallest trapezoid of T 0 at this iteration. Also let OPT denote the maximum f<; Gg-omparable subset of D. Sine T0 is the smallest trapezoid, by a similar argument used in Lemma 1,T0 lashes with at most 4 other trapezoids in T 0 at this iteration. Hene, sine jOPT j � jT 0j priorto step 3, our solution is at least of size 15 jT 0j, and the lemma follows. utTime omplexity. Step 3 in Bal-f<; Gg-Approx an be done in O(n lg n) time, where n = jDj, usingthe same tehniques used in Bal-f<;�; Gg-Approx. Hene, as in f<; Gg-Approx, the entire runningtime of Bal-f<; Gg-Approx is O(n lgn).4.3 Unlimited 2-interval sets.The rest of this setion is devoted to the 2-Interval Pattern problem over the f<; Gg model forunlimited 2-interval sets. We introdue a slightly more involved modi�ation of f<; Gg-Approx toobtain a 6-approximation algorithm for unlimited 2-interval sets.Consider two lashing trapezoids T1 = (I 01; J 01) and T2 = (I 02; J 02) suh that T1 < T2. We say thatT1 sees T2 if either l(I 02) � l(J 01) � r(I 02) or l(I 02) � r(J 01) � r(I 02), where l(J 01); r(J 01) and l(I 02); r(I 02)are the left and right endpoints of J 01 and I 02 respetively. Thus, T1 sees T2 if one of the endpointsof its top interval is in the range of the bottom interval of T2 (see Figure 9).De�nition 7 (Nie family of trapezoids). A family of trapezoids T 00 is nie, if T 00 is pairwisedisjoint, and no trapezoid sees any other trapezoid in T 00.Now, given a pairwise disjoint family of trapezoids T 0, omputing a nie subset T 00 � T 0 anbe done similarly to step 3 in f<; Gg-Approx. Instead of omitting all trapezoids lashing with theleftmost trapezoid T0 at every iteration, we omit only those that T0 sees. Sine T 0 is pairwisedisjoint, T0 an see at most two trapezoids in T 0. Hene, jT 00j � 13 jT 0j.



De�nition 8 (Clashing trapezoid graph). Given a family T of trapezoids, the lashing trape-zoid graph of T , denoted by GT , is a graph with T as its vertex set, and two verties are onnetedby an edge if and only if their orresponding trapezoids lash.Lemma 5. If T 00 is a nie family of trapezoids then GT 00 is a forest.Proof. Let T 00 be a nie family of trapezoids and let GT 00 = (V;E) be its orresponding lashingtrapezoid graph. De�ne G�T 00 = (V �; E�) as the direted graph obtained by orienting the edges ofGT 00 aording to the preedene relation of T 00. In other words, V � = V and (T1; T2) 2 E� if andonly if fT1; T2g 2 E and T1 < T2 in T 00. Sine T 00 is nie, every trapezoid in T 00 lashes with atmost one trapezoid on its left, and so the in-degree of every vertex v 2 V � is at most one. Hene,any yle (v0; : : : ; vt; v0) in GT 00 is a (direted) yle in G�T 00 . However, in suh a ase we must haveT0 < Tt < T0, a ontradition. Hene, we onlude that GT 00 ontains no yles, and the abovelemma holds. ut
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Fig. 9. (a) A family of pairwise disjoint family of trapezoids and a nie subset of this family. Trapezoid T1 sees bothT2 and T3 and so these are omitted in order to obtain the nie subset. (b) The orresponding lashing trapezoidgraphs of the two families above.It is well known that the maximum independent set in any forest G = (V;E) is of size atleast 12 jV j and that this set an be found in linear time with respet to jV j. Also, by de�nition,sine T 00 is a pairwise disjoint family of trapezoids, any independent set of GT 00 orresponds to apairwise disjoint non-lashing set of trapezoids, and so it also orresponds to a f<; Gg-omparablesubset of 2-intervals. A shemati desription of our algorithm for unlimited 2-intervals sets, alledUnl-f<; Gg-Approx, is given in Figure 10.Lemma 6. Algorithm Unl-f<; Gg-Approx is a 6-approximation algorithm for the 2-Interval Pat-tern problem over the f<; Gg model.Proof. The orretness of Unl-f<; Gg-Approx follows from the fat that an independent set in GT 00orresponds to a pairwise disjoint non-lashing subset of trapezoids. Now, let D be the input set of2-intervals and let T (D), T 0 and T 00 be the trapezoid families as desribed in the above desriptionof Unl-f<; Gg-Approx. Also, let OPT be a maximum f<; Gg-omparable subset of D. We havejOPT j � jT 0j and jT 0j � 3jT 00j. Furthermore, sine GT 00 is a forest, we have jV (GT 00)j � 2�(GT 00),where �(GT 00) is the size of the maximal independent set of GT 00 . Together we get:jOPT j � jT 0j � 3jT 00j = 3jV (GT 00)j � 6�(GT 00);and the lemma follows. ut



Algorithm Unl-f<; Gg-Approx(D)Data : A set of 2-intervals D.Result : A f<; Gg-omparable subset of D.begin1. Construt T (D), the orresponding trapezoid set of D.2. Compute T 0, a maximum pairwise disjoint subset of T (D).3. Compute T 00, a nie subset of T 0, suh that jT 00j � 13 jT 0j.4. Compute GT 00 and a maximum independent set I of GT 00 .return the set of 2-intervals orresponding to the maximum independent set I of GT 00 .end Fig. 10. A shemati desription of algorithm Unl-f<; Gg-Approx.Time omplexity. Let jDj = n. Steps 1-3 in Unl-f<; Gg-Approx an be omputed in O(n lgn) timeby a similar analysis given in f<; Gg-Approx. Furthermore, step 4 an be omputed in O(n) timesine GT 00 is a forest. Hene, the entire algorithm has a total of O(n lgn) running time.5 Approximation framework for weighted 2-interval setsIn this setion we onsider the weighted version of the 2-Interval Pattern problem.De�nition 9. Let D be a set of 2-intervals and let R � f<;�; Gg, R 6= ;, be a given model. Alsolet w : D ! R be a weight funtion. The Weighted 2-Interval Pattern problem asks to �nd amaximum weight R-omparable subset of D.All algorithms for the polynomial solvable models of 2-Interval Pattern given in [6, 20℄ applyto the weighted version as well. In the following we show that our results also extend toWeighted2-Interval Pattern.We denote w(D0) as the sum �D2D0w(D), for any subset of 2-intervals D0 � D and any weightfuntion w : D ! R. For a modelR and a weight funtion w, a given subset S � D is r-approximatewith respet to R and w, if w(S) � 1rw(D0) for any R-omparable D0 � D.5.1 A loal ratio approximation frameworkThe loal-ratio tehnique [2{4℄ is based on the Loal-Ratio Theorem, whih in our ase is stated asfollows.Theorem 4 (Loal-Ratio [2℄). Let R be a given model and let w;w1, and w2 be weight funtionssuh that w = w1 + w2. Then, if D0 � D is r-approximate, both with respet to (R; w1), and withrespet to (R; w2), then D0 is also r-approximate with respet to (R; w).In Figure 11, we present a loal ratio approximation framework that is based on the approxi-mation framework for sheduling and resoure alloation from [2℄. It uses the following de�nition:Given a set of 2-intervals D, a model R, and a 2-interval D 2 D, N [D℄ denotes the subset of2-intervals in D that are not R-omparable with D (D 2 N [D℄). We assume that the initial weightsare positive (2-intervals with non-positive weights an be omitted). However, note that the weightsmay beome negative during the exeution of the algorithm.The seletion of D0 determines the approximation ratio of the algorithm. Informally, the ap-proximation ratio would be small, if in eah iteration, we are able to hoose a 2-interval D0 suhthat the intersetion of N [D0℄ with any R-omparable subset in this iteration is small.



Algorithm LR(D;R; w)Data : A set of 2-intervals D, a model R, and a weight funtion w.Result : An R-omparable subset of D.begin1. if D = ; then return ;.2. Selet a 2-interval D0 2 D.3. De�ne w1(D) = (w(D0) D 2 N [D0℄;0 otherwise .4. De�ne w2 = w � w1.5. D+  fD 2 D : w2(D) > 0g.6. S  LR(D+;R; w2).7. if S [ fD0g is R-omparable then S  S [ fD0g:return S.end Fig. 11. A loal ratio approximation framework.De�nition 10 (D0-maximal subset). Let R be a model, and let D0 be a 2-interval. We saythat an R-omparable set S is D0-maximal if either D0 2 S, or D0 62 S but S [ fD0g is notR-omparable.De�nition 11 (r-e�etive weight funtion). Given a model R and a 2-interval D0, a weightfuntion w1 is alled r-e�etive with respet to D0, if every D0-maximal R-omparable subset S � Dis r-approximate with respet to w1 and R.Lemma 7. If w1 is r-e�etive with respet to D0 in every reursive all of algorithm LR, then LRomputes an r-approximate R-omparable subset S.Proof. First, the solution omputed by the algorithm is R-omparable by onstrution. We proveit is r-approximate by indution on the number of reursive alls (whih is bounded by n). Atthe reursive basis, the solution S returned is the empty set, and hene it is optimal and learlyr-approximate. For the indutive step, assume that at some reursive all of the algorithm, theintermediate solution S omputed at step 6, is r-approximate with respet to w2. Step 7 ensuresthat S is D0-maximal, and so S is r-approximate with respet to w1 after this step. Furthermore,sine w2(D0) = 0, S remains r-approximate with respet to w2 after this step as well. Therefore,by the Loal Ratio Theorem, we get that the solution returned at the end of this reursive all isr-approximate with respet to w, and the lemma follows. utNext, we give an alternative analysis for algorithm LR. Basially, we show that the approxima-tion ratio would be small, if in eah iteration we are able to hoose a 2-interval D0 suh that N [D0℄is small. As we shall later see, this will be useful when the input set of 2-intervals for algorithm LRis not the original set D, but rather a subset whose weight is at least the weight of a maximumweight R-omparable subset of D.Lemma 8. If jN [D0℄j � r in every reursive all of algorithm LR, then LR omputes an r-approximate R-omparable subset S.Proof. Let wi1 and Di0 be the weight w1 and the 2-interval D0 in the ith reursive all of Algo-rithm LR, respetfully. First observe that Piwi1(D) � w(D) for any 2-interval D 2 D. Hene,XD2DXi wi1(D) � XD2Dw(D) = w(D):



On the other hand, w(D) =Pi wi1(D) for any D 2 S, and thereforew(S) =XD2SXi D =Xi wi1(S):Now, in any reursive all i, S is D0-maximal, and so wi1(S) � w1(Di0). Furthermore, by de�nitionof wi1 and sine jN [Di0℄j � r, we have wi1(Di0) � 1rPD2D wi1(D). Aumulating all these inequalitiestogether we get: w(S) =Xi wi1(S) �Xi wi1(Di0) � 1rXi XD2Dwi1(D) � 1rw(D) ;and we are done. utWe now turn to show that the analysis of algorithm LR given in Lemma 7 and 8 is suÆient forextending our results from the previous setions to theWeighted 2-Interval Pattern problem.More spei�ally, we show that the algorithms for the unweighted version of the problem an beextended to the weighted version while still maintaining their approximation fators.5.2 The f<;�; Gg modelFirst, both the 4-approximation algorithm for unlimited 2-interval sets and the 3-approximationalgorithm for unitary 2-interval sets from [5℄ work for weighted instanes.Lemma 9. There is a 4-approximation algorithm for the Weighted 2-Interval Pattern prob-lem over the f<;�; Gg model restrited to balaned 2-interval sets.Proof. We show a 4-approximation algorithm for weighted balaned 2-interval sets. Our algorithmuses the approximation framework of algorithm LR by seleting D0 as the smallest 2-interval inD. Due to Lemma 7, to show that this algorithm has an approximation fator of 4, it is enough toshow that w1 is 4-e�etive with respet to D0 in every reursive all of LR.Consider a D0-maximal R-omparable subset S at any reursive all of algorithm LR. SineD0 is the smallest 2-interval in D, no interval is properly ontained in the left or right intervalof D0. Hene, for any f<;�; Gg-omparable D0 � D, at most four 2-intervals in D0 are also inN [D0℄. As only the 2-intervals in N [D0℄ are assigned a positive weight (w1(D0)) by w1, we havew1(D0) � 4w1(D0). On the other hand, we have w1(S) � w1(D0), sine S is D0-maximal andS \N [D0℄ 6= ;. Therefore w1(D0) � 4w1(S) and so w1 is 4-e�etive with respet to D0. ut5.3 The f�; Gg modelThe following is the weighted variant of Observation 1.Observation 5. Let OPT denote the maximum weight f�; Gg-omparable subset of D. Then OPTis a pairwise disjoint subset of a set of 2-intervals D0 (OPT � D0 � D), suh that C(D0), the overingintervals of D, orresponds to a maximal lique in 
C(D), the interval graph of all overing intervalsof D.Hene, our algorithm for Weighted 2-Interval Pattern over f�; Gg is very muh similar tof�; Gg-Approx (Figure 5). Here, we searh through all maximal liques of 
C(D) for an approxima-tion of the maximum weight f�; Gg-omparable solution. This is done using the algorithms givenabove (Setion 5.2).Corollary 2. There is a 4-approximation (3-approximation) algorithm for the Weighted 2-Interval Pattern problem over the f�; Gg model restrited to unlimited and balaned (unitary)2-interval sets.



5.4 The f<; Gg modelWe begin by onsidering the ase of unitary and point 2-intervals. Reall algorithm f<; Gg-Approx.In Steps 1 and 2, we ompute the orresponding trapezoid family T (D) of D and the maximumpairwise disjoint subset T 0 of this family. Let D0 be the set of trapezoids orresponding to T 0.We modify f<; Gg-Approx by replaing step 3 in the algorithm with a all to LR(D0; f<; Gg; w)(Figure 11), where D0 is seleted as the 2-interval whih orresponds to the leftmost trapezoidat eah reursive all. The modi�ed version of f<; Gg-Approx then outputs the solution given byalgorithm LR. In Setion 4.1 we showed that T0, the trapezoid orresponding to D0, lashes withat most two trapezoids in T 0 in ase D is unitary, and at most one trapezoid in ase D is a point2-interval set. Hene, jN [D0℄j � 3 in every reursive all of LR if D is unitary, and jN [D0℄j � 2 inase D is a point 2-interval set. Therefore, by Lemma 8, algorithm LR omputes a 3-approximatesolution for unitary 2-interval sets and a 2-approximate solution for point 2-interval sets.The ase of balaned 2-intervals is similar, exept that here we selet D0 as the smallest 2-interval in every reursive all of algorithm LR. As jN [D0℄j � 5 in every reursive all, LR omputesa 5-approximate solution in this ase.For unlimited 2-interval sets, we modify algorithm Unl-f<; Gg-Approx (Figure 10) by replaingstep 3 with a variant of algorithm LR. In this variant, we hoose D0 to be the 2-interval orre-sponding to the leftmost trapezoid T0 2 T 0. Next, we replae N [D0℄ by N 0[D0℄, where N 0[D0℄ is theset of all 2-intervals whih orrespond to trapezoids that T0 sees. Finally, instead of requiring S tobe R-omparable, we require the orresponding trapezoid family be nie. By the analysis given inSetion 4.3, we have jN 0[D0℄j � 3 in any reursive all of algorithm LR, and so by Lemma 8, thisvariant of algorithm LR omputes a nie trapezoid family T 00 of size at least 13 jT 0j. From here theanalysis of this algorithm is similar to the unweighted ase.Corollary 3. There is a 6-approximation (5-approximation, 3-approximation, and 2-approximation) algorithm for the Weighted 2-Interval Pattern problem over the f<; Ggmodel restrited to unlimited (balaned, unitary, and point) 2-interval sets.6 Conlusions and future workIn this paper we addressed the problem of approximating the 2-Interval Pattern problem overits various models and restritions. We presented algorithms with onstant approximation fatorguarantees for allNP-hard ases of the problem. In addition, we showed that these an be extendedto the weighted version of the problem with no ost to the approximation fators.A �rst natural open problem to onsider is improving the approximation fators of our algo-rithms. An additional problem is to provide an eÆient algorithm for the f<;�; Gg model withunlimited 2-interval sets. This is of great interest, sine the ineÆieny of the algorithm in [5℄ alsopropagates to our suggested algorithm for the f�; Gg model. Note that [5℄ give a fast O(lg jDj)-approximation algorithm for this ase.As for hardness of approximation results, unlike the f<;�; Gg and f�; Gg models, the APX-hardness results desribed in [5℄ do not extend easily to the f<; Gg model. Whether the 2-IntervalPattern problem over the f<; Gg model is APX-hard, and if so, for what restritions on the inputdoes this still hold, remains open.Finally, and perhaps most interesting, is to determine the time omplexity of the 2-IntervalPattern problem over the f<; Gg model restrited to point 2-intervals. This has been posed as anopen problem both in [20℄ and in [6℄, and is still left open by this paper.
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