
On the Common Substring Alignment Problem 1

Gad M. Landau *

Department of Computer Science, Haifa University, Haifa 31905, Israel, phone: (972-4)
824-0103, FAX: (972-4) 824-9331; and Department of Computer and Information Science,

Polytechnic University, Six MetroTech Center, Brooklyn, NY 11201-3840
E-mail: landau@poly.edu

Michal Ziv-Ukelson
�

Department of Computer Science, Haifa University, Haifa 31905, Israel; On Education
Leave from the IBM T.J.W. Research Center;

E-mail: michal@cs.haifa.ac.il

The Common Substring Alignment Problem is defined as follows: Given a set of one or
more strings ���������
	�	�	��� and a target string � . � is a common substring of all strings ��� ,
that is ��������������� . The goal is to compute the similarity of all strings ��� with � , without
computing the part of � again and again. Using the classical dynamic programming tables,
each appearance of � in a source string would require the computation of all the values in
a dynamic programming table of size ��� �� "! where is the size of � .

Here we describe an algorithm which is composed of an encoding stage and an alignment
stage. During the first stage, a data structure is constructed which encodes the comparison
of � with � . Then, during the alignment stage, for each comparison of a source ��� with
� , the pre-compiled data structure is used to speed up the part of � .

We show how to reduce the ��� �� "! alignment work, for each appearance of the common
substring � in a source string, to ��� ��! - at the cost of ��� �� "! encoding work, which is
executed only once.

Key Words: design and analysis of algorithms, dynamic programming, sequence com-
parison, repeated substrings, shared substrings, Monge arrays, candidate lists.

� This paper continues work from [19]. The efficiency of the solutions, as well as the range of scoring
schemes to which they apply, have been further enhanced in this paper.

* partially supported by NSF grant CCR-9610238, by NATO Science Programme grant
PST.CLG.977017, and by the Israel Science Foundation, founded by the Israel Academy of Sciences
and Humanities.�

partially supported by the Israel Science Foundation founded by the Israeli Academy of Sciences
and Humanities.

1

2 GAD M. LANDAU AND MICHAL ZIV-UKELSON

1. INTRODUCTION

The Common Substring Alignment Problem is defined as follows: Given a set
of one or more strings ���������	�
�
���� and a target string � . � is a common substring
of all strings ��� , that is ��������������� , and � may be repeated several times in any
of the source strings (see Figure 1). The goal is to compute the similarity of all
strings ��� with � , without computing the part of � again and again. We know
the locations where the common subsequence � starts and ends in each source
sequence ��� . The part of the target � with which � will align, however, will vary
according to each ��� and ��� combination.

T = "DCBADBDC" Y = "DCBD"

��� = "E DCBD DCBD" � � = "E" � � = "DCBD"

��� = "CBA DCBD C" � � = "CBA" � � = "C"

FIG. 1. An example of two different source strings (� ��� � �) sharing a common substring�
. Note that

�
is repeated twice in � � .

More generally, the sequence sub-component � could be shared by different
source sequences competing over similarity with a common target, or could appear
repeatedly in the same source string. Also, in a given application, we could of
course be dealing with more than one repeated or shared sub-component.

In this paper, we will describe an algorithm which is composed of an encoding
stage and an alignment stage. During the first stage, a data structure is constructed
which encodes the comparison of � with � . Then, during the second stage, for
each comparison of a source �� with � , the pre-compiled data structure is used to
speed up the part of aligning each appearance of the common substring � .

A clear distinction should be made between the off-line pre-processing work and
the online encoding stage. In the applications for which our algorithm is intended,
the source sequence database is prepared off-line, while the target can be viewed as
an "unknown" sequence which is received online. The source strings can be pre-
processed off-line and parsed into their optimal common substring representation.
Therefore, we know well beforehand where, in each ��� , � begins and ends.

However, the comparison of � and � can not be computed until the target is
received. Therefore, the encoding stage, as well as the alignment stage - are both
online stages, and the tradeoff between the two must be cleverly minimized in
order to maximize the efficiency gain by the suggested two-stage scenario.

Note that even though both stages are online, they do not bear an equal weight
on the time complexity of the algorithm. The efficiency gain is based on the fact
that the first stage is executed only once per target, and then the encoding results
are used, during the second stage, to speed up the alignment of each appearance
of the common subcomponent in any of the source strings.

ON THE COMMON SUBSTRING ALIGNMENT PROBLEM 3

We will show how to reduce the ��������� runtime work for each appearance of a
repeated substring � in a source sequence to �����	� , at the cost of a single execution
of the ��������� time encoding work, where � is target size and � is the size of � .

For source sequences with two or more common factors, the time complexity of
the encoding stage is further reduced to ������
�� , where
 is the number of nodes
in the dictionary trie for the common factors.

The remainder of this paper is organized as follows. In section 2 we present some
applications which can be cast as Common Substring Alignment problems. Section
3 contains a background overview, including a description of the scoring schemes
to which the algorithm applies. The notation, as well as a general description of
our approach to solving the Common Substring Alignment problem, is given in
Section 4. In section 5 we describe the first algorithm, which encodes a common
substring in ����� �� ����� work, and then uses an �����	� time complexity recursive
algorithm for the alignment stage. In section 6 we present a more efficient, ���������
time encoding stage algorithm, and an algorithm which utilizes the results of the
efficient encoding for a non-recursive, linear time alignment stage.

2. APPLICATIONS

There are various applications which can be cast as Common Substring Align-
ment problems. The applications differ by the pattern in which the common sub-
components are repeated or shared by the source strings, and therefore may vary
in the potential combinatorial gain by applying Common Substring Alignment
algorithms to their solution.

2.1. Template Matching Applications
In Template Matching Applications, the data is viewed as a set of many com-

peting source sequences to be compared to a common target. The template source
sequences are usually known well in advance, and the target is given online. The
objective is to classify the target by finding the source string whose alignment
with the target gives the highest similarity score. Very often, the competing source
strings are variations of a similar signal, or different combinations of a common
set of subcomponents. Common Substring Alignment can be used to speed up the
comparison of each common subcomponent, rather than comparing it again and
again for each template source string containing the common subcomponent.

Intelligent Tutoring.
In the Intelligent Tutoring application [8], the alphabet for each sequence are all

possible computer interface artifacts (keyboard and mouse input combinations).
The student is given the task, and the resulting events are recorded as the student
tries to solve the problem. The new stream of user input events is then compared
to various templates, which represent different solutions to the given exercise. The
result of the comparison between the student’s input sequence and the most similar

4 GAD M. LANDAU AND MICHAL ZIV-UKELSON

template solution can be used to provide the proper feedback to the student. For
many problems, the various template solutions are variations of a common theme,
and share common substrings of artifacts.

Electronic Commerce.
Another example of a potential application domain for the problem is in Elec-

tronic Commerce [5], [6], [20]. In an attempt to improve both merchandise and
marketing aspects of the system, logging can be employed to record the sequences
of site traversal actions of potential customers from the minute they enter the com-
merce site until they exit. Accumulated server logs can be mined [5], in order
to provide the system with a prototype set of sequences of site traversal actions
known to have led to purchase. A new site traversal sequence which did not result
in purchase will be compared against all prototypes in an attempt to find the most
similar sequence of actions which did lead to a purchase. The resulting alignment
between the two can then be used to study what went wrong with the potential pur-
chase. (For example, a shopping cart may have been filled, and then the customer
left without completing the purchase order, due to difficulties in a specific part of
the purchase form - in which case improving the user interface of that part of the
form may result in better sales.) Various subsets of the prototype-set sequences
may share long similar subcomponents representing common protocols, such as
typical shopping cart routes, or sequences of actions required to fill a purchase
form.

Network Security.
Another potential application is in Intrusion Detection Systems (IDSs) [28].

An "attack" is a sequence of audit trail log entries leading to a break-in. System
security would like to spy on users who attempt to access a site, in order to detect
aggressive users and block their entrance before they break in. An audit trial
sequence is labeled as a potential threat if it is similar enough to one of the known
attacks. Audit trail sequences of known attacks may share long subsequences of
common security breech protocols.

2.2. Alignment of Repetitive Sequences
Here, each repeated factor is, in essence, a common substring which we would

like to compare against the target only once during an encoding stage, rather than
comparing it again and again for each appearance of the repeated factor in the
source string, during the matching stage.

Especially interesting are those applications where the repetitions are such that
one common subcomponent can be derived from another common subcomponent
via minor modifications. For example, each repeated factor may be obtained from a
smaller repeated factor plus one character, such as in the application of approximate
string matching over L-Z compressed text [17]. Another example is in genomic
data [31], such as DNA sequences, where repetitions can be grouped into families
of similar subcomponents. DNA has a small alphabet, and repetitions belonging

ON THE COMMON SUBSTRING ALIGNMENT PROBLEM 5

to one family form hierarchies of subsequences which evolved from a common
core and from one another. Therefore, common subcomponents belonging to one
family tend to form a compact keyword trie.

The fact that the factors form a compact trie allows for an even more efficient
encoding, where a prefix common to one or more factors can be encoded once,
instead of redoing the encoding work for each factor sharing the prefix.

2.3. Subcomponent Concatenation With Preserved Order
In application belonging to this category, the source string is segmented into

many subparts, and the target string is matched against different concatenations of
these source substrings. The concatenations preserve the ordering of the subseg-
ments in the source string. Gene Prediction Via Spliced Alignment is an example
of an application from this category.

Gene Prediction Via Spliced Alignment
Recognition of genes in eukaryotic DNA is seriously complicated by noisy

regions (introns) that interrupt the coding regions (exons) of genes. The gene-
prediction via spliced alignment approach, due to Gelfand, Mironov and Pevsner
[11, 23, 29] incorporates similarity analysis into gene prediction by attempting to
find a set of potential exons in a genomic sequence whose concatenation is highly
similar to one of the already known gene sequences in the database.

The task of gene prediction is generally divided into two stages. The first task
is that of finding candidate exons in a long DNA sequence believed to contain a
gene. A candidate exon is a sequence fragment whose left boundary is an acceptor
site or a start codon, and the right boundary is a donor site or a stop codon. The
nucleotide sequence in Figure 2 contains marked sites where a candidate exon may
begin and end. Uppercase A-E mark identified sites where an exon is likely to
begin (start/acceptor sites), and lowercase f-j mark sites where exons are likely to
end (stop/donor sites). Candidate exons are A-f, A-g, A-h, A-i, A-j, B-f, B-g, B-h,
B-i, B-j, C-g, etc. This set of derived candidate exons should include all true exons,
but could contain any number of false exons, depending on the filtration degree
used in the preprocessing stage. The second task is that of selecting the best subset
of nonoverlapping candidate exons to cover the sequence of the predicted gene.
(Two of the many possible assemblies of candidate exons as candidate genes are
shown in the figure: � � ��������� �	�
���������� and ��� ��������� �
������ .) Each
candidate gene (a concatenation of non-intersecting candidate exons which satisfy
some natural consistency conditions [26]) is compared against the target sequence,
which is an already known gene from a homologous species. An interesting
combinatorial approach, using Network Alignment, which explores all possible
exon assemblies in polynomial time, is described in [11].

Dominant portions of each of the competing candidate gene assemblies are
segments common to other candidates, since the candidate exons overlap in the
genomic source sequence. (The two source strings in the figure, � � and ��� , share

6 GAD M. LANDAU AND MICHAL ZIV-UKELSON

N
A B C D E

f g h i j

A

f

C

h

E

i

B

g

D

j

S

S

B

f

C

g

D

h

E

i

Substrings
shared
By S and S

1

2

1 2

FIG. 2. A nucleotide sequence (���������) and two of its derived candidate genes (� ��� � �).

the substrings B-f, C-g, D-h and E-i.) Therefore, casting this application as a
"Common Substring Alignment" problem, would enable us to compare each of
the shared segments only once against the target, instead of having to match it
again and again for each candidate gene in which it is included.

3. BACKGROUND

When formalizing the relatedness between two sequences, one could measure
either their 	 ��
 ����������� or their � ��	���� ����� . An example of a basic 	 ��
 �����������
metric is LCS [14], which measures the subsequence of
���� ��
���� length common
to both sequences, where a subsequence is defined as any series of elements which
can be obtained from a given sequence by deleting some of its elements. The
Edit Distance metric [21], on the other hand, measures the
 � � ��
���� number
of substitutions, insertions and deletions required to transform one sequence into
another. Each mismatched aligned pair and unaligned symbol is called a difference
and scores 1. All pairs of equal aligned characters score 0. One seeks an alignment
which minimizes the score or number of differences and this minimal score is
called the � ��	���� ����� between � and � . The distance and similarity perspectives
are complementary, and any distance problem can be translated into a similarity
problem.

From now on we will describe the solutions in terms of distance minimization.
(For the sake of simplicity, we will restrict our examples to the Edit Distance mea-
sure [21].) However, the solutions can easily be translated to a score maximization
problem, in order to apply to string comparison metrics which measure similarity,
rather than distance.

ON THE COMMON SUBSTRING ALIGNMENT PROBLEM 7

The Operation Weight Edit Distance problem [13] is a generalization of Edit
Distance which allows an arbitrary weight to be associated with every edit opera-
tion, as well as with a match. Thus, any insertion or deletion has a weight denoted
� ����� � , a substitution has a weight 	 , and a match has a weight
 .

An even more general scoring scheme is that of Alphabet Weight Edit Distance
[13], in which the scoring scheme matrix

�
contains for each character � a value� ��� � � � for deleting the character, and a value
� � � � � � for inserting the character.

For a pair of characters � and � , � ��� ��� � is the score obtained by aligning character
� against character � . Given two strings � ��� and the scoring scheme matrix

�
,

the objective is to compute the minimal score for an alignment of � and � . The
solutions described in this paper will apply to all string comparison metrics for
which the range of values in

�
is bounded by a constant.

The distance between strings � and � can be computed via the dynamic pro-
gramming algorithm, using the given score matrix, as described in [25]. The
dynamic programming solution to the string comparison computation problem
can be represented in terms of a weighted dynamic programming graph [13] (See
Figure 3). A DP Graph for � and � is a directed, acyclic, weighted graph con-
taining ��� ��� �� � ��� �	� �� � nodes, each labeled with a distinct pair ������
 � ����
����� ��� ������
���� �	� � . The nodes are organized in a matrix of ��� ��� �� � rows
and ��� �	� �� � columns. The DP Graph contains a directed edge with a weight of� � � ��������� � from each node ������
 � to each of the nodes ������
 �� � , and a weight
of
� ����������� � � from each node ������
 � to ��� �� ��
 � . Node ������
 � will contain a

diagonal edge with a weight of
� ������������������� � to node ��� � ��
 � � , where

�
is

the scoring scheme matrix for the problem. Upon completion, the value at vertex
� ��� � � of the DP Graph will be set to the score between the first � characters of
� and the first � characters of � . The optimal score between � and � , and the
weights for entire graph, can be obtained in ����� ��� � �	� � time.

Optimal paths in the DP Graph (paths whose total weight is minimum) represent
optimal alignments of � and � . In particular, the score for comparing � and �
is equivalent to the total weight of the optimal path connecting the leftmost vertex
in the first row of the DP Graph for � and � with the rightmost vertex in the last
row of the graph.

4. THE COMMON SUBSTRING ALIGNMENT APPROACH

The DP Graph used for computing the distance between a source string ��� �
��������� and a target string � can be viewed as a concatenation of 3 sub-graphs,
where the first graph represents the distance between � � and � , the second graph
represents the distance between � and � , and the third graph represents the distance
between ��� and � . (See Figure 3.)

In this partitioned solution, the weights of the vertices in the last row of the first
graph serve as input to initialize the weights of the vertices in the first row of the

8 GAD M. LANDAU AND MICHAL ZIV-UKELSON

C

B

D

D

D C B A D B D C

4

0
0

1 2 3 4 5 6 7 8

1

2

3

0 1 2 3 4 5 6 8

3 3 3 2 1 2 3 4 5

I0 I1 I2 I3 I4 I5 I6 I7 I8

O7

B

A

C

D C B A D B D C
1 2 3 4 5 6 7 8

1

2

3

7 6 5 4 4 4 3 2 3

O0 O1 O2 O3 O4 O5 O6 O7 O8

C

0
0

1 2 3 4 5 6 7 8

1

b

f

G

7 � Q�

�_Y_ � O

FIG. 3. The DP graph for computing the distance between ���������
	����	����� ,
and � � �����
	�����
	����� . � � contains the common substring

� �������
	���� . This
figure continues Figure 1.

second graph. The weights of the last row of the second graph can be used to
initialize the first row of the third graph.

The motivation for breaking the solution into 3 sub-graphs is that the second sub-
graph, representing the distance between � and � , is identical for all DP graphs
comparing any of the strings �� with � . More specifically, both the structure and

ON THE COMMON SUBSTRING ALIGNMENT PROBLEM 9

the weights of the edges of all DP sub-graphs comparing � with � are identical,
but the weights to be assigned to the vertices during the distance computation may
vary according to the prefix � � which is specific to the source string. Therefore,
an initial investment in the learning of this graph as an encoding stage, and in its
representation in a more informative data structure, may pay off later on.

Notation

Throughout this paper, we use the following notation.

� � - denote the size of the subsequence � which is common to all ��� .� � - denote the size of target string � .� � �� - denote the substring of string � from index � up to index � , where indices
are numbered from 1 to � � � . (�

�� ��� - denote the empty string.)��� - denote the second sub-graph comparing � and � , which is shared by all
DP graphs comparing a source string � with � .��� - denote the series of weights of the vertices in the first row of � .� � - denote the series of weights of the vertices of the last row of � .

Algorithm Framework

The Common Substring Alignment solutions described in this paper comply by
the following 2-stage approach.

Encoding Stage: Given � and � , encode � in a format which can be
efficiently used by the alignment stage.

Alignment Stage: Given the output of the encoding stage and input row �
- compute the output row � .

A similar approach was introduced by [16], as a procedure in an algorithm
for finding the best non-overlapping repeats in a sequence. They presented an
����� �
	 �� �	� time complexity algorithm for the encoding stage, followed by an
����� 	 �� �	� alignment stage. A more space efficient algorithm is given in [4].

5. THE FIRST ALGORITHM

5.1. The Encoding Stage.
The following
 � � � matrix will be computed. (See Figure 4.)��������������������������
 � � �! ��� �#" , for � ��� �
�
� �	� � ��� �
�
� � , stores the weight

of the shortest path from the vertex in column � of the first row of the graph � to
the vertex in column � of the last row of the graph � .

A similar encoding of a graph has been used in [2, 3, 4, 16, 27].

 � � � can be constructed in ����� � ����� time by using the algorithm of [27]. For

the LCS and Edit Distance metrics,
 � � � can also be constructed in ����� � �����

10 GAD M. LANDAU AND MICHAL ZIV-UKELSON

����� � � � ��������������	���
����
3 3 3 2 1 2 3 4 5 input row�� ��� matrix

4 3 2 1 1 1 2 3 4 ��������� ����� ��� � � �� �����
- 4 3 2 2 2 3 4 5 ��������� � ��� ��� � � �� �����
- - 4 3 3 3 4 3 4 ��������� ����� ��� � � �� �����
- - - 4 4 3 3 2 3 ��������� � ��� ��� � � �� �����
- - - - 4 3 2 1 2 ��������� � ��� ��� � � �� �����
- - - - - 4 3 2 3 ��������� ����� ��� � � �	 �����
- - - - - - 4 3 2 ��������� � ��� ��� � � �
 �����
- - - - - - - 4 3 ��������� ����� ��� � � �� �����
- - - - - - - - 4 ��������� ����� ��� � � �� �����
0 1 2 3 4 5 6 7 8 column numbers

�! � matrix:

7 6 5 4 4 4 5 6 7 �! �!� " � # �$" 	�	 	&%��
- 7 6 5 5 5 6 7 8 �! �!� '�� # �$" 	�	 	&%��
- - 7 6 6 6 7 6 7 �! �!� (� # �$" 	�	 	&%��
- - - 6 6 5 5 4 5 �! �!�) � # �$" 	�	 	&%��
- - - - 5 4 3 2 3 �! �!� * � # �$" 	�	 	&%��
- - - - - 6 5 4 5 �! �!� + � # �$" 	�	 	&%��
- - - - - - 7 6 5 �! �!� , � # �$" 	�	 	&%��
- - - - - - - 8 7 �! �!� - � # �$" 	�	 	&%��
- - - - - - - - 9 �! �!� . � # �$" 	�	 	&%��
0 1 2 3 4 5 6 7 8 iteration numbers

� � ��� � � � � � � � � � 	 �
 � �
7 6 5 4 4 4 3 2 3 output row

FIG. 4. The �0/ � � and 132 � matrices which correspond to the sequences � �
�����
	����	����� , � � �����
	���� and the input row / for 	 � � ���
	�� � . The out-
put row 1 is the series of column minima of 132 �34 � �&576 �8/ �:9 �0/ � �34 � �;576 . This figure
continues the example of Figures 1 and 3.

time by employing [18]. Alternatively, one could use the algorithm from [3] to
construct
 � � � in ����� �
	 �� �	� time.

5.2. The Alignment Stage.
Given input row � and sub-graph � , the weight of output row vertex � � can be

computed as follows.

� � �
�<>= ?@�A�B � � @
 � � �! � � �#" �

ON THE COMMON SUBSTRING ALIGNMENT PROBLEM 11

C

B

D

D

D C B A D B D C

4

0
0

1 2 3 4 5 6 7 8

1

2

3

0 1 2 3 4 5 6 8

0

3 3 3 2 1 2 3 4 5
I0 I1 I2 I3 I4 I5 I6 I7 I8

4 3 2 1 2 3 3
 4 Edit[T ,Y]7

x+1

7 6 4 8 4 6 6 2

O7

 I+ Edit[T ,Y]x x+1
7

FIG. 5. The computation of output entry 1
 for � � �����
	����	����� ,
	 � � ���
	�� � , and

� � �����
	���� . The minimal output at 1
 , � � �
� � ��� / � 9��� �
	 4 �
��� � � � 6
� �� , is achieved by the path originating at column 4 and receiving in-
put / � . This figure continues the example of Figures 1, 3 and 4.

This computation entails selecting a minimum among up to � sums for each
of the � output sources. (Figure 5 demonstrates an example of an output entry
computation.) The above formulation was first presented in [16]. It is, in essence,
a static version of the 1D dynamic programming problem [12]:

� �#"��
�<>= ?
� A�B �
 � "
 � ��� � �	�

-in which all values of
 � " are specified before any value of � �#" is computed,
and the values of function
 � ��� � � are precomputed for all integers � ��� �
�
� �	� �	�
� �
�
� � .

12 GAD M. LANDAU AND MICHAL ZIV-UKELSON

� � is the minimum of column � of the following ����� matrix, which merges
the information from input row � and
 � � � . (See Figure 4).
������������������ ��� ��� �����! ��� �#" � � �
 � � �! ��� �#" for � ��� �
�
� �	� �	��� �
�
� � .

Aggarwal and Park [2] and Schmidt [27] observed that
 � � � matrices are
Monge arrays [24].
������������������ ��� ���

A matrix � � �
�
��
 ��� �
�
� ��" is Monge if either condition
1 or 2 below holds for all �	��� �
�
��
 � � ��� �
�
� � :

1. � ��� �#" ��� ��� � � � " ��� � � � � �#" ��� � � � � � � � " .
2. � ��� �#" ��� ��� � � � "���� � � � � �#" ��� � � � � � � � " .

It is easy to see that ����� matrices also follow the Monge properties.
An important property of Monge arrays is that of being totally monotone.
������������������ ��� 	��

A matrix � � �
�
��
 ��� �
�
� ��" is totally monotone if either
condition 1 or 2 below holds for all � ��� ��� �
�
��
�
 � � � ��� �
�
� � :

1. � � � � "��� ��� � " ����� � � �#"��� ��� �#" for all ����� and ��� � .
2. � � � � " �� ��� � " ����� � � �#" �� ��� �#" for all ����� and ��� � .

Note that the Monge property implies total monotonicity, but the converse is
not true.

Aggarwal et al [1] gave a recursive algorithm, nicknamed ��������� in the
literature, which can compute in �����	� time all row and column maxima of an
�� � totally monotone matrix, by querying only �����	� elements of the array.
Hence, one could use ��������� to compute the output row � by querying only
�����	� elements of ����� . Clearly, if both the full
 � � � and all entries of � are
available, then accessing an element of ����� is O(1) work.

One obstacle which comes up during this implementation is that
 � � � is not
rectangular. Only the values in the upper triangle are defined. However, this can
be resolved by setting the undefined values in the lower triangle to � .

5.3. Time Analysis of the First Algorithm.

 � � � is constructed during the encoding stage in ����� � ����� time. The

alignment stage is done in �����	� time, for each appearance of the common substring
� in a source sequence.

ON THE COMMON SUBSTRING ALIGNMENT PROBLEM 13

� ��� ��� matrix:
� -1 -1 -1 0 0 1 1 1 �! �!� " � #�� � �! �!� " � # � '��
- � -1 -1 0 0 1 1 1 �! �!� '�� #�� � �! �!� '�� # � '��
- - � -1 0 0 1 -1 1 �! �!� (� #�� � �! �!� (� # � '��
- - - � 0 -1 0 -1 1 �! �!�) � #�� � �! �!�) � # � '��
- - - - � -1 -1 -1 1 �! �!� * � #�� � �! �!� * � # � '��
- - - - - � -1 -1 1 �! �!� + � #�� � �! �!� + � # � '��
- - - - - - � -1 -1 �! �!� , � #�� � �! �!� , � # � '��
- - - - - - - � -1 �! �!� - � #�� � �! �!� - � # � '��
- - - - - - - - � �! �!� . � #�� � �! �!� . � # � '��
Borderline Points :

- - - - - 2 2 1 5 �������
	��� � ��	������ � ��� '���#��
- - - - - - 3 1 5 �������
	��� � ��	������ � ��� (��#��

FIG. 6. An example of a � � � �� matrix and its Borderline Points. Note that for the
Edit Distance metric, which is used in this example, � � , and therefore the number of
Borderline Points for � � � �� is bounded by �� . This figure continues the example of
Figure 4.

6. A MORE EFFICIENT, NON RECURSIVE ALGORITHM

6.1. The Encoding Stage.
A more efficient encoding can be achieved, by utilizing the fact that the number

of relevant changes, from one column of both ����� and
 � � � to the next, is
constant. This property, also discussed in [27], allows for a representation of

 � � � via an �����	� number of "relevant" points. The importance of this property
will become clearer in section 6.2.

The
���� � � matrix is defined as follows.
��������������������������
���� � �! ��� �#" � �����! ��� �#" � �����! ��� � � � " �
 � � �! ��� �#" �

 � � �! ��� � � � " for � � � �
�
� �	� � ��� �
�
� � � � .

The range of possible values for
���� � �! ��� �#" depends on the scoring scheme
which is used for the string comparison, and is actually the upper bound for the
value difference between two consecutive elements in the dynamic programming
table. (For an Example of a
���� � � matrix, see figure 6.)

We will use the term � to denote the range bound for
���� � �! ��� �#" values.
As an example, if the similarity metric used is LCS, the only possible values for

���� � � will be either 1 or 0, and � assumes a value of 1. For the Edit Distance
metric, on the other hand, � is 2, since
���� � � can only assume one of the 3
values: -1, 0, 1 [30]. Our algorithm applies to all scoring scheme metrics for
which � is a constant.

14 GAD M. LANDAU AND MICHAL ZIV-UKELSON

Note that the following 2 observations apply to any column in
���� � � .

Observation 1
Since
 � � � is a Monge array - each column in
���� � � is a series of monoton-
ically non-increasing values.

Observation 2
Since the range of distinct values which
���� � � may assume is bounded by a
constant (�) - the number of "steps" (row indices in which the series of column
entries increases in value) in each column of
���� � � is constant.

As a result -
 � � � can be represented via an �����	� size set of relevant "step"
points collected from all columns of
���� � � . (See Figure 6.)
������������������ ��� ���

Let � � � ��� � � � ���� � � �#" for � ��� �
�
� � � � ��� �
�
� � - denote
a row index of a "step" of size 1 in the series of monotonically non-increasing
values of column � of
���� � � . (A step of size

�
is represented by

�
different

Borderline Points).

Clearly,
���� � � has up to � � Borderline Points.

Observation 3
For any two rows �� � � � where ��� � � � � ��� � � � ���� � � �#" � � � .

�����! � � � �#" � �����! � � � � � � "�� �����! ����� �#" � �����! ����� ��� � "
During the encoding stage, the ��������� time complexity algorithm of [[27], sec-

tion 6] is used to compute the Borderline Points of
���� � � .

6.2. The Alignment Stage.
We will now present an algorithm which uses the pre-compiled Borderline Points

and input row � to compute output row � . The new algorithm will employ the
Candidate List concept ([7], [10], [15], [22]).������������������ ��� ���

The Candidate List is a subset of the rows of ����� , which
includes only those rows which are candidates to contain future ����� column
minima. The Candidate List is updated from one iteration of the alignment stage
algorithm to the next. It is sorted by increasing ����� value and increasing row
index. At iteration � of the alignment stage algorithm, the candidate of smallest
row index in the list bears the minimal value at column � of ����� .

A high-level outline of the alignment stage algorithm is given below.

Procedure Alignment Stage:
input: The set of Borderline Points for the � � � �� matrix, and input row /
output: The output row 1

ON THE COMMON SUBSTRING ALIGNMENT PROBLEM 15

for ��� ��� to � ��� do� Append row � to the Candidate List.�
Update the contents of the Candidate List.�
Report output entry � � .

The list contents are updated at each iteration by removing rows which are no
longer candidates to produce future column minima. We will denote such rows as
extinct, according to total monotonicity condition 1.
������������������ ��� 	��

A row ��� is extinct if ��� � ��� ���	� �����! � � � �#" �
�����! ��� � �#" � .

Hence, for any output value achieved during the computation of � � , we only
need to keep one representative.

A candidate becomes � ��� � ��� � , by definition 6.4, as a result of two possible events.

Event 1. A � � � ��� � � ���� � � �#" . Let �� � � � denote two rows which appear sequen-
tially on the candidate list at iteration � , where ��� ��� � � ��� � � ���� � � �#" � � � . The
Candidate List is sorted, and therefore, by Observation 3, a � � � ��� � � ���� � � �#" could
result in � � reaching an identical value to �� at column � of ����� . As a result,
row ��� will be removed from the list.

Event 2. At iteration � , row � is appended to the list. At this point, � is the
highest row index in the list, and therefore all the elements with an ����� value
which is higher than or equal to that of candidate � will be removed from the list.

Note that two technical challenges need to be met, in order to implement a list
manipulation engine, which updates the contents of the Candidate List in linear
time.

1. Computing the ����� value of a candidate.
2. Efficiently accessing the rows to be removed from the Candidate List.

In the next two subsections we will show how to overcome these technical
challenges, while maintaining the linearity of the alignment stage algorithm.

6.2.1. Supplementing the Unavailable
 � � � Values

The values of ����� are needed for two purposes. One is the comparison of two
adjacent candidates. The other is for reporting the ����� value � � .

We will keep track of the difference in ����� values between the members of
the Candidate List.
������������������ ��� ���

Let � �	� ��� " denote the difference in ����� values between
candidate ��� and the candidate which immediately follows ��� on the Candidate
List.

16 GAD M. LANDAU AND MICHAL ZIV-UKELSON

������������������ ��� ���
Let � � � 	 � � � denote the difference in ����� values between

the candidate of lowest row index and the candidate of highest row index on the
Candidate List, at the end of iteration � of the alignment stage algorithm.

������������������ ��� � �
Let
 � ��� ����� denote the total weight of deleting the whole

string � . (For all ����� � � ,
 � � �! � � �#" �
 � ��� ����� .)

 � ��� ����� can be computed once in the encoding stage in ��� ��� time.
The candidate of highest row index on the list at iteration � is row � , and

�����! � � �#"�� � �
 � ��� ����� . Hence, the value of the candidate of lowest row
index on the list at iteration � , which bears the minimum for column � of ����� , is

� � � � �
 � ��� ����� � � � � 	 � � �

It remains to show how to update the value of � � � 	 � � � from the value of
� � � 	 � � ��� � . During the first iteration of the alignment stage algorithm, the list
contains only one candidate, and hence � � � 	 � � B is initialized to zero (see Figure
7). Given the information from iteration � � � , the alignment stage algorithm
proceeds at iteration � as follows.

Event 1. A � � � ��� � � � ���� � � �#" .
Let ��� � � � denote two rows which appear sequentially on the Candidate List at
iteration � , where �� � � � � ��� � � � ���� � � �#" � � � .
� �	� ��� " is reduced by one, as a result of � � � ��� � � � ���� � � �#" . Correspondingly,
� � � 	 � � � is reduced by one as well.

� If � �	� ��� " � � , row ��� remains on the list.
� If � �	� ��� "���� , row ��� is removed from the list.

Event 2. Candidate � joins the list.

At the end of iteration � � � , row ��� � is the candidate of highest row index on
the list. It was appended at the end of iteration ��� � , and could not have been
removed by any of the events 1,2 of iteration � � � . Row � is appended to the end
of the Candidate List at iteration � , as the candidate of highest row index.

As a result, � �	� � � � " is set as follows.

� �	� � � � " � �����! � � �#" � �����! � � � � �#" � � � �
 � ��� ����� � � � � ��� �
 � � �! � � � � �#"����

ON THE COMMON SUBSTRING ALIGNMENT PROBLEM 17

Input:����� � � � ��������������	���
����
3 3 3 2 1 2 3 4 5 input row

Borderline Points :

- - - - - 2 2 1 5 �������
	��� � ��	������ � ��� '���#��
- - - - - - 3 1 5 �������
	��� � ��	������ � ��� (��#��

Run-time variable trace:

Candidate List contents (����>� � �
	�� ������� � ����>� � �
	�� �) at the end of each iteration:

0/0 0/1 0/1 0/1 0/1 4/2 4/2 4/2 4/2

1/0 1/1 1/1 4/0 5/0 5/2 5/2 6/2

2/0 3/0 6/0 6/2 7/2

7/0 8/0

Maintained �
	�	���	�� � values:

0 1 2 2 1 2 4 6 6

Output:

� � ��� � � � � � � � � � 	 �
 � �
7 6 5 4 4 4 3 2 3 output row

FIG. 7. A trace of the contents of the Candidate List and maintained variables, during
iterations 0 to 8 of the Alignment Stage Algorithm, as generated while computing the
distance between � � "DCBADBDC" and

� � "DCBD", given the input row / for
	 � � ���
	�� � . Note that � �� � 	� � ��� . This figure continues the example from Figures
4 and 6.

Correspondingly, � � � 	 � � � is increased by � �	� � � � " .
� If � �	� � � � " ��� , row � � � remains on the list.
� If � �	� � � � " ��� , candidate ��� � is removed from the list.

If � �	� � � � "�� � , we continue popping candidates off the list and correcting � �	�
values, until the candidate of highest row index preceding � is reached, whose � �	�
value remains positive.

When computing � �	� ��� � " , the terms � � , � ��� � and
 � ��� ����� are available
from the input to the efficient alignment stage. It remains to show how to obtain

 � � �! � � � � �#" , under the constraint that the entries of
 � � � are unavailable
during the efficient alignment stage.
 � � �! � � � � �#" � � � ��� � �

�� ��� � , and all

values � � ��� � �
�� ��� � for � � � �
�
� � can be computed during the encoding stage in

18 GAD M. LANDAU AND MICHAL ZIV-UKELSON

-1 0 31 iteration 3:

-1 0 4

-1 4

2

1 2 3

0 1 2 3

-1 4

0 1 2 3

5

 iteration 4:

Event 2: Borderline[5,1]=2.
 iteration 5:

Event 1: Row 4 joins the list.

Event 1: Row 5 joins the list.

FIG. 8. The Set Union implementation of the Candidate List, as traced through iterations
4 and 5 of the efficient alignment stage algorithm. The first candidate is a "fake" row of
value � �

, which is intended to represent all rows which are smaller than the candidate of
lowest row index in the list. This figure follows the example of Figure 7.

a total of ����� ��� <>= ? ���	����� � time, where � denotes the size of the sequence
alphabet.

6.2.2. A Candidate List Implementation Using a Disjoint Set Union Algorithm.

Since not all rows of ����� appear in the Candidate List, finding the row to
be removed as a result of a Borderline Point is not trivial (see Event 1). We
propose to implement the Candidate List by employing the incremental tree set
union algorithm described in [[9], pp. 216], for the special case in which the union
tree is a path.

ON THE COMMON SUBSTRING ALIGNMENT PROBLEM 19

In this implementation, each row in the Candidate List will serve as the appointed
representative of its set, which includes all rows up to and excluding the next
candidate of higher row index on the list (see Figure 8). A new candidate is
appended as the representative of a one-row set to the end of the list.

A � � ��� � � � � ��� � � � ���� � � �#"�� operation will query representative candidate ��� ,
and � �	� ��� " will then be reduced by one. If this results in � �	� ��� " reaching a value
of zero - ��� will be removed from the Candidate List, and its set will be united
with the set represented by the previous candidate of lower row index on the list.

6.3. Time Analysis of the Efficient Algorithm.

In the encoding stage the Borderline Points are computed in ��������� time using
[27].
We can now state and prove the following time complexity bound on the alignment
stage algorithm.

����� ������� �������
The alignment stage of the efficient algorithm computes output

row � , from input row � and the Borderline Points for the comparison of � with
� , in �����	� time.

Proof. The alignment stage algorithm iterates � times. The cost of list access
operations is as follows.

Event 1: Using the Disjoint Set Union algorithm from [9], the Candidate List
can be maintained to support operations of candidate access, due to a Borderline
Point, in ��� � � amortized time.

Event 2: Since the list is sorted, the rows removed as a result of the addition of
row � to the end of the list are sequential candidates, and therefore can be accessed
in ��� � � time.

Each candidate row is added once to the list, and hence is removed from the list at
most once. As a separate category, we will count those candidates which are exam-
ined without being removed. This can happen once per Borderline Point (Event 1),
and once per addition of a new candidate to the list (Event 2). The number of Bor-
derline Points is at most � � , and � candidates are added to the list throughout the
execution of the alignment stage algorithm. Therefore, the total complexity of the

alignment stage algorithm is �����	� .
Note that during the encoding stage, the borderline points for the comparison

of the prefix �
�
� with � , can be incrementally computed in �����	� time from the

borderline points for the comparison of �
��� �
� with � , using [27]. Hence, for

source sequences with two or more common factors, the time complexity of the

20 GAD M. LANDAU AND MICHAL ZIV-UKELSON

encoding stage is further reduced to ������
�� , where
 is the number of nodes in
the dictionary trie for the common factors.

7. CONCLUSIONS AND OPEN PROBLEMS

Two algorithms were described for the Common Substring Alignment prob-
lem. The second algorithm, which requires an ��������� time encoding stage and
has a non-recursive, linear alignment stage, is more applicable to the typical Com-
mon Substring Alignment applications then the first algorithm, which requires an
����� �� ����� time encoding stage and has a recursive, linear alignment stage.

The solutions presented in this paper are intended for those applications where
the source strings contain shared and repeated substrings. A special challenge is
presented when the target strings contain encoded repetitions as well as the source
strings.

Another challenge is to try to extend the solutions presented in this paper to
support affine or concave gap costs.

8. ACKNOWLEDGEMENTS

The authors are grateful to the referees for their helpful comments.

REFERENCES
1. Aggarwal, A., M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric Applications of a Matrix-

Searching Algorithm, Algorithmica, 2, 195-208 (1987).

2. Aggarawal, A., and J. Park, Notes on Searching in Multidimensional Monotone Arrays, Proc. 29th
IEEE Symp. on Foundations of Computer Science, 497-512 (1988).

3. Apostolico, A., M. Atallah, L. Larmore, and S. McFaddin, Efficient parallel algorithms for string
editing problems. SIAM J. Comput., 19, 968-998 (1990).

4. Benson, G., A space efficient algorithm for finding the best nonoverlapping alignment score, The-
oretical Computer Science, 145, 357-369 (1995).

5. Buechner, A.G., and M. Mulvenna, Discovering Internet Marketing Intelligence through Online
Analytical Web Usage Mining, SIGMOD Record, 27, 4, 54–61 (1998).

6. Chen, M.S., J.S. Park, and P.S. Yu, Data mining for path traversal patterns in a web environment,
16th International Conference on Distributed Computing Systems, 385–392 (1996).

7. Eppstein, D., Z. Galil, and R. Giancarlo, Speeding Up Dynamic Programming, Proc. 29th IEEE
Symp. on Foundations of Computer Science, 488-296 (1988).

8. Farrell, R., P. Fairweather, and E. Breimer, A Task-based Architecture for Application-aware Ad-
juncts, Proceedings of the 2000 International Conference on Intelligent User Interfaces, ACM
Press, 82–85 (2000).

9. Gabow, H.N., and R.E. Tarjan, A Linear Time Algorithm for a Special Case of Disjoint Set Union.
J. Comput. Syst. Sci, 30, 209-221 (1985).

10. Galil, Z., and R. Giancarlo, Speeding Up Dynamic Programming with Applications to Molecular
Biology, Theoretical Computer Science, 64, 107-118 (1989).

ON THE COMMON SUBSTRING ALIGNMENT PROBLEM 21

11. Gelfand, M.S., A.A. Mironov, and P.A. Pevzner, Gene Recognition Via Spliced Sequence Align-
ment, Proc. Natl. Acad. Sci. USA, 93, 9061–9066 (1996).

12. Giancarlo, R., Dynamic Programming: Special Cases, Pattern Matching Algorithms, edited by
Apostolico, A., and Z. Galil, Oxford University Press, 201-232 (1997).

13. Gusfield, D., Algorithms on Strings, Trees, and Sequences. Cambridge University Press, (1997).

14. Hirschberg, D.S., A Linear Space Algorithm for Computing Maximal Common Subsequences,
Communications of the ACM, 18, 6, 341–343 (1975).

15. Hirshberg, D.S., and L.L. Larmore, The Least Weight Subsequence Problem, SIAM J. Compt., 16,
4, 628-638 (1987).

16. Kannan, S.K., and E.W. Myers, An Algorithm For Locating Non-Overlapping Regions of Maximum
Alignment Score, SIAM J. Comput., 25 , 3, 648–662 (1996).

17. Karkkainen, J., G. Navarro, and E. Ukkonen, Approximate String Matching over Ziv-Lempel
Compressed Text, Proc. 11th Annual Symposium On Combinatorial Pattern Matching 195–209
(2000).

18. Landau, G.M., E.W. Myers, and J.P. Schmidt, Incremental String Comparison, SIAM J. Comput.,
27, 2, 557–582 (1998).

19. Landau, G.M., and M. Ziv-Ukelson, On the Shared Substring Alignment Problem, Proc. Symposium
On Discrete Algorithms , 804–814 (2000).

20. Lee, J., M. Podlaseck, E. Schonberg, and R. Hoch, Visualization and Analysis of Clickstream Data
of Online Stores for Understanding Web Merchandising, Journal of Data Mining and Knowledge
Discovery, 5, 1/2, 59–84 (2001).

21. Levenshtein, V.I., Binary Codes Capable of Correcting Deletions, Insertions and Reversals, Soviet
Phys. Dokl, 10, 707–710 (1966).

22. Miller, W., and E.W. Myers, Sequence Comparison with Concave Weighting Functions, Bull. Math.
Biol., 50, 97-120 (1988).

23. Mironov, A.A., M.A. Roytberg, P.A. Pevzner, and M.S. Gelfand, Performance-Guarantee Gene
Predictions Via Spliced Alignemnt, Genomics 51 A.N. GE985251, 332–339 (1998).

24. Monge, G., Deblai et Remblai, Memoires del l’Academie des Sciences, Paris (1781).

25. Myers, E.W., Seeing Conserved Signals: Using Algorithms to Detect Similarities Between Biose-
quences, Calculating the Secrets Of Life, Lander and Waterman Editors, National Academy Press,
56–89 (1995).

26. Roytberg, M.A., T.V. Astakhova, and M.S. Gelfand, Combinatorial Approaches to Gene Recogni-
tion, Computers Chemistry, 21, 4, 229–235 (1997).

27. Schmidt, J.P., All Highest Scoring Paths In Weighted Grid Graphs and Their Application To Finding
All Approximate Repeats In Strings, SIAM J. Comput, 27, 4, 972–992 (1998).

28. Snapp, S.R., J. Brentano, G.V. Dias, T.L. Goan, T. Grance, L.T. Heberlein, C. Ho, K.N. Levitt, B.
Mukerjee, D.L. Mansur, K.L. Pon, and S.E. Smaha, A System for Distributed Intrusion Detection,
COMPCON Spring 91 - the)�, ��� IEEE International Computer Conference, 170–176 (1991).

29. Sze, S-H., and P.A. Pevzner, Las Vegas Algorithms for Gene Recognition: Suboptimal and Error-
Tolerant Spliced Alignment, J. Comp. Biol. 4, 3, 297–309 (1997).

30. Ukkonen, E., Finding Approximate Patterns in Strings, J. Algorithms 6, 132–137 (1985).

31. Ziv-Ukelson, M., Y. Horesh, G.M. Landau, R. Unger, Using Repeats to Speed-Up DNA Sequence
Alignment, private communication.

