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Abstract

Let X and Y be two run-length encoded strings, of encoded lengths k£ and [, respectively.
We present a simple O(| X |l + |Y'|k) time algorithm that computes their edit distance.

1 Introduction

Two of the known methods to measure the similarity between two strings are “edit distance” and
the “longest common subsequence.” Edit distance [4] measures the minimum number of operations
that are required to transform one string into the other one, when the permitted operations are
substitution, deletion, and insertion. The goal is to find such a sequence of operations of mini-
mum length. The longest common subsequence (LCS) measures the length of the longest identical
subsequence of the two strings.

A string S is run-length encoded if it is described as an ordered sequence of pairs (o,1), often
denoted “o?,” each consisting of an alphabet symbol, o, and an integer, i. Each pair corresponds to
a run in S, consisting of ¢ consecutive occurrences of o. For example, the string aaaabbbbcccabbbbec
can be encoded as a*b?ca'b?c?. Such a run-length encoded string can be significantly shorter
than the expanded string representation. Indeed, run-length encoding serves as a popular image
compression technique, since many classes of images (e.g., binary images in facsimile transmission
or for use in optical character recognition) typically contain large patches of identically-valued
pixels.

Let X and Y be two run-length encoded strings, of encoded lengths k£ and [, respectively. The
LCS problem for strings of this kind has been considered previously. In particular, Bunke, and
Csirik [2] presented an O(|X|l + |Y'|k) time algorithm, while Apostolico, Landau, and Skiena [1]
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described an O(kllog(kl)) time algorithm. Mitchell [6] has obtained an O((d+k+1) log(d+k +1))
time algorithm for a more general string matching problem in run-length encoded strings, where d
is the number of matches of compressed characters. His algorithm is based on computing geometric
shortest paths using special convex distance functions.

In this paper we present a simple O(| X |l +|Y|k) time algorithm for computing the edit distance
between two run-length encoded strings. This solves an open problem that was posed by Bunke
and Csirik [2].

Since the original submission of this paper, two papers with related results have recently ap-
peared. The first, by Méakinen, Navarro, and Ukkonen [5] presents an algorithm similar to our own,
which was independently and simultaneously discovered. The second, by Crochemore, Landau and
Ziv-Ukelson [3], which achieves the same time complexity as the one reported in this paper, while
extending the supported unit edit cost metrics to all similarity metrics that use an additive gap
penalty. The algorithm is based on the total monotonicity properties of distance matrices.

2 Preliminaries

Let X =z1,29...2,and Y = y1, 95 ... ym be two run-length encoded strings, with encoded lengths
k and [, respectively. It is well known ([7]) that dynamic programming can be used to compute
the edit distance between X and Y in time ©O(nm), as follows. The algorithm computes a matrix
A[0...n,0...m], so that Afs,j] (0 < i < n,0 < j < m)is the edit distance between z;z5...z; and
y1Y2...y;. The computation begins with the values

Vi, Ali,0] =1,
Vi, A[0, 5] = J,

and continues by computing the remaining matrix elements, as follows:

Aliy gl i=min {A[i, 5 — 1] + L Ali — 1, 5] + 1, A[i — 1,5 — 1] + 8, ;}, (1)
where
b — 0 Ti = Yj,
Z’J L z; # yj.

Theorem 1 (Ukkonen [8, 9]) 1. Ali,j]—A[i—1,j—1€{0,1} 1<i<n;1<j<m
2. A[Za]] _A[Z - laj]aA[Za]] _A[Zaj - 1] € {_15071} I<i<n;1<5<m

In our algorithm, we divide the matrix A into submatrices, which we call “blocks.” A block is
a submatrix Alfitop...ibottom Jieft---Jright] consisting of two runs — one of X and one of Y — so that
Tiog—1 7 Tigg = Titgptl = -+ = Tipguom 7 Lioom+1 M Yjisw—1 7 Yjieww = Yjien+1 = -+ = Yjigne 7
Yjigne+1- Thus, by definition, the matrix A[0...n,0...m] is divided into exactly k¢ blocks. The blocks
are of two types: black blocks, corresponding to pairs of identical letters z;,, = ¥j.,, and white
blocks, corresponding to pairs of distinct letters z;,,, # yj... See Figure 1.

We also distinguish between horizontal blocks, for which jyight — Jiefe > %bottom — %top, and vertical
blocks, for which ipotrom — 7:top > jright — Jleft-

The diagonal(d) (defined for d € {—n,—n + 1,...,m}) of A is the set of elements A[i, j] such
that d =75 — 1.
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Figure 1: The matrix A is divided into 9 blocks. Three blocks (shaded black) correspond to pairs
of identical letters, while the other 6 blocks (white) correspond to pairs of different letters.

3 The Algorithm

Our goal is to reduce significantly the number of elements in the matrix A that are evaluated when
computing the edit distance (and corresponding sequence of edit operations) between X and Y.
Our algorithm computes only the elements on the bottom-right boundary of each block. It will be
shown that the elements interior to the blocks are not essential for the solution of the problem. The
computation starts from the top-left block, continues rightward and downward, and ends at the
bottom-right block. Section 3.1 presents an algorithm that computes the bottom-right elements of
a black block; the computation of elements in a white block is described in Section 3.2.

To simplify the discussion from now on, we consider a block to include as its top row the bottom
row of the block that lies immediately above it, and to include as its left column the rightmost
column of the block immediately to its left. Thus, the upper-left boundary of the block serves as
input to the computation for the block. We will often refer to this upper-left boundary (row and
column) as the frame of the block.

3.1 Black blocks

Given a black block Alitop - . . ibottom Jieft - - - Jright] our goal is to compute the values of
Alitop - - - ibottoms Jright] and Alibottom, Jieft - - - Jright)- By Equation 1, an element of a black block is
computed in the following way:

Ali, g = min(Afi — 1,51+ 1, Afe,5 — 1]+ 1, Al — 1,5 — 1]). (2)

Lemma 2 For every element Ali, j] of a black block, Ali,j] = Ali — 1,7 — 1].



Proof: If Afi,j] # A[i — 1,7 — 1], then by Equation 2 it follows that A[i,j] = A[i — 1,j] + 1 or
Ali, j] = Ali,j — 1]+ 1. Without loss of generality, we assume that A[i, j] = Ali —1, j]+1. Likewise,
according to Theorem 1, A[i, j] = A[i — 1,7 — 1] + 1, which means that A[i — 1,57 — 1] = A[i — 1, j].
But then, since A[7, j] is located in a black block, we would have given it the value of A[i —1,j — 1],
in contradiction to the assumption. J

Corollary 1 Given the upper-left boundary of a black block, the value of each element Ali,j]| on
its bottom-right is computed by copying the value of the element that is on the intersection between
the upper-left boundary and the diagonal d = j — 1.

Time Complexity. Given the indices of the black block and (4, j), one can find in O(1) time the
location of the element on the upper-left boundary that has to be copied into A[i, j]. Hence, given
a black block Alitop . . - ibottom: Jieft - - - Jright), the values of Alitop .. . ibottoms Jright] and

Alibottom Jieft - - - Jright] are computed in O((jright — Jleft + 1) + (bottom — %top + 1)) time.

3.2 White blocks

We show how to compute the values on the right side of the block; computing the elements on the
bottom row is done similarly. Thus, given a white block Afitop . .. ibottom: Jieft - - - Jright], our goal is
to compute the values of Alitop + 1. .. ihottoms Jright)- By Equation 1, an element of a white block is
computed as follows:

Ali, g = min(Ali — 1,51+ 1, Ali,5 — 1]+ 1, Ali = 1,5 — 1] + 1). (3)

Given two elements, Ala,b] and Alp, q] with a < p,b < g, we define both the distance between
them and dis(A[a, b], A[p, q]) to be the edit distance between [z, ... zp], [Yp, ... yg]. If p <aorqg<b
then dis(Ala, b], Alp, q]) = cc.

Note that in a white block dis(A[a,b], Alp, q]) = maz{p — a,q — b}. Following Equation 1, we
get recursively that each element A[i, jright], for 4top < @ < ipottom, gets its value from an element
Alp,q] (where p < i) on the upper-left frame of the block, and an addition of the distance of this
element to A[4, jright|. Hence,

A[iajright] = le,lqn{A[p, Q] + dis(A[p, Q]a A[iajright])}a (4)

where (p, q) ranges over all the indices with p < i corresponding to the upper-left frame of the
block.

The diagonal d = jrignt — i goes from A[i, jrignt] up to the upper-left frame of the block. This
diagonal crosses the upper-left frame either on the top through the element Afitop, jdiagonal] (Where
Jdiagonal = Jright — (¢ — %top)), or on the left through the element Aligiagonal, jiet] (Where igiagonal =
@ — (jright — Jiefe)). Given an element A[i, jrigne] on the right frame, we divide the upper-left frame
into three zones (refer to Figure 2):

Zone I - If Diagonal(i — jrgnt) crosses the top frame, then Zone I consists of elements
Alitop, Jdiagonal - - - Jright]; otherwise, if Diagonal(i — jright) crosses the left frame, then Zone I
consists of elements Afitop, jieft - - - Jright]-

Zone II - If Diagonal(i — jright) crosses the top frame, then Zone II consists of elements
Alitop - . - 0, Jleft]; otherwise, if Diagonal(i — jyight) crosses the left frame, then Zone II consists
of elements Aligiagonal - - - %, Jieft)-
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Figure 2: Figure 2a shows a horizontal block, where zone III is on the upper side of the frame.
Figure 2b shows a vertical block, where zone III is on the left side of the frame.



Zone III - Zone III consists of all of the elements on the upper-left frame between Zone I and
Zone II.

Lemma 3 The distance between each element in Zone I and Ali, jright] is (i —iwop +1); the distance
between each element in Zone II and A[i, jright] is (Jright — Jiefe + 1).

Proof: By definition, the distance of element A[4, jyight] to any other element Aliiop, j] of Zone I is
the edit distance between the strings [y, ... Yj g and [Zig,, ... zi]. These two elements (A1, jrignt]
and Alitep, j]) are placed in a white block; hence, there are no matches between them. In this
case, the edit distance between the strings is always the length of the longer of them. In the case
of Zone I, the length of the string [z;,,,...2;] is always greater than or equal to the length of
the string [y;, ... Yjgn], for all j in Zone L. Thus, we clearly get that the distance is the length of
[Tirps - - - i), which is (i — dop + 1). It is similarly true for Zone II, except that the longer string is
NOW [Yjies, * * * Yjngne)» A its length is jright — Jiert + 1. ||

Before starting the calculation, notice that
Lemma 4 Zone III is unnecessary.

Proof: Consider a horizontal block. We are looking for an element that minimizes the sum of its
value and its distance to A[i, jright]. Let Alitop, jdiagonal] be the leftmost element in Zone I, and let
Alitop, ¢] be an element in Zone III. We will show that

Alitop, jdiagonal] + dis(Alitop, jdiagonall, Ali, jright]) < Aliop, ] + dis(Alitop, cl, Ali, jrignt]).  (5)
It is easy to see that
dis(Alivop, ¢}, Alt, Jright]) = dis(Alitop, ¢], Alitop, Jdiagonal]) + dis(Alitop, Jdiagonal]> A, Jright]),
and, from Theorem 1, we know that
Alitop, Jdiagonal] < Alitop. €] + dis(Alitop, €], Alitop, Jdiagonal])-

Hence,
A[itopa jdiagonal] + d'iS(A['itopa jdiagonal]a A[i, jright]) <
A[itopa C] + diS(A[itopa c], A[itopajdiagonal]) + dis(A[itopa jdiagonal]a A[’i, jright])a

and so
A[itopajdiagonal] + diS(A[itopajdiagonal]a A[iajright]) S A[itopa C] + diS(A[itopa C]a A[iajright])a

as Equation 5 claims. It follows immediately that the element Alitop, c| will never minimize Equa-
tion 4. 1

We have proved that an element A[i, jright] gets its value either from an element in Zone I or
from an element in Zone II. In the next two subsections we will find the two elements that produce
the minimum value for A[i, jiignt), one from Zone I and one from Zone II. Then, A[i, jright] will
choose the minimum of these two candidates.



3.2.1 Zone 1

Our goal is to find, for each element A[i, jrign] on the right part of the frame, the element in Zone I
that provides the minimum value for equation 4. As was shown in Lemma 3, the distance of all the
elements A[p, q] in Zone I to A[i, jright] is equal to (i — ip + 1); therefore, we have only to find the
minimum value among the elements in Zone I. When considering the top element Afizop + 1, jright]
Zone 1 contains only two elements, so we start by finding the minimum value of them. Then we
compute the minimum for Afitop + 2, jright] 10 Alibottom, Jright)- The elements in Zone I that are
considered for the computation of Ali, jright] are either the same as the elements that are considered
in the computation of A[i — 1, jrignt] (When jright — Jiefc < % — ftop), Or expanded with one element
Alitop, jdiagonal], the element on diagonal(jright — %). Hence, the minimum value is either the one
that was computed for A[i —1, jright] or Alitop, Jdiagonal]- The array MinZonel will hold the minimum
values of Zone I for all computed elements.
The following algorithm computes the minimum of Zone I:

Algorithm 1

for i = 4top tO pottom dO
if (Z - 7:top < jright - jleft) then
MinZonel[i]:=min(MinZonel[i — 1], Alitop, jdiagonal])
else
MinZonel[i]:= MinZonel[i — 1]

3.2.2 Zone 11

Our goal is to find, for each element A7, jiignt] on the right part of the frame, the element A[p, ¢
in Zone II that provides the minimum value for the sum

(A[pa q] + d’LS(A[p, q]7A[IL.7jright]))' (6)

As was shown in Lemma 3, the distance of each element in Zone II to A[i, jrgnt] is equal to
(Jright — Jieft +1); therefore, it is sufficient to find the minimum value among the elements in Zone II.
We start by finding the minimum value in Zone II for Afitop + 1, jright], then for Aficop + 2, jrights
and then continue until we find the minimum value in Zone II for A[ipottom, jright]- In the beginning,
the size of Zone II is two; it then grows to (jright — Jieft + 1), and, after Zone II reaches its maximum
size, in each iteration one element is deleted and one is added.

Observation 1 Let s,w be two values in a given Zone II; without loss of generality, we assume
that s < w. Then, following Theorem 1, all of the values between s and w must also appear in the
zone.

From this observation we get that for any Zone II, if the minimum value in the zone is a and
the maximum value is b, then the values a,a + 1,...b — 1,b must appear in that zone.

In order to compute the minimum of the changing zone, we maintain a variable, Min, which
keeps the minimum value of Zone II elements through the entire computation. The variable New
keeps the value of the new element that is added to the zone (A[i, jiet]), and Out is the one that
is deleted from it (A[igiagonal — 1, Jieft])- In addition, we keep counters for each value in the zone by
maintaining an array “counter” of size n. We assume that m < n; hence, the values in Zone II are
at most n. The array MinZonell holds the minimum value of Zone II elements for all computed
elements.



The following algorithm computes the minimum value in Zone II:
Algorithm 2

for i=itop tO ipottom dO
counter[ N ew]:=counter[New]+1
Min := min(Min, New)
counter[Out]:=counter[Out]-1
if counter[Min]=0 then! Min = Min + 1
MinZonellI[i|:=Min

Time Complexity. Given a white block, the arrays MinZonel and MinZonell are computed
in O((jright — Jieft + 1) + (ibottom — ttop + 1)), using Algorithm 1 and Algorithm 2 respectively.
Given a location (i, jright) in a white block, one can find in O(1) time the minimums of Zone I
and Zone II for (i, jrgnt) from the arrays MinZonel and MinZonell. Hence, given a white block
A[itop -+« Thottom Jleft - - -jright]a the values of A[itop <+« Tbottom jright] and  Alipottom, Jleft - - -jright] are
computed in O((jright — Jeft + 1) + (ibottom — itop + 1)) time.

Theorem 5 The edit distance between two run-length encoded strings, X and Y, can be computed
in O(k-m+1-n) time.

Proof: We have shown that the work for each block (black or white) is linear in the size of its
bottom-right boundary. Hence, the total time complexity is linear in the total size of the boundaries
of all blocks, and that is exactly k-m +1-n. |

3.3 Example

We now give an example to show how the algorithm works. We let X = aaaabbbbbbb and Y =
bbbbbbbaaa. The initial matrix is shown in Figure 3.

The first block to be calculated is the upper-left one, corresponding to the runs aaaa and bbbbbbb.
This block is white and is vertical. The first element to be considered is A[l,4]. Zone I now has
only two values: 3 and 4. We choose 3. Zone II also has two values: 0 and 1. We choose 0. We
compare 3 + 1 with 0 + 4 and get A[l,4] = 4. Similarly, we get A[2,4] = A[3,4] = A[4,4] =4. We
now consider A[5,4]. It is the first element in which Zone II is all inside the block; thus, in each
step down, it loses one element from its upper side, and gains a new one from its bottom side. For
A[5,4] we already have the minimum value of Zone I, since it already contains the whole upper
side of the block. Thus, it does not change anymore. The minimum value of Zone I remains 0 for
the rest of this block. We have left to compute the minimum value of Zone II. The minimum value
for A[4,4] was 0. After we move to A[5,4], 0 got out from Zone II so the new minimum will be 1.
Finally, the comparison between the values received from the two zones gives A[5,4] the value 5.
In exactly the same way we give A[6,4] the value 6, and A[7,4] gets the value 7.

To calculate the bottom part of the block, we make the same considerations, only Zone I and
Zone II replace each other in their positions. The result is shown in Figure 3.

The next two blocks are black. For each element on the bottom-right part of the frame, we find
the element on the upper-left part that is on the same diagonal and copy its value. The result is
shown in Figure 4. The last block is white, and its calculation is similar to the first one. The final
calculated matrix is shown in Figure 4.

! According to Observation 1, the new minimum is Min + 1, since it exists in Zone II.



O ooy OoOC o o o o o

O 00 1 ON BN = O

(=]

—_
N
W o

ENGS

wn o
N o
= o
co o
o o
—_

oS o

—
- o

a

o ooy OoOC o o o o o

aaaabbbbbbDbb>b
Q 4 56 7 8 91011
1 4
2 4
NN

4

NE

6
7707 7 7
8
9
10

b

Figure 3: Part 3a shows the initial matrix corresponding to strings X and Y. Part 3b shows the
matrix after calculating the first white block.
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Figure 4: Part 4c shows the matrix after calculating the two black blocks. Part 4d shows the
calculated matrix.
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