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Abstract

The indexing problem is the one where a text is preprocessed and subsequent queries of the
form: “Find all occurrences of pattern P in the text” are answered in time proportional to the
length of the query and the number of occurrences. In the dictionary matching problem a set of
patterns is preprocessed and subsequent queries of the form: “Find all occurrences of dictionary
patterns in text 77 are answered in time proportional to the length of the text and the number
of occurrences.

There exist efficient worst-case solutions for the indexing problem and the dictionary match-
ing problem, but none that find approzimate occurrences of the patterns, i.e. where the pattern
is within a bound edit (or Hamming) distance from the appropriate text location.

In this paper we present a uniform deterministic solution to both the indexing and the general
dictionary matching problem with one error. We preprocess the data in time O(n log2 n), where
n is the text size in the indexing problem and the dictionary size in the dictionary matching
problem. Our query time for the indexing problem is O(mlognloglogn + tocc), where m is the
query string size and tocc is the number of occurrences.

Our query time for the dictionary matching problem is O(nlog® dloglogd + tocc), where n
is the text size and d the dictionary size.

The time bounds above apply to both bounded and unbounded alphabets.
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1 Introduction

The well known string matching problem that appears in all algorithms textbooks has as its input
a text T of length n and pattern P of length m over a given alphabet . The output is all text
locations where there is an exact match of the pattern. This problem has received much attention,
and many algorithms were developed to solve it (e.g. [20, 15, 22, 7, 21]). A detailed modern view
of stringology can be found in a number of recently published books [6, 10, 18].

Two important more general models have been identified quite early, indezing and dictionary match-
ing. These models have attained an even greater importance with the explosive growth of multi-
media, digital libraries, and the Internet.

1.1 The Indexing Problem

The indezing problem assumes a (usually very large) text that is to be preprocessed in a fashion
that will allow efficient future queries of the following type. A query is a (significantly shorter)
pattern. One wants to find all text locations that match the pattern in time proportional to the
pattern length and number of occurrences.

Weiner [27] invented the suffiz tree data structure whereby the text is preprocessed in linear time,
and subsequent queries of length m get answered in time O(m + tocc), where tocc is the number of
pattern occurrences in the text. The times above are to be multiplied by logm in case the alphabet
size is unbounded.

Weiner’s suffix tree in effect solved the indexing problem for exact matching of fixed texts. Succeed-
ingly improved algorithms for the indexing problem in dynamic texts were suggested, for example
by [16, 12, 13, 26]. No algorithm is currently known for approzimate indezxing, i.e. the indexing
problem where up to a given number of errors is allowed in a match. The problem is formally
defined as follows.

e Input: Text T of length n over alphabet 3 and integer k.

e Query: Pattern P of length m over alphabet 3.

e Goal: Preprocess T as fast as possible, and answer a length-m query in time as close to
O(m + tocc) as possible, where tocc is the number of pattern occurrences in the text with at
most k£ mismatches.

We note that there are several definitions of errors. The edit distance allows for mismatches,
insertions and deletions [23], the Hamming distance allows for mismatches only. Throughout the
rest of this paper we will discuss a mismatch error, but a similar treatment will handle insertions
and deletions.

1.2 The Dictionary Matching Problem

The dictionary matching problem is, in some sense, the “inverse” of the indexing problem. The
large body that needs to be preprocessed is a set of patterns, called the dictionary. The queries



are texts whose length is typically significantly smaller than the total dictionary size. It is desired
to find all (exact) occurrences of dictionary patterns in the text in time proportional to the text
length and number of occurrences.

Aho and Corasick [1] gave an automaton-based algorithm that preprocesses the dictionary in time
O(d) and answers a query in time O(n + tocc). A logarithmic multiple is present for alphabets of
unbounded size. Efficient algorithms for a dynamic dictionary appear in [2, 3, 19, 4, 26]. As in the
indexing case, the approzimate dictionary matching problem, where all pattern occurrences with at
most a given number of errors, has proven elusive. The problem is formally defined as follows.

e Input:

1. A dictionary D = {Py,...Ps}, where P;, i = 1,..., s, are patterns over alphabet ¥, and
d =Y;_, |Pi|, is the sum of the lengths of all the dictionary patterns.

2. An integer k.
e Query: Text T of length n over alphabet .

e Goal: Preprocess D in time as close to linear as possible, and answer a length-n query in
time as close to O(n +tocc) as possible, where tocc is the number of occurrences of dictionary
patterns that appear in the text with at most k£ mismatches.

The Nearest Neighbor Problem with the Hamming metric is a special case of this problem. The
difference is that in the nearest neighbor problem all dictionary elements are of the same size as
well as the text. Moreover, in the dynamic dictionary matching problem one is interested in the
nearest dictionary element’s position in the text, in addition to the nearest neighbor itself.

In a recent paper [28], Yao and Yao give a data structure for deterministically solving the nearest
neighbor problem for the case of one error in the Hamming metric. They assume that all dictionary
patterns are of exactly the same length, and that the query text is also of the same length. The
preprocessing time and space of their algorithm is O(dlog m) and the query time is O(m loglog s).
The above result was improved by Brodal and Gasieniec [8]. They shaved off the log factors of all
the results in [28]. It should be noted that both above papers assume a bounded finite alphabet.

As remarked above, both these algorithms can easily be extended for longer query texts by mul-
tiplying the query time by the text length n (i.e. the query time for the Yao and Yao algorithm
becomes O(nmloglog s), and the Brodal and Gasieniec algorithm becomes O(nm)). However, their
methods rely very heavily on all patterns having the same length.

1.3 TUnified Results

In this paper we present a new approach that solves the single error version of both the indexing
and dictionary matching problems. Unlike the previous deterministic results, our dictionary may
have patterns of different lengths. Our matching algorithm looks for any pattern that appears in
the text, within error distance one, not just for dictionary patterns whose Hamming distance from
the query pattern is one. Throughout the paper we a assume a bounded fixed alphabet X for ease of
exposition. As is well known, the suffix tree construction and navigation times have a multiplicative
O(log o) factor, where o = min(m,|X]|), for unbounded alphabet 3. In fact, the time bounds of



this paper’s algorithms are dominated by the range query algorithms. The state-of-the-art in range
query is such that the time bounds of our algorithms remain the same for unbounded alphabets as
well.

We achieve the following time bounds. For the indexing problem, our preprocessing time is O(n +
gp(n), where gp(n) is the preprocessing necessary for two dimensional range-query on a grid (see
section 5). The current fastest such algorithm is due to Overmars [25] and its preprocessing time
and space is O(nlog?n). Note that for unbounded alphabets our time would be O(nlogo +
gp(n)) which is still dominated by gp(n) to be O(nlog?n). The query time is O(mg(n) + tocc)
(O(m(log o+ q(n)) +tocc) for unbounded alphabets). Again, using Overmars algorithm we achieve
q(n) = lognloglogn for a total query time of O(mlognloglogn + tocc) for both bounded and
unbounded alphabets.

For dictionary matching our preprocessing time is O(d + tp(d)), where tp(d) is the preprocessing
necessary for the tree path intersection problem (see section 9). We show that the tree path
intersection time can be solved with a preprocessing time and space of tp(d) = O(dlog®d). Note
that, again, for unbounded alphabet the time is O(dlog o + tp(d)) = O(dlog?d). Our query time
is O(nt(d)) (O(n(logo + t(d)) for unbounded alphabets), where ¢(d) is the time for a tree path
intersection query. We show that a solution where t(d) = log® dloglog d + tocc, where tocc is the
number of occurrences found, is possible. Thus our query time is O(nlog?® dloglogd + tocc), for
both bounded and unbounded alphabets.

Both of our algorithms combine a bidirectional construction of suffix trees, similarly to the data
structure in [8], with range queries for efficient set intersections. The latter is an interesting problem
in its own right.

Belween the submission of this paper and its seeing print, Ferragina, Muthukrishnan and deBerg [14]
described a geometric data structure that can be applied to approximate dictionary matching.
Although their text query time is faster than ours (O(nloglogd + tocc)), their data structure uses
more space (O(d'*€) for any given €). Our approaches to the problem are also different in that they
are concerned with a geometric data structure and its applications, and we seek a simple unified
approach to approximate text indexing and dictionary matching.

Paper organization. This paper is organized in the following way. In Section 2 we describe
suffix trees and their use for indexing. In Section 3 we describe our idea for bidirectional suffix
tree construction in order to solve the one error indexing problem. Section 5 is self contained,
and describes how to efficiently compute set intersection using range queries. This is used as a
subroutine in our algorithm. Section 7 describes the Amir-Farach [2] idea of using suffix trees
for dictionary matching, and Section 8 describes our use of suffix trees for dictionary matching
with one error. Section 9 is also self contained. It describes an efficient method of computing set
intersections where the sets are labels on tree paths. We conclude with a brief discussion and open
problems.

2 Suffix Trees and the Indexing Problem

Definition 2.1 A trie T for a set of strings {S1,---, Sy} is a rooted directed tree satisfying:



1. Fach edge is labeled with a character, and no two edges emanating from the same node have
the same label.

2. Each node v is associated with a string, denoted by L(v), obtained by concatenating the labels
on the path from the root to v, L(root) is the empty string.

3. There is a node v in T if and only if L(v) is a prefix of some string S; in the set.

A compacted trie T' is obtained from T by collapsing paths of internal nodes with only one child
into a single edge and by concatenating the labels of the edges along the path to form the label
of the new edge. The label of an edge in T” is a nonempty substring of some S, and it can be
succinctly encoded by the starting and ending positions of an occurrence of the substring. The
number of nodes of a compacted trie is O(r).

Let S[1,m] = s152- - $m—19% be a string, where the special character $ is not in X. The suffiz tree
Ts of S is a compacted trie for all suffixes of S. Since $ is not in the alphabet, all suffixes of S
are distinct and each suffix is associated with a leaf of T's. There are several papers that describe
linear time algorithms for building suffix trees, e.g. [27, 24, 9, 11].

Fact 2.2 Let St be the suffix tree of text T'. Let P = py --- pym be a pattern. Start at the suffiz tree
root and follow the labels on the tree as long as they match py---py,. If at some point there is no
matching label, then P does not appear in T. Otherwise, let v be the closest node (from below) to
the label where we stopped. The starting location of the suffizes that are leaves in the subtree rooted
at v are precisely all text locations where the pattern appears. These locations can be located and
listed, for a fized bounded alphabet, in time O(m + tocc).

3 Indexing with One Error — Bidirectional Use of Suffix Trees

For simplicity’s sake we make the following assumption. Assume that there are no exact matches
of the pattern in the text. We will relax this assumption later. In Section 6 we will handle the case
where there may be exact matches of the pattern in the text and we are interested in all occurrences
with exactly one error.

The main idea: Assume there is a pattern occurrence at text location ¢ with a single mismatch
in location 7 + j — 1. This means that p; ---p; 1 has an exact match at location ¢ and pji1---pm
has an exact match at location 7 + j.

The distance between location 4 and location 7+ j is dependent on the mismatch location, and that
is somewhat problematic. We therefore choose to “wrap” the pattern around the mismatch. In
other words, if we stand exactly at location ¢ + j — 1 of the text and look left, we see p; 1---p1. If
we look right we see pj i1 pp.

This leads to the following algorithm.
Algorithm Outline

Preprocessing:



P.1 Construct a suffix tree St of text string T and suffix tree Syr of the string T, where T* is the
reversed text TR =t,, --- ;.

P.2 For each of the suffix trees, link all leaves of the suffix tree in a left-to-right order.

P.3 For each of the suffix trees, set pointers from each tree node v to its leftmost leaf v; and rightmost
leaf v, in the linked list.

P.4 Designate each leaf in St by the starting location of its suffix. Designate each leaf in Spr by
n — i+ 3, where 7 is the starting position of the leaf’s suffix in T,
{ The leaf designation was made to coincide for a left-segment and right segment of the same
error location. }

Query Processing:

For j =1,...,m do
1. Find node v, the location of pj 1 ---py, in S7, if such a node exists.
2. Find node w, the location of p;_1---py in Spr, if such a node exists.

3. If v and w exist, find intersection of leaves in the subtrees rooted at v and w.

end Algorithm Outline

In Section 4 we will show how to process Steps 1 and 2 of the query processing for the j’s in
overall linear time, and in Section 5 we will see an efficient implementation of Step 3 of the query
processing.

4 Navigating on the Suffix Trees

Assume that we have found the node in St where p;---p,, resides. We would like to move to
the node where p;i1 --- py, appears. Similarly, if we have the node in S;r where p;---p; ends, we
would like to arrive at the node where p; 1 ---p; ends.

In order to achieve this we review the traits of one of the algorithms for linear time suffix tree
constructions — Weiner’s algorithm [27]. There is no need to understand the details of the algorithm.
The only necessary information is the following.

Let S = s1---5,% be a string. The Weiner construction of suffix tree starts with the suffix §, then
adds the suffixes 5,98, s,—15,9, ... ,s152---5,$. The total construction time is linear for finite fixed
alphabets.

Consider the string p,pm—_1 - - - p1%TE, where % ¢ T*. The Weiner construction will at some point
have the suffix tree for T%, then add pi %T®, pap1%TE, ... ,pmPm—1---p1 %TT. As pointed out
in [2], because % ¢ T*, the total time for Weiner’s algorithm to add all the suffixes that start at
the pattern is O(m).

The suffix tree part for TF is precisely Syr, and this part is constructed during the preprocessing
phase. For every query pattern, we simply continue the Weiner construction. This, in effect, finds



for us the locations we desire in total linear time. When the query is over, we retrace our steps and
remove the pattern parts from Sy r.

The case for the tree St is similar. Consider the string p1ps - - - pr, AT, where % ¢ T. The Weiner
construction will at some point have the suffix tree for T, which is the St part done during
preprocessing. Then the Weiner construction adds p,, %T, pm_10m%T, ... ,p1p2 - pm%T. This,
in reality, also finds all locations we are interested in, but the order they are encountered is reversed.
This fact can be simply circumvented by keeping an array of pointers to all the necessary nodes,
and following that array backwards in lockstep with the forward movement on tree Str.

One last necessary detail would be to have a special tag on the new nodes (added during the query
phase) in order to tell if the final nodes mean an occurrence in the original tree or not.

This use of Weiner’s construction clearly indicates that it is indeed possible to navigate the trees in
linear time in the size of the pattern. In the next section we show how to extract the intersection
of two sets in time proportional to the intersection.

5 Efficient Set Intersection via Range Queries

In Step 3, given nodes v and w, we want to find the leaves that appear both in intervals [v;...v,] and
[w;...w,], where the four endpoints of the two intervals are defined in Step P.3 of the preprocessing.
Thus, we are seeking a solution to the following problem.

Definition 5.1 The subarray intersection problem is defined as follows. Let V[1..n] and W|[l..n]
be two permutations of {1,...,n}. Preprocess the arrays in efficient time in a fashion that allows
fast solution to the following query.

Query: Find the intersection of elements of V[i..i + k] and W[j..7 + £].

We now show that this problem is just a different formulation of the well-studied range searching
on a grid problem. In the range searching on a grid problem, one is given n points in 2-dimensional
space. These points all lie on the grid [0, 1,...,U] x [0, 1, ..., U]. Queries are of the form [a, b] X [c, d]
and the result are all the points in that matrix.

Set U = n. Since the arrays are permutations, every number between 1 and n appears precisely
once in each array. The coordinates of every number i are [z,y], where V[z] = W]y] = i. It is clear
that the range search gives precisely the intersection.

Overmars [25] shows an algorithm that preprocesses the points in time and space O(nlogn) and the
query time is O(k + v/logU), where k is the number of points in the range [a, b] X [c, d]. Therefore
we have the following.

Theorem 5.2 Let T = t1---t, and P = p1---py,. Indexing with one error can be solved with
O(nlogn) preprocessing time and O(tocc + m+/logn) query time, where tocc is the number of
occurrences of the pattern in the text with one error, when no exact match exists.

Proof: Since Steps P.1 to P.4 can be implemented in O(n) time the total preprocessing time is
dominated by the O(nlogn) preprocessing for the subarray intersection.



Step 3 of the query processing can be done in time O(tocc + y/logn) by combining Overmar’s
result with the observation above. We have seen in Section 4 that Steps 1 and 2 of the query
processing can be done in total time O(m) for j = 1,...,m. This will bring our total query time to

O(m+/logn + tocc). O

6 Indexing with One Error when Exact Matches Exist

Our algorithm assumed that there was no exact pattern occurrence in the text. In fact, the
algorithm would also work for the case where there are exact pattern matches in the text, but its
time complexity would suffer. Our algorithm’s main idea was checking, for every text location, for
exact matches of all subpatterns of all lengths to the left and to the right of that location. If there
are exact pattern matches, this means that every exact occurrence is reported m times. The worst
case could end up being as bad as O(nm) (for example if the text is A™ and the pattern is A™).

We propose to handle the case of exact occurrences using the following idea. Our navigation down
the suffix trees allows us to position ourselves at all text locations that have an exact match to the
left and simultaneously all locations that have an exact match to the right. In Section 5 we saw
how to efficiently compute the intersection of those two sets. What we currently need is really a
third dimension to the range. We actually need the intersection of all suffix labels such that the
symbol preceding the suffix is different from the symbol at that respective pattern location.

We therefore need to make the following additions to the algorithm.
Preprocessing:

{ Recall that each leaf in St is designated by the starting location of its suffix, and each leaf in
Spr is designated by n — i + 3 where 4 is the starting location of the suffix in T%. }

P.5 Add the symbol T'[i — 1] to the leaf designated by 4, in both Sz and Sp&.

Range Query Preprocessing: Preprocess for a 3-dimensional range queries problem on the
matrix [1,...,n] x [1,...,n] x X. If ¥ is unbounded, then use only the O(n) symbols in 7. As in
Section 5, the coordinates of number 7 with symbol a are [z,y,a], where V[z] = W]y].

The only necessary modification in the query processing part of the algorithm is in Step 3 which
becomes:

3. If v and w exist, find intersection of leaves in the subtrees rooted at v and w where the attached
alphabet symbol is not the respective pattern mismatch symbol.

The above step can be implemented by two half infinite range queries on the three dimensional
range [1,a — 1] X [vg,v;] X [wg, w,] and [a + 1, |X|] X [vg, vy] X [wg, w,], where we assume that the
alphabet symbols are numbered 1, ...,|X]|.

Theorem 6.1 Let T = t1---t, and P = p1---pp. Indexing with one error can be solved with
O(n log? n) preprocessing time and O(tocc +mlognloglogn) query time, where tocc is the number
of occurences of the pattern in the text with at most one error.



Proof: The time of the preprocessing stage is affected only by the range query preprocessing. By
Theorem 7.2 of [25], half infinite range queries on the three dimensional range can be preprocessed
in time and space O(nlog®n). Therefore O(nlog®n) is the total preprocessing time.

If we use the method suggested in [25] and give the highest level to one of the index coordinates
and use the alphabet symbol as the second coordinate, such a query can be implemented in time
O(tocc + lognloglogn). O

7 Suffix Trees and Dictionary Matching

We use a similar technique to the one used by Amir and Farach [2] for dictionary matching and by
Gusfiled, Landau and Schieber [17] in their generalized suffix trees. The idea is the following.

Consider the dictionary D. To simplify notation we also denote with D the concatenation of all
dictionary patterns, with a separator, $, not in ¥, at the end of each pattern. Construct suffix tree
Sp of D. Mark the leaves that start in a dictionary pattern.

When a query text arrives, add it to the suffix tree in the Weiner fashion described in Section 4.
Every node touched by a text suffix that has a marked child designates an occurrence of that
dictionary pattern.

8 Dictionary Matching with One Error

Our aim is to use the bidirectional suffix tree idea of Section 3 combined with dictionary matching
via suffix trees as described in Section 7.

Construct suffix trees Sp and Spr, where D is a string of the concatenated dictionary patterns,
separated by the separating symbol $. Upon the arrival of a text string T, insert T' into Sp and
T% into Spr. Suppose that for location ¢ we have t;,; --- ¢, ending in node v of Sp and ¢;_;---#;
ending in node w of Spr. Consider the paths from the root to v in Sp and from the root to w in
Spr. Any node in these paths that has a leaf as a direct child whose label begins with a separator
is an indication of a pattern suffix that starts at the start of substring ;41 - - -, and matches the
appropriate locations in t;4q - -- %, until it concludes (or a pattern prefix that starts at ¢;_; and
ends somewhere inside ¢;_1 - - - t1).

As in the indexing case (Section 3) label pattern substrings in the different trees such that a suffix
in Sp has the same label as a prefix in Spr that starts one location away from the suffix beginning.
If that is the case, then our problem is reduced to finding the intersection of the set of labels that
are direct children of nodes on the path from the root to v and from the root to w. As in the
indexing case, let us assume for now that there is no exact match of any pattern in the text. This
assumption can be relaxed in precisely the same manner as in the indexing case.

The above idea suggests an algorithm outline that we will shortly describe. To clarify terminology
we say that a specific appearance of the separator symbol in the suffix tree is edgefirst if it appears
as the first character on an edge. We say that it is treefirst if the associated string appearing on
the path from the root till this separator does not contain another separator.

Algorithm Outline



Preprocessing:

P.1 Construct a suffix tree Sp of string D and suffix tree Spr of the string D, where D is the
concatenation of all dictionary patterns, with a separator at the end of each pattern, and where
D% is the reversal of string D.

P.2 Modify suffix tree Sp, and Spr respectively, as follows. For each separator which is treefirst but
not edgefirst, i.e. it appears on an edge (u,v) labelled 0$0”, where o # ¢, break (u,v) into (u,w)
and (w,v). Label (u,w) with o and (w,v) with $o’.

Note: After step P.2 every suffix of a pattern in Sp, and every prefix of a pattern in Spr
respectively, ends in a vertex (with an edge exiting beginning with $). So, to consider all the
desired suffizes it is sufficient to consider the vertices of the trees.

P.3 Scan suffix tree Sp, respectively Spr, and modify as follows. For each vertex v consider the
associated string L(v), i.e. the string from the root to v. Label v with all the locations of the
pattern suffixes, resp. prefixes, that are equal to L(v). To implement this note that all the relevant
suffixes share a prefix of L(v)$. So, go to edge (v, w) with label beginning with $, assuming such
exists, and scan the subtree rooted at w to find all relevant suffixes.

Query Processing:

For j=1,...,n do
1. Find node v, the location of the longest prefix of 2;1---%, in Sp.
2. Find node w, the location of the longest prefix of ¢;_1---%; in Spr.

3. Find intersection of markings of nodes on the path from the root to v in Sp and on the path
from the root to w in Sp=r.

end Algorithm Outline

Note that in step P.3 of the preprocessing we are simply labeling the two halves of pattern j in
both trees with the same label, in a similar fashion to the way it was done in the indexing case.

The navigation on the suffix trees Sp and Spr is identical to the navigation on trees St and S;r
as described in Section 4. We only need to show how to efficiently find the label intersection. This
will be seen in the next section.

9 Efficient Set Intersection on Tree Paths

We are seeking a solution to the tree path intersection problem defined as follows.

Definition 9.1 The tree path intersection problem is defined on two trees Ty and Ty each of size
t with some nodes having labels from set {1,...,t}. No two different nodes (in the same tree) have
the same label. We would like to preprocess the trees in efficient time in a manner that allows fast
solution to the following query.

Query: For given nodes v € Ty, w € Ty, find the common labels to the path from the root to v in
Ty and to the path from the root to w in Ts.

10



We will present a method whose preprocessing time is O(tlogt), and where the query time is
O(log?® t + int), where int is the size of the intersection.

We first need the following lemma that allows tree decomposition into vertical paths.

Definition 9.2 A vertical path of a tree is a tree path (possibly consisting of a single node) where
no two nodes on the path are of the same height.

Let D be a fixed decomposition of the tree nodes into a set of edge-disjoint vertical paths, where
every vertex is in some path of D. Each vertex z has a unique path to the tree root. Denote by
LD(z) the number of decomposition paths that have a non-empty intersection with the unique
path from z to the root. Let LD(T) = max(LD(x)) over all tree nodes z.

Lemma 9.3 Let T be a tree with t vertices. There exists a decomposition D of the tree such that
LD(T) <log(t+1).

Proof: By induction on ¢t. For ¢ =1 it is clear.

Assume now that the lemma is true for all £ < ¢, prove for a tree of ¢t + 1 nodes. If the root has a
single child it is obvious, simply extend the path that reaches the root’s child in the subtree rooted
there. Otherwise the root has at least two children.

Let z1,...,2, be the children of the root v, and T; be the subtree of 7', rooted at node z;, ¢ =
1,...,p. Let ¢; be the number of nodes in 7;. Obviously, t = ¢; + ... + ¢, + 1. Let D; be an
optimal decomposition of T;, i.e. LD;(T;) is smallest. We can assume without loss of generality
that LD;(T;) > LD;41(Tj4+1)), ¢ = 1,...,p — 1. Let D be the union of D; with v added after z; to
path of D;.

We can estimate LD(T). By the inductive assumption, LD;(T;) < log(t; + 1). For any node
z in T;, LD(z) = LD;(z) +1 for i > 1, and LD(z) = LD;(z) for x € Ty. Then LD(T) =
max{LDl (Tl),LDz(ﬂ) +1, 1> 2}

If LDy(T) +1 < LD;(T}), then the inductive step is clear, since then LD(T') = LD, (T1).

Let us assume that LDy(T>) +1 > LDi(Ty). Then LD(T) = LDy(T3) + 1. If t; < t9, then
LD(T) = LDy(T5)+1 < LDy (Th)+1 < log(t1+1)+1 = log(t1 +t1+2) < log(t1+te+1) < log(t+1).
Ifty > to, then LD(T) = LDy(To)+1 < log(ta+1)+1 = log(ta+to+2) < log(t1+t2+2) < log(t+1).

This completes the inductive step and concludes the proof of the lemma. O

The above lemma is constructive. It is clear that the decomposition can be constructed in linear
time. It may be seen from the proof that the decomposition of D is constructed from the bottom
to the top in a fashion where LD(T) is smallest possible. The bound in the lemma is tight and is
reached on the complete binary tree.

Returning to our tree path intersection problem we can show the following.

Lemma 9.4 The tree path intersection problem can be solved with O(tlogt) preprocessing time and
O(int + log>> t) query time.
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Proof: Decompose both T and 75 in the manner described in the proof of Lemma 9.3.

The labels on the trees can be preprocessed for range queries on a grid using the decomposition as
follows. The labels on every path on the decomposition are ordered by their heights. Concatenate
the lists of labels thus ordered for all the paths in the decomposition of T3 and similarly concatenate
the labels of T5. The order of the paths does not matter. (Delete from the lists any label that does
not appear in both trees.)

Now preprocess the two lists of labels for range queries as follows. The coordinates of label ¢ are
[,y] where i appears in location = of T}’s list and location y of T»’s list.

Using the method from [25] the grid can be preprocessed in O(tlogt) time such that a grid-query
can be computed in time O(int + /logt). For every v € T} and w € T the paths to the roots
in 77 and 75 pass through no more than logt path segments in the decomposition of 77 and T5.
Intersecting every segment in T} and every segment in 75 gives a reply to the tree path intersection
query. Since there are at most log? ¢ such intersections to consider, the total time is O (int+log®’ n).
O

The bottleneck of dictionary matching with one error is tree path intersection, therefore we have
the following result.

Theorem 9.5 Let D = {Py,...,P;} be a dictionary of size d, we can preprocess D in O(dlogd)
time such that a text-query ti - - - t, can be answered in O(nlog?> d+tocc), where tocc is the number
of occurrences of matches with exactly one mismatch. We can also preprocess D in O(dlog2 d) time
such that a query is answered in O(nlog® dloglog d+tocc), where tocc counts matches with at most
one mismatch.

Proof: The first part follows directly from Lemma 9.4 and the fact that the intersection of the
paths is the bottleneck of the algorithm.

The second part of the theorem similarly follows from the path intersection bottleneck and using
the same reasoning as in Theorem 6.1. O

10 Discussion and Open Problems

We have seen a single unified approach for efficient deterministic worst-case solutions of both the
dictionary and indexing problems with one error. Our ideas easily handle insertion and deletion
errors as well as mismatches. In these aspects our idea is superior to the Yao and Yao data structure.
However, like the Yao and Yao as well as the Brodal and Gasieniec ideas, our method does not
seem to be easily extendable to a higher (albeit small) number of errors.
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