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1 Introduction

One degree of freedom which is usually not exploited in developing high-performance text-
processing algorithms is the encoding of the underlying atomic character set. Typically,
standard character encodings such as ASCII or Unicode are assumed to be a fixed fact
of nature, and indeed for most classical string algorithms the assignment of exactly which
symbol maps to which k-length bit pattern appears to be an issue of no consequence.

In this paper, however, we consider a text compression method where the specific char-
acter set collating-sequence employed in encoding the text has a big impact on performance.
We demonstrate that permuting the standard character collating-sequences yields a small
win on Asian-language texts over gzip. We also show improved compression with our method
for English texts, although not by enough to beat standard compression methods. However,
we also design a class of artificial languages on which our method clearly beats gzip, often
by an order of magnitude.

The significance of this work lies partially in evaluating an interesting approach to text
compression. Even more, however, we seek to raise awareness of character encodings in the
string-algorithms community and ask the question whether alphabet-permutation can lead
to improvements in other string and text-processing algorithms.

2 Differential Encoding

Differential coding is a common preprocessing step for compressing numerical data associated
with sampled signals and other time series streams. The temporal coherence of such signals
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implies that the value at time ti likely differs little from that at ti+1. Thus representing
the signal as an initial value followed a stream of difference (i.e. ti+1 − ti for 0 ≤ i < n)
should consist primarily of small differences. Such streams should be more compressible using
standard techniques like run-length encoding, Huffman coding, and gzip than the original
data stream.

Here we consider differential encoding of text by treating each character code as an
integer. By taking the differences modulo the size of the alphabet, we can ensure that they
can always be encoded using the same number of bits as the original character symbols.

Under what conditions might such a differentially encoded text T ′ be more compressible
than the original straight text T ? Let w = s1s2 . . . sk be a string of length k which occurs
multiple times in T . We note that w′ = δ1δ2 . . . δk−1 occurs the same number of times in T ′,
where δi = si+1− si. Since w′ is shorter by one character that w, differential encoding might
seem inherently counter-productive to the goals of higher compression.

However, there are two potential benefits. First, the string w′ in T ′ may arise from
several different strings within T , whenever the strings have a common shift pattern. A
well-known example is the collision of the suffixes of “IBM” and “HAL” in a differential
encoding using the ASCII collating sequence [5]. Second, with the proper collating sequence
we would expect to have a skewing in the distribution of symbols toward those representing
smaller differences.

It is impossible to tell a priori whether differential encoding with alphabet permuta-
tion will lead to improved compression on any given language. For this reason, we report
experimental results in the sections to follow.

The most relevant previous work is [3], where alphabet permutation was employed to
improve the performance of compression algorithms based on the Burrows-Wheeler transform
[2]. Previous work on differential coding for text compression includes [8, 9]. Our work goes
farther in our efforts to optimize the alphabet permutation, extending the results to Asian
language encoding, and building a theory of languages for which differential coding will be
effective.

3 Experiments on English Texts

The key to successful differential encoding of English (or any other class of languages) lies
in identifying the best collating sequence. However, designing the optimal character per-
mutation is a non-trivial problem. In principle, we seek the order which most frequently
collapses popular substrings into identical sequences of differences. However, this criteria is
not well-defined and does not lend itself to local improvement-based optimization.

Instead, we seek an ordering which minimizes the expected size of the differences. Such
an ordering would be expected to skew the distribution of symbols towards those represent-
ing small differences, which would clearly improve the performance of zeroth-order entropy
compression algorithms such as Huffman codes. We would also expect that repeated differ-
ence sequences would occur more frequently in collating sequences which lead to a skewed
symbol distribution.
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Original Differential Permuted-Diff
file size gzip huffman gzip huffman gzip huffman
book1 767476 286727 434221 322455 489396 321347 472108
book2 598615 182574 339493 203269 381969 202812 369285
paper1 51093 15709 28896 17600 32500 17548 31447
paper2 81860 27375 46724 30440 52328 30350 50508
paper3 45997 16464 26395 18519 29575 18467 28565
paper4 13032 4826 7556 5435 8455 5397 8211
paper5 11730 4236 6660 4824 7508 4800 7304
paper6 36483 10942 20096 12219 22950 12169 22200
news 365318 118124 207541 133529 231233 133192 227751
gesture 44893 14910 25160 16756 28541 16717 27673
bib 104812 28833 59255 31834 66380 31694 65815
trans 73923 12734 39746 14227 45292 14207 44844
progc 38348 10760 20187 11948 23086 11920 22795
progp 48266 9290 24440 10414 27954 10400 27694
progl 71213 14620 36878 16230 42168 16209 41759
12sad10 424342 154122 237963 173374 270706 172830 260760

Table 1: Effect of Optimized Permutation on Differential Coding Methods.

Therefore, we seek the circular n-permutation π which minimizes the objective function

min
π∈Π

n∑

i=1

n∑

j=1

d(i, j)p(σi, σj)

where p(i, j) is the probability that symbol j immediately follows symbol i, i.e. p(i, j) =
P (j|i), and d(i, j) is the shortest “distance” from i to j around the circular permutation.
Thus d(i, j) = min(|j−i|, n−|j−i|). This is an instance of the notorious quadratic assignment
problem, an optimization problem significantly harder in practice than the traveling salesman
problem [1]. If unweighted by probabilities, permutation optimization is related to the linear
assignment problem [4], which although NP-complete under very restrictive conditions is
managable in practice through heuristics [7]. Alterate optimization criteria are no doubt
possible, but this is the one we used.

To estimate the conditional character-probabilities for the optimized collating sequence
for English text, we used letter-pair (bigram) frequencies derived from a large corpus of text
analyzed in [12], including the famous Brown corpus. The Discropt [10, 11] system was run
for 10 hours optimizing the permutation over these frequencies, resulting in the following
collating sequence:

. V G W C D I N H E T ’ ’ S A R O L F M P U Y B J Q Z X K

Table 1 compares differential compression using both the standard and optimized col-
lating sequence, with both standard Huffman codes and gzip employed for encoding. The

3



Original Permuted Permuted-Diff
file size gzip huffman gzip huffman
book1 768260 303884 394003 347211 466801
book2 599399 194201 313925 221163 362138
paper1 51877 16751 27181 19084 30970
paper2 82644 28902 42112 32848 49727
paper3 46781 17471 24037 19900 28040
paper4 13816 5086 6888 5764 8061
paper5 12514 4576 6402 5186 7093
paper6 37267 11652 19294 13251 21734
news 366102 127102 207326 144729 224090
gesture 45677 15884 23738 18241 26992
bib 105596 30372 58164 34151 65152
trans 74707 13762 42218 15465 45317
progc 39132 11641 21428 13242 22926
progp 49050 10205 26732 11589 28067
progl 71997 15796 39840 17839 42033
12sad10 425126 164272 220261 188444 257470

Table 2: Effect of Elias Predictive Coding on Differential Coding Methods.

permuted collating sequence typically reduces the size of the Huffman-encoded differential
sequences by 3-4%, and gzip-encoded differential sequences by about 1% – however, both
encoding algorithms work substantially better on the original text instead of the differential
text.

The use of a single fixed collating sequence for all characters does not effectively capture
the second-order entropy of the language, because the symbol distribution following each
letter of the alphabet is distinct. In Table 2, we identify the best symbol permutation
following each character, for each file separately; a method akin to a static version of Elias
predictive coding [6]. Such a method produces better compression rates for differential
encoding on sufficiently large files, even with the cost of storing the character permutation
matrix. Interestingly, although Huffman codes work better on the Elias coded files, gzip
does significantly worse than on the original file.

4 Experiments on Asian-Language Texts

We reasoned that differential encoding might perform better on Asian-language texts, be-
cause the larger size of the alphabet makes such texts more closely resemble quantized
signals. However, accurately measuring the character bigram frequencies in Asian-language
texts is made difficult by the enormous size of the alphabet. Vast amounts of training text
would be needed to estimate the (216)2 bigram-pairs of 16-bit UNICODE. Further, quadratic
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assignment problems of such size are intractable to solve.
For this reason, we chose a different method to construct the alphabet permutation for

16-bit UNICODE. We assume that symbol usage in any fixed-length alphabet obeys a Zipf’s
law-type distribution, so frequently-used symbols are much more popular than expectation.
Our permutation was derived by determining the symbol frequencies for all characters over
all documents, and ordering the symbols in order of decreasing frequency. Since the most
popular symbols are located near each other in the code space, we would anticipate that
such an ordering would lead to smaller average differences over arbitrary encodings.

Table 3 details the results of our experiments on Chinese, Japanese, and Korean UNI-
CODE texts. We experimented with both 8-bit and 16-bit recoded alphabets. The 8-bit
alphabet permutation produced worse results than the original alphabet encoding for both
gzip and Huffman codes, but permuting the full 16-bit alphabet encoding did permit the
differential gzip encoding to beat the conventional gzip encodings by 1-2% on almost all
files.

5 Experiments on Martian-Language Texts

To demonstrate that gzip can be significantly beaten via differential encoding for certain
languages, we define a class of artificial languages which we will call Martian.

Martian words evolve in families. Each family is defined by a length-(l − 1) sequence of
differences from 0 to α − 1, where α = |Σ| and Σ is the length of the alphabet. There are
α distinct length-l words in each family, formed by prepending each σ ∈ Σ to the difference
sequence. For example, for Σ = {a, . . . , z} the family (+2,+3,−6) defines the words acfz,
bdga, cehb, and so forth.

In the experiments below, we compress randomly generated Martian texts constructed
with the following parameters:

• The alphabet size is α, ranging from 2 to 256.

• The number of word families is f . Word families were generated by sampling uniformly
at random from the α possible differences. No effort was made to ensure that words
would be part of at most one family.

• The length of each each word is l.

• The number of words in the text is n. The random text was generated by sampling
uniformly with replacement from the αf words in the language.

We achieve our greatest improvement in differentially encoding Martian texts with rel-
atively short texts drawn from large families of long words. Table 4 demonstrates that
differential encoded gzip results in 5.8 times better compression than plaintext gzip on files
from 2500 to 50,000 words for 20 families of 20-character words. Even more extreme perfor-
mance is obtainable by further lengthening the words.
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Original 8-bit encoding 16-bit encoding

file size gzip huff diff-gzip diff-huff huff diff-huff perm-gzip

ChuanXiLu1 100904 30545 57307 32774 73389 33828 54734 29953

ChuanXiLu2 129750 39753 73804 42908 94946 43794 70785 39054

ChuanXiLu3 96894 30314 55210 32782 70839 33577 53859 29779

dai 83100 40318 64540 51850 70611 41203 73290 38544

RenXue 229590 76878 130902 83277 167918 78475 126092 75810

XinMinShuo 357138 115668 202585 125114 259954 118312 190772 114354

Xunzi 88094 46182 69361 58050 76014 46089 82352 44296

ZhengMeng 66212 35033 51465 44044 56086 34586 62659 33165

ZhouDunyiJi 85646 26487 48782 28778 62153 29773 48315 25968

ZhuziYulei1-6 297888 87767 167904 93602 216643 95531 156285 86801

ZhuziYulei14-18 446066 129448 252811 137478 325836 140393 231406 128122

ZhuziYulei7-13 273836 85480 155937 91431 199607 89439 145787 84477

Gan 156494 68335 106217 87897 117985 78332 114737 67514

Goju-no-to 114108 60709 83634 77433 91324 64086 98553 59781

Hojoki 22936 10779 15127 13595 16861 12357 17786 10626

horoki 420774 166957 277984 211118 294482 193615 264312 165275

Jigokuhen 58226 24460 39741 31198 43952 30591 45156 24083

Kageronikki 202632 76612 112690 100539 129172 80347 106842 76135

kaidoki 68158 31979 46631 39928 50387 36185 55050 31270

KanadehonChushingura 164122 63883 110045 79724 115361 74324 111094 62601

Kappa 84092 32524 57883 41222 62053 43587 61638 32031

Kokoro 339050 137499 233746 178618 256945 163798 232484 135906

KoshokuGoninOnna 82240 41057 57557 52177 63581 43006 67447 40119

KoshokuIchidaiOnna 125278 56263 86343 71393 95161 63396 96308 55020

Makura-no-soshi 276342 117992 178011 154409 199284 126817 179134 116691

Midaregami 45768 15051 26696 19039 27827 18506 27133 14719

Monogatari 63878 21782 36172 28288 40890 24498 33777 21615

MurasakiShikibu-nikki 77972 33616 51395 43627 57087 37939 55137 33280

OkuNoHosomichi 31430 15878 22434 19329 24147 18299 28551 15453

SankaWakashu 178138 60699 107901 78642 114954 70872 101243 59562

Shayo 207568 78946 133906 101544 147648 96732 133419 78025

SonezakiShinju 41170 17357 28388 21461 29981 21693 32848 17008

Taketori 40762 17643 27875 22832 30886 21292 32271 17444

Tsurezuregusa 145156 62583 95940 80163 106215 69703 101209 61560

UgetsuMonogatari 102562 52121 70229 65919 78896 55063 82895 51204

Ukigumo 259698 114305 182091 145127 196343 132205 186899 112534

cjk 51172 25178 41410 31152 44671 28878 51207 24377

Ijangui 22240 13667 18431 16459 19854 14902 27781 13097

zuochuan-sjis 95666 34710 54191 45093 60316 38822 48472 34872

Table 3: Effect of Optimized Permutation on Differential Coding Methods, for Chinese,
Japanese, and Korean Texts
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α = 32 α = 64 α = 128 α = 256

f l size gzip diff-gzip gzip diff-gzip gzip diff-gzip gzip diff-gzip

5 5 2500 4584 3687 5174 4169 6445 4607 8606 5132

5 5 5000 9059 7229 9680 8162 11080 8948 14061 9958

5 5 10000 18000 14259 18879 16144 20371 17604 23782 19391

5 5 25000 44110 35131 45993 39929 47751 43458 52756 47395

5 5 50000 87358 69896 90828 79579 92981 86511 100849 93925

5 10 2500 5607 4171 6745 4601 9672 5021 14498 5500

5 10 5000 10435 8155 11380 8983 14691 9776 21855 10647

5 10 10000 19860 16030 20645 17691 24505 19193 35454 20823

5 10 25000 47754 39603 48407 43767 53932 47344 76321 51168

5 10 50000 94066 78884 94701 87275 103071 94267 144064 101737

5 20 2500 7184 4814 10184 5351 16414 5761 27385 6154

5 20 5000 12253 9358 15792 10492 25493 11308 46488 12032

5 20 10000 22375 18447 26880 20742 43485 22351 84336 23768

5 20 25000 52726 45644 60333 51458 97928 55429 198693 58950

5 20 50000 103345 90982 115986 102755 188780 110577 389213 117645

10 5 2500 5132 4244 6114 4602 7875 5115 10165 5537

10 5 5000 9851 8292 10859 8940 13329 9893 17403 10849

10 5 10000 19630 16402 20437 17574 23174 19340 29305 21153

10 5 25000 48429 40476 48646 43384 52418 47383 63399 51613

10 5 50000 96041 80643 95232 86327 100784 94021 120058 102085

10 10 2500 6529 4616 8917 5024 13038 5497 18429 5931

10 10 5000 11344 8987 13972 9745 20137 10610 30120 11525

10 10 10000 20992 17638 23915 19099 33315 20734 52755 22497

10 10 25000 50018 43489 53776 47051 72654 50927 120689 55366

10 10 50000 98363 86607 103531 93611 138149 101239 233663 110140

10 20 2500 9534 5347 14726 5791 24297 6194 36224 6637

10 20 5000 15188 10352 23255 11236 41580 11991 65932 12830

10 20 10000 26404 20328 40508 22077 76069 23561 126013 25224

10 20 25000 59834 50240 92024 54594 180190 58263 305697 62485

10 20 50000 115555 100143 177859 108741 353604 116089 605099 124485

20 5 2500 5836 4741 7204 5113 9137 5542 11250 5948

20 5 5000 10755 9214 12646 9885 16049 10771 20421 11656

20 5 10000 20740 18123 22688 19295 27742 20972 36038 22835

20 5 25000 50222 44628 52318 47263 61265 51167 81557 55802

20 5 50000 98754 88708 101124 93778 117056 101301 157107 110648

20 10 2500 8352 5134 11695 5536 16410 5965 21301 6376

20 10 5000 13582 9899 18602 10619 27224 11486 37950 12365

20 10 10000 23701 19293 31375 20613 48249 22294 70462 24247

20 10 25000 54079 47374 69759 50462 110791 54630 168058 59676

20 10 50000 104742 93830 133662 100145 215310 108519 330452 118582

20 20 2500 13564 5888 21528 6312 31968 6745 42379 7198

20 20 5000 21703 11312 37090 12108 58743 12929 81159 13791

20 20 10000 38051 22116 68420 23649 111898 25271 158012 26970

20 20 25000 87213 54422 161892 58257 271528 62320 389073 66646

20 20 50000 168542 108284 318406 115932 538072 124003 775298 132668

Table 4: Comparing gzip and Differential-gzip Compression of Martian Language Texts, as
a Function of Family Size, Word Length, and Text Length.
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Differential gzip outperforms normal gzip because the coherence of words in a family is
unrecognizable by gzip until each word has been seen enough times to be encoded by gzip
as a single symbol. The advantage of differential gzip on Martian texts will disappear once
all words in each family are defined by code strings, but this takes much longer with the
plaintext gzip.

Experiments with several random permutations of the Martian alphabet confirms that
there is no benefit from differential encoding unless the correct character ordering is used.
Determining the optimal ordering (or even a good one) from a text corpus is presumably an
intractable problem. This leaves the theoretical (but highly unlikely) possibility that English
text can be efficiently differentially compressible were only the correct alphabet permutation
were found.
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