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1. Introduction. Several important problems in computing involve the detection of repeated
patterns within regular structures such as strings and higher dimensional arrays. As a consequence,
there is a rich history of fast algorithms for solving these problems. Karp, Miller and Rosenberg
[KMR72] used techniques based on successively refining equivalence classes of patterns of increasing
size, where the patterns in an equivalence class are identical. Imitially, they consider equivalence
classes of patterns made up of a single character from the input. On each successive step, they con-
struct equivalence classes of bigger pieces of the input by appropriately combining the equivalence
classes from the previous step. Their algorithm was not optimal. Weiner, using a different approach
[W73], built a suffix tree and used it to design a linear time algorithm for a fixed alphabet.

Two linear time (optimal) algorithms for the string matching problem were given by Knuth,
Morris and Pratt [KMP77] and Boyer and Moore [BM77] . These algorithms are based on the pow-
erful notion of a failure function. Failure functions led to a substantial amount of subsequent work.
Galil and Seiferas [GS83] have reported time and space optimal sequential, real time algorithms for
string matching. Aho and Corasick [AC75] have linear time algorithms for a natural generalization
of the string matching algorithm in which the input has multiple patterns, possibly of different sizes.

Efficient algorithms for multi-dimensional pattern matching (or d-dimensional pattern match-
ing) have been independently reported by Baker [Ba78], Bird [Bi77], and Karp and Rabin [KR&7]
(randomized). These algorithms run in time! O(d(n? 4+ m?)), given that the input text and pattern
are respectively of size n? and m?.

Parallel algorithms for string matching were given by Galil [G84] for strings from a fixed alpha-
bet, and Vishkin [V85] for strings from an arbitrary alphabet. Later Breslauer and Galil [BG90],
Vishkin [V91], and Galil [G92] designed new parallel algorithms for string matching with an arbi-
trary alphabet. Mathies [M88], and Amir and Landau [AL88] have presented parallel algorithms
for solving the multi-dimensional pattern matching problem. However, the techniques developed in
these algorithms do not scale in the sense that they have not yielded optimal speedup when applied
to pattern matching in higher dimensions. OQur results described in this paper were the first to solve
pattern matching problems in higher dimensions, with optimal speedup. Subsequently and recently
Amir et. al, [ABF93] and Cole et. al, [CCG+93] presented techniques for achieving optimal speedup
for the two-dimensional pattern matching problem with an unbounded alphabet.

Our main result is an optimal speed-up parallel algorithm for solving the suffiz-prefiz match-
ing problem. Using this algorithm as the basic building block, we specify optimal speedup parallel
algorithms for several pattern and string matching problems; optimal speedup parallel algorithms
were not known for most of these problems before. ( Given a problem instance of size n, we say
that a parallel algorithm running in 7'(n) steps using P(n) processors performs work P(n) x T(n).
We say that such an algorithm has optimal speedup if the work that it performs is (asymptotically)
the same as the running time of the best-known sequential algorithm for solving the same problem.)
The definition of the suffix-prefix matching problem and a list of these other problems are given in
Section 1.1. Our results have the advantage that they scale to higher dimensions while preserving
optimal speedup.

In particular, our algorithm relies on the appropriate combination of two basic ideas. First,
a novel aspect of our algorithm is that we construct a finite automation as in Aho and Corasick
[ACT5], in parallel. This finite automaton can be used to recognize short strings of length O(log m),
where m 1s the size of the input, in linear work. Since this step uses failure functions, we note that
our algorithm is the first to use them in the parallel context. The second idea that we use involves
computing characteristics, originally introduced in [ATLSV88] and [KP92]. These characteristics are

! Tn their paper Karp and Rabin state that these ([Ba78][Bi77], and [KR87]) algorithms run in time O ((n? 4+ m%)),
but Richard Karp, in personal communication, clarified that they assume a constant d.
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essentially the “short names” used by Karp, Miller and Rosenberg [KMRT72], as described in the first
paragraph above. It is this combination that allows us to obtain optimal speedup parallel algorithms
for pattern matching in higher dimensions. All our algorithms are developed in the context of an

arbitrary CRCW PRAM[J92].

The rest of this paper is organized as follows. In Section 1.1 the significant results in this paper
are reported. Section 1.2 describes some previous work. Section 2 presents the new optimal speedup
algorithm for the s-p problem. Section 3 describes some applications of the s-p matching algorithm.
Section 4 gives some concluding remarks.

1.1. Significant results in this paper. Our contributions are:

1.

We specify a parallel algorithm for the suffiz-prefiz matching problem (or simply the s-p
matching problem) that has optimal speedup. The input to this problem consists of two
equal length strings A and B, both of length m. We wish to determine for each 7 where
1 < i < m, whether the suffix of A of size 7 is 1dentical to the prefix of B of the same size.
Our algorithm runs in O(log m) time using m/ log m processors. The s-p matching problem
embodies a computational bottleneck in several pattern matching problems. Therefore, us-
ing this algorithm as the fundamental building block, we are able to design the following
optimal speedup parallel algorithms.

. We specify a new and simple algorithm that has optimal speedup, for solving the string

matching problem with a polynomial size alphabet. The input to this problem consists of
two strings: a text of length n and a pattern of length m (m < n). We wish to determine for
each position of the text, whether the pattern is equal to the substring of the text starting at
it. Our algorithm runs in O(log m) time using n/ log m processors. Except for this problem,
optimal speedup parallel algorithms were not known for the remaining four applications
listed below.

. We specify a new and simple algorithm that has optimal speedup, for solving the mult:-

text/multi-pattern string matching problem. The input to this problem consists of u text
strings 71,75, ..., Ty, respectively of lengths ni,ns,...,n,, and v patterns Py, Ps, ..., Py,
each of length m < n; for 1 < i < u. We wish to determine for each position of each text
string, whether one of the patterns is equal to the substring of the text starting at it. Our
algorithm runs in time O(logm) using (vm + E}l:l n;)/logm processors.

. We specify an optimal speedup parallel algorithm for multi-dimensional pattern matching.

The input to this problem consists of two arrays: a text of size n? and a pattern of size m?

(m < n,d>1). We wish to determine for each position of the text, whether the pattern
is equal to the subarray, of size m?, of the text starting at it. This algorithm runs in time
O(dlogm) using n/log m processors.

. We specify an optimal speedup parallel algorithm for solving the occurrence detection prob-

lem. Informally, the input to this problem is a text siring of size n, presented as an (un-
ordered) set of [ pieces of size k = n/l, no two of them equal. The problem is: given a
pattern of size m, determine if there exists a concatenation of the [ substrings to form a
single string of size n, such that the pattern occurs in the resulting string. This question is
relevant to issues in molecular biology [CD88], [TU88]. Our algorithm solves this problem
in time O(logm) using n/logm processors.

. We specify a parallel algorithm for on-line string matching that has optimal amortized

speedup. This is an on-line algorithm motivated by practical problems such as text editing.
Here, we have a text of size n and a pattern of size m < n for which the string matching
problem has already been solved. Now, the text is extended by k characters, i.e., it 1s now
of length n+ k&, and we wish to determine if there are any additional matches of the pattern
in the text. Our algorithm solves this problem in time O(logm + log k) and the amortized
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work (to be defined precisely later) done by it is always linear, and hence optimal.

1.1.1. Remarks on alphabet size and space:. Throughout the rest of this paper, we are
concerned with an alphabet size that is at most polynomial in m. Given this, we assume without
loss of generality that X C {0,1,...,m — 1} and therefore the individual symbols of the alphabet
(elements of X) are each logm bits long. Following standard conventions[J92], a processor is assumed
to be able to read a constant number of symbols in a constant number of time units. We note that
this is more general than the constant sized alphabet used in [G84] for example. However, we do
not consider alphabets of an arbitrary size relative to the size of the string, as in [V85]. All of our
operations are standard PRAM operations. In contrast, in dealing with an arbitrary sized alphabet
(as in [V85]), it is assumed that any two symbols can be tested for equality in O(1) time and work,
independent of the size. Given this assumption, we note that a problem with an arbitrary alphabet
could be converted to one in which |X| < m by sorting, in O(nlogm) work.

All of our techniques will work with space O(m!*¢) as in the work of Apostolico et al. [ATLSV8S],
for any 0 < ¢ < 1, with a corresponding slow-down proportional to 1/¢. These implementations with
reduced space requirements can be realized with just O(m) cost (work) for initialization, following

[H88].

1.2. Previous work. We now compare our applications of the s-p matching algorithm with
previous results.

1. Galil [G84] and Vishkin [V85] have designed optimal speedup parallel algorithms for string
matching, with input strings drawn respectively from a bounded and arbitrary alphabet.
Both of these algorithms run in time O(logn) using n/logn processors of a CRCW PRAM.
Breslauer and Galil [BG90], designed an algorithm that runs in time O(loglogn) using
n/(loglogn) processors of a CRCW PRAM. Vishkin [V91], presented an algorithm whose
text analysis runs in time O(log™ n) using n/log" n processors of a CRCW PRAM, and re-
cently Galil [G92] presented an algorithm that runs in constant time and uses linear number
of processors. This result has now been extended to the two-dimensional case [CCG+93] as
well, using several new ideas.

2. Mathies [M88] had presented a parallel algorithm for solving the multi-dimensional pattern
matching problem that runs in O(d log” n) time using n? processors of a CRCW PRAM.
Subsequently, Amir and Landau [ALS88] presented an improved algorithm for the multi-
dimensional pattern matching problem that runs in O(dlogm) time using n? processors of
a CRCW PRAM. Previous work does not yield an optimal speedup parallel algorithm for
this problem.

2. An optimal speedup algorithm for the s-p matching problem. In this section, we
start with a parallel algorithm for solving the s-p matching problem that embodies some of the main
ideas, but does not have optimal speedup. Then, in the subsequent subsections, we progressively
refine it by introducing additional techniques to eventually derive a parallel algorithm with optimal
speedup, in Section 2.4.

2.1. Computing characteristics and thereby deriving 6. In the interests of completeness,
we start with a formal definition of the s-p matching problem:

Input:. Strings A = apay ...am—1 and B = boby .. .b,,—1 over an alphabet 3.

Oulput:. A bit vector §[0...m—1] where §[i{] = 1if and only if ay—j—1@m—i . . -@m—1 = boby ... b;.
3



The most straightforward computation of é, which is used to solve the s-p matching problem,
would involve explicit manipulation of the m suffixes of A and the m prefixes of B. However, this
is obviously inefficient. This inefficiency can be overcome by observing that the set .S of these 2m
suffixes and prefixes splits into at most 2m (and at least m) equivalence classes under the relation
of equality. Therefore, there exists a function that maps S into the set [1...2m] with the property
that two string of same length are mapped onto the same value if and only if they are equal. Tt will
be sufficient for us to compute any such function in order to determine 6.

Therefore, throughout the rest of this section, we will be concerned with computing such a
characteristic function y (or characteristic for short) for a given set of strings. In particular, we wish
to compute a characteristic function that maps the elements of such a set to “small” integers, such
that two elements of the set are mapped on the same integer if and only if they are equal. These y
values can then be used to quickly compute 6.

Without loss of generality, we will assume that m is a power two. To help in the explanation,
we will start with the assumption that we are given ¢ x m processors for an appropriately chosen
constant e. (Essentially, we will assume that there is a processor for every character in the given
input.) Subsequently, we will extend this algorithm to one that only uses m/logm processors by
using Brent’s lemma [Br74]; the optimal speedup result will follow from this extension.

2.2. A simple suboptimal algorithm. We first sketch a simple algorithm for computing é
in O(mlogm) work and time O(logm). This algorithm computes the characteristics of the suffixes
of A and the prefixes of B in S by appropriately combining the characteristics of their substrings.

Specifically, for each 7,7 = 0,1,..., logm, we compute the characteristic of the set of all sub-
strings of A and B of length 2!, as was done in [AILSV88] and [KP92]. For purpose of illustration,
we will describe this computation for a value 7 assuming that the characteristics were computed for
i—1. We note that substrings of the same length are always handled concurrently. We first note that
substrings of A and B are handled similarly here. Let aja;11...a;49:_1 be a substring of A. Dedi-
cate a processor, say Py, (0 < k < 2m—1) to this substring. Given that the characteristics of strings
of length 2/=! were computed in the previous step, y(a; .. tjq9i-1_q) and x(@jyoi-1 .. @jy0i_q)
are known and are in the range [0...2m — 1]. This information is now combined to compute the
characteristics of substring a;a; 41 ...a;19:_1 as follows. Processor P}, writes k into location number
x(aj .. ajyoi-1_1)+ 2my(ajyoi-1 ...aj19i_1) of some vector indexed by 0, 1,...,(2m)?—1. Then P
reads the value in the above location and assigns this to x(a;, aj41...a;49i_1). As all the processors
write in parallel, only one of the processors writing into a location succeeds, and all processors writ-
ing into this location read that value. Moreover, the resulting y value is in the range [0...2m — 1].
Note that in phase 0 the vector is of size m, the size of the alphabet; processor P writes k into
location aj in the vector.

These characteristics are now combined appropriately to derive the y values of the suffixes and
prefixes in S. Assume that the empty string is assigned the characteristic of 2m (to make it different
from those computed above). Let @ be a suffix of A of some length Ei‘fom 2t ¢; € {0,1}. Write
a as'the concatenation Qlog m Alog(m—1) - - - 40 where the length of a; is ¢;2" (that is, the length is 0
or 2'). Do the same for each prefix b of B. In logm steps it is possible to compute characteristics
for the set .S, by combining in step ¢, i = 1,...,logm, the values x(ag ...a@;—1) and x(a;) to obtain
x(@o . ..a;). (To use the approach of the previous paragraph, replace 2m by 2m 4 1.) All @ and b
are processed in parallel as above to assure consistent assignment of characteristics to strings in S.

OBSERVATION 1. The function é can be computed in O(mlogm) work and time O(logm).



2.3. Characterizing prefixes efficiently. In this section, we refine the above algorithm to
where the total work done is only O(m) on the string B for which the characteristics of the prefizes
have to be computed. This computation will run in time O(logm). However, the corresponding
characterization of the suffizes of string A will still need O(mlogm) work. We will return to a
discussion of this issue in Section 2.3.2 below. Subsequently, in Section 2.4, we will further refine
these ideas to get an algorithm that solves the s-p matching problem in O(logm) time and O(m)
overall work.

In order to improve the work done in characterizing the prefixes of string B, we structure
the computation to proceed in two stages, referred to respectively as the winding stage and the
unwinding stage. The winding stage consists of phases 0,1,... ,logm. In phase 7, we compute the
characteristic of the set of substrings {b; ...b; i1 |0 <j < m—2 and j divisible by 22} Basically,
in phase 7, only those positions whose distance from the head of B is a multiple of 2’ are “active”.
The computation corresponding to all the other positions will have “gone to sleep.” For each active
position j, we compute the characteristic of the substring of length 2¢ starting at j. Therefore, on
phase i, we compute the characteristics of only m/2? substrings of B 2.

In the (complementary) unwinding stage the information computed in the winding stage
is combined. Its schedule is the “reverse” of that of the winding stage, and its phases are
logm — 2,logm — 3,...,0. In phase ¢ we compute the characteristics of the set {bg...b; | j > 2
j + 1 divisible by 2% and not divisible by 2¢*1}. At this point, the characteristic of the prefix of B
ending at position j is computed by combining previously computed characteristics of 1ts substrings,
as described in Section 2.2.

Remark: It is easily verified that the unwinding stage has two phases less than the winding stage.
This is because the positions scheduled during phases log m and logm—1 in string B have their char-
acteristics completely computed during the winding stage. Since only nodes whose characteristics
are not completely computed during the winding stage need to be processed during the unwinding
stage, we can drop the counterparts of these winding phases, during unwinding. Therefore, we start
with an unwinding phase of logm — 2.

We will also introduce an example below, to illustrate these issues.

2.3.1. An example. We will now present an example of the naming as it proceeds on the
example strings A= cabacaba and B= abacabab. Essentially, in the algorithm described thus far,
during the winding as well as the unwinding phases, the computation on A mimics the computation
on B, so that the final y values are correct. In other words, the algorithm must compute charac-
teristics for suffixes of A that are consistent with that given to the prefixes of B. To do this, the
intermediate steps in the computation of the characteristics of the suffix of A of any length 7, must
follow the the computation of the characteristic of the prefix of B of length j.

In Table 1 we show the schedule based on which positions are active during the winding and
the unwinding stages of string B. At each phase, we also show the characteristic values computed
for the active positions.

In Table 2, we illustrate the way in which positions in string A are active and “keep up” with
the computation on string B. The final value of each position is shown in bold-face in Table 1 as

2 The scheduling of computation on substrings of B is based on the algorithm from [KP92] used for computing
characteristics of lineage functions of forests, and is similar to the well-known prefix sum computation [FL80]. Infor-
mally, we are given an input forest whose vertices and/or edges are labeled. A lineage function maps a set of labels
of paths in this forest into some (range) set. However, since strings are a very special (degenerate) case of arbitrary
forests, the techniques used here in the case of strings are significantly simpler than those used in the context of
arbitrary forests for which the algorithm was originally designed.
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Winding Stage Unwinding Stage

Position  Processor Phase 0 Phase 1 Phase 2 Phase 3 Phase 1 Phase 0
Number
X X X X X X
0 8 12
1 9 6 15
2 10 12 10
3 11 4 11 11
4 12 12 12
5 13 6 15 13
6 14 12 14
7 15 6 15 15 15
TABLE 1

FExecution trace on string B = abacabab.

Winding Stage Unwinding Stage
Position  Processor Phase 0 Phase 1 Phase 2 Phase 3 Phase 1 Phase 0
Number

X X X X X X
0 0 4 0 4 0
1 1 12 15 11 13 14
2 2 6 2 2 2
3 3 12 11 3 3
4 4 4 0 4
5 5 12 15 10
6 6 6 2
7 7 12

TABLE 2

FExecution trace on string A = cabacaba.

well as in Table 2. As noted in the remark above, we note that that the number of unwinding phases
are two less than their winding counterparts. The results of the computations from Tables 1 and 2
are summarized below over all the phases in Table 3.

Let us consider a typical match of the prefix of B of size 7 with the suffix of A of the same
length; the match i1s induced by the sequence ¢ = abacaba. Tracing through the tables, we see
that these names are computed by decomposing ¢ into subcomputations on the three substrings as
follows: abac|ab|a. Let us consider the unwinding stage in Tables 1 and 2 to understand this better.
At the end of the winding stage, the characteristic of abac is 11, that of ab is 15 and that of the last
symbol a in isolation is 12. In Phase 1 of the unwinding stage, processors 13 and 1 characterized the
string abacab to be 13. Finally, in Phase 0, processors 1 and 14 computed the final characteristic of
14 respectively in strings A and B, declaring the match.

It is easy to verify that the the resulting characteristics of two substrings are always the same,
whenever they are identical. In the present implementation, we allow non-identical strings of dif-
ferent lengths to sometimes get the same characteristic value. However, this does not cause any
problem in solving the s-p matching problem correctly.

2.3.2. The difficulty in characterizing suffixes efficiently. Recall that in the algorithm
discussed above, during phase i of the winding stage, characteristics of substrings {a; ...a;40:_1 |

6



Phase 0: a=12, b=6, c=4.

Phase 1: ab=15, ac=11, ba=2, ca= 0.

Phase 2: abac=11, abab=15, acab=3, baca= 2, caba= 4.
Phase 3: abacabab=15, cabacaba=0.

Phase 1: abacab=13, bacaba=2.

Phase 0: aba=10, abaca=12, acaba=3, abacaba=14.

TABLE 3
Summary of characteristics of the substrings of A and B.

Fh e,
B' bo b1 b2 b3 b4 b5

p—
B" by b, b,b,b, b b, ceorrrererrriirnens

Fic. 1. Prefizes B’ and B" share intermediate substrings.

0 < j < m~—2'} of string A are computed. We observe that no more than m — 2! + 1 substrings
of A are active during this phase. Likewise, during phase i of the unwinding, for each &, and j
such that 0 < k& < m — 2° + 1, j + 1 is mazimal and is divisible by 2¢ and not divisible by 2/+!
the characteristics of the set {ay ...ag4;} of substrings of A are computed. For example consider
m=128, i=5. Then k is in the range of 0...97. Now, consider k¥ = 10; we compute j + 1 to be 96,
and therefore, the characteristics of {a1g...a105} will be computed. Once again, it is easy to verify
that less than m — 2/ + 1 substrings of A are active during this phase.

Note that prefixes of B of lengths a2* 4+ 1 and a2* 4+ 2 for some «, share many overlapping
substrings. Indeed, it was this fact that allowed us in Section 2.3 to structure the winding and
unwinding stages such that the only O(m) work was done on string B overall. However, as shown
in the example below, the “simulation” of this computation on the suffixes of A does not have this
nice structure. In particular, suffixes of increasing lengths of string A do not share overlapping sub-
strings in such a simulation. As such, 1t is not hard to verify that by the end of the winding stage,
we would have computed the characteristics of a set of O(mlogm) substrings of A but of only O(m)
substrings of B. We will now sketch a brief example, to better illustrate this difficulty. In Figure 1,
we have an example string B and we consider two prefixes of it, respectively of six characters and
seven characters each and denoted by B’ and B”. Similarly, we consider an example string A shown
in Figure 2, and two of its suffixes in turn also respectively with six and seven characters are A’ and

A"

Clearly, one possible case of s-p matching is where the suffix A’ of A of length six is aligned with
the prefix B’ of B, of the same length. Similarly, the second case is where A” is aligned with B”. As
shown in the figures (and explained above), prefixes B’ and B” share intermediate substrings that
are composed during the naming process. For example, the characteristic of B” is derived simply
by adding the single character bg to the characteristic of B’. However, as we can see from Figure 2,
this is not true of the corresponding suffix A”, with respect to A’.



P—'H,_,_

A ceeeerreriennnenn @

m-6 am—5 am—4 am—3 m-2 “m-1

"
A a-.a .a .a 'a .a

m-6 “m-5 "m-4 “m-3 m—2am-1
F1G. 2. Suffires A’ and A" do not share intermediate substrings.

2.4. The optimal algorithm. Recall from the previous section that A was the “difficult”
string as it required O(mlogm) work. Intuitively, the way in which we get around this, is to shrink
A to a string of size m/logm. This is done by first partitioning it into m/log m non-overlapping
substrings, each of length logm. We then replace each substring by its characteristic value y to
get a new string A. In conjunction with this, we decompose B into logm strings, By, Bs, .. .Blogm,
each of length m/logm as follows: character 7 in the jth such string characterizes the log m length
substring of B starting at position j + ilogm. We operate on each of these logm cases generated
by B independently, using the single copy of A as described in Section 2.3.

The algorithm is stated concisely in Section 2.4.1. This is followed by a detailed example in
Section 2.4.2, that illustrates this concise description. In order to achieve parallel speedup, the
algorithm for suffix-prefix matching being discussed here relies on a parallel construction of the well-
known Aho-Corasick automation from [ACT75]. We describe the details of this parallel construction
in Section 2.4.3. This construction is used to implement Steps 1 and 2 from Section 2.4.1, as shown
in Section 2.4.4. Subsequently, Step 3 of the algorithm is described in Sections 2.4.5 and 2.4.6. The
details of coping with “boundary conditions” in Step 4 are discussed in Section 2.4.7, and solving
the s-p matching problem in Step 5 is summarized in Section 2.4.8. Finally, the complexity of the
overall algorithm is analyzed in Section 2.4.9.

2.4.1. Concise statement of the algorithm.

1. Compute in parallel the Aho-Corasick automaton M representing the set of m/logm non-
overlapping substrings of A, of length log m each:

apdy - .. Alogm—1,
AogmAlogm+1 - - - A2logm—1

Am—logmim—logm41 - - - dm—1-

Let a; for i = 0,logm,...,m — logm be the name (number) of the state accepting the
substring ;@41 ... Gitlogm—1- (We note that a state a; for i = 0,logm,...,m — logm
accepts the substring a;a;41...di410gm—1 if and only if from the start state, the se-
quence of transitions induced by @;a;11 ... ai410gm—1 lead to state a;.) Create the string
A= ElOEllongl2logm .- ~am—1ogm~



> |

log m

log m log m

e =

ao...alogm_l alogm---aZIOgm—] e o o o o o o s s o 0o o s s o

Am-logm * -

Am-1

Compressed

S —p— S

ag alogm e 6 s e o s s e s s s e s s s e s e s e am—logm

F1G. 3. The transformation done to string A.

. Apply in parallel the automaton M to the string B considered as text. As the result, create

the string B = boby . . ~Em—logm where b; is the state accepting the string b;b; 11 ... bij1ogm—1-
Create logm strings

61 = IZlélogm-I—lIZZlogm-l—l .. ~12m—210gm-|—17
B bab

2 1ogm+2b2 logm+2 - - - bm—Zlogm-I—%

Blogm = ElongZIOgm cee bm—logm~
At this point, we have “compressed” string A by a factor of logm, as shown in Figure 3.

Furthermore, we have also “decomposed” string B into logm components, each of length
m/logm; one such decomposed component is illustrated in Figure 4.

. Compute in parallel the characteristics of the set consisting of all the proper suffixes of the

string A and all the proper prefixes of the strings By, By, ..., Biogm-

. Compute in parallel the characteristics of the set consisting of all the suffixes of the set of

strings

aoay - - - Alogm—1,
BogmAlogm—+1 - - -A2logm—1s- -+
Am—logmm—logm41 - - - dm—1

and all the prefixes of the string bob1 .. .biogm—1-
This part of the computation is used in processing the “remainder” pieces as shown in Figure

4

. Compute in parallel the vector é. Let j, where 1 < j < m, j = ¢;logm + ¢o, where ¢; > 0,

and 1 < ¢y <logm. Also, let i = j — 1. Then é[i] = 1 if and only if:
(a) X(Elm—cl logmam—(cl—l)logm B Zlm—logm) = X(bc—zbc—z-l—logm .- ~ch+(c1—1)logm) and,
(b) X(am—i—lam—i e Omey 1ogm—1) = X(bObl .. ~ch—1)~




REMAINDER log m
=

log m

=

log m

=

B bO bl "'bi—l bi s blogm+i—1

blog m+ b210gm+i-1

bm—210gm+i bm—logm+i—1

S

S

N

blogm+i o o o o o o

bm—210gm+i

F1G. 4. The manner in which string B decomposes into Bj.

2.4.2. Example. We now present an example. Let ¥ = {a, b}, m = 16 and let

A = bbabbbaaabaabbab, B = aabaabbabababaaa

1. Decompose A = bbablbbaalabaalbbab (we broke A into strings of length log, 16 = 4 each).
We now need to construct an automaton representing the 4 (actually 3 distinct) substrings.
The automaton has 10 states. Its starting state is ¢, and it is defined by the functions listed
below, and represented in Figure 5. In this figure, the “goto” function is denoted by the
solid lines, whereas the “failure” function is indicated by the dashed or broken lines; please
refer to Section 2.4.3 for a detailed review of the structure of such an automaton.
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state symbol  g(state, symbol)

¢ a «
¢ b €
e a
« b 3
B a Y
Jé} b
5 a 6
5 b
6 a
6 b
€ a
€ b ¢
¢ a n
¢ b
7 a 0
7 b L
0 a
0 b
L a
L b

state  f(state)

-~ DI AN D2 & L O
WO 2 8.0 D B

é stands for abaa, 6 for bbaa, ¢ for bbab. Thus, A = 166

B = 6 8¢ny 3y Byda

By = 813, By = Byy, Bs =(B6, Ba=nya

. The relevant (distinct) substrings consisting of certain suffixes of A and prefixes of

BlaBZaB3aB4a are: /87 6a Ca ¢ /877 6La C/Ba s /87’}/3 64/83 C/Béa nya, 66/“7 and we may
assume that characteristics have been computed for them appropriately.

. The relevant (distinct) substrings are: a, b, aa, ab, aab, baa, bab, aaba, abaa, bbaa, bbab,
and we may assume that characteristics have been computed for them appropriately.
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F1G. 5. The Aho-Corasick automation for this example.
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5. Let us compute é[8]. i =8, j =i+ 1=19. Thus j = 2-4+ 1, and therefore ¢; = 2 and
¢o = 1. Note that agaia = bibs = 6¢; & stands for abaabbab. The equality of agais = bqbs
i1s determined by checking the characteristics of agays and b1bs. Furthermore, a7 = by = a,
also checked by characteristics. Thus é[8] = 1. Indeed the suffix of length 9 of A and the
prefix of length 9 of B are both equal to aabaabbab.

Before proceeding any further, we will first describe the construction of the Aho-Corasick au-
tomaton in detail. Tt has to be recalled that this construction is done in Step 1 of the algorithm
described above in Section 2.4.1.

2.4.3. The Aho-Corasick Automaton and its Parallel Construction. We assume that
the reader is familiar with the work of Aho and Corasick from [ACT5], to some extent. However,
we will briefly review that work now, and fix the notation. Given several pattern strings, first a
tree (trie) describing them is constructed. This tree describes the underlying automaton (see Figure
5), whose states correspond to the nodes. We have a “goto” function g(state = r,symbol = a)
represented by the solid lines in Figure 5 that indicates the next state to go-to, if we are in state »
and the current symbol in the text string being read is a. In other words, g(r, a) = s if the prefix
can be extended by the symbol a. The new state will be s. Let n(r) denote the depth of the state
7, that is the distance between it and the root (¢ in Figure 5) of the tree. The automaton is in state r
if and only if:

(i) the suffix of the prefix of the text string examined so far is equal to the labels of the states from
the root to r. Let « denote this sequence of labels to 7.

(ii) Furthermore, « is equal to a prefix of some pattern string(s).

(iii) Also, n(r) is the largest possible match found thus far, ending in the text-string position being
currently matched.

We also have the “failure” function f(r) represented by the broken lines in Figure 5. The failure
function is used to continue matching the pattern on the string should ¢(r,a) = fail. This indicates
that there 1s no pattern string whose prefix is «.a where . denotes concatenation as a prefix. Equiv-
alently, any symbol of the text being read cannot be used to extend the prefix. That is if g(r, a) for
the symbol @ that was read is undefined, the automaton goes to state f(r) and processes @ again.
Tn other words, it checks whether g(f(r),a) is defined. If it is, the transition takes place, otherwise,
F(f(r)) is checked, and so on.

The parallel construction

We start by assigning a processor to each pattern string. Recall that, conceptually, each state
of the automaton corresponds to a substring of one or more of the pattern strings. Informally, each
state of the automaton is associated with an array of size |X|. 3 Let us suppose that the automaton
has been constructed to include all states of depth d or less. Let r be a state at depth d. Then, if
g(r,a) = s, the parallel algorithm first allocates a new array of size |X| to represent s. This is done
by the (one of) the processor(s) allocated to a pattern string whose prefix of length d + 1 defined
state s. Following this step, this processor adds a pointer in the position corresponding to a (in the
array representing r), to point to the array representing s. This pointer implements g(r, a) = s.

We will now address the question of computing the failure function f. However, before proceed-
ing with this parallel construction, 1t is helpful to briefly review its classical sequential construction.
The sequential algorithm computes f iteratively, based on the depth d of the state s. Let r be the

? Recall that in our paper, we are concerned with a || that is polynomially bounded in the size of the input
strings. Therefore, the automaton can be trivially implemented using a polynomial amount of space.
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(unique) parent state of s in the corresponding tree representation. In particular, let g(r,a) = s.
Informally, the iterative process involves following the failure functions towards the root of the trie,
till a state s’ is encountered such that:

1. the string of symbols representing the path from the root to ¢/ = s’ is a proper suffix of the
sequence of symbols encoding the path from the root to state s and,
2. o’ is the longest sequence with the above property.

Equivalently, let n(r) = d — 1 and let g(r,a) = s. Let r1,7a2,...,7,, (v > 1), be the shortest se-
quence with the following properties: ry = r, 7,41 = f(7;) for i > 1 and ¢(r,, a) was defined. Then

f(s) = g(ry,a).

Returning to the question of constructing the failure functions in parallel, we will now show that
the parallel algorithm will proceed in at most O(D) steps, where D denotes the length of the longest
pattern string in the input * For any state x, we denote by 7(z) the step in which the computation

of f(x) is finished. We will show that:
THEOREM 2.1. For any state s, 7(s) < 2n(s) — 1 —n(f(s)).

Proof Again, let r,s,a be such that g(r,a) = s. The computation of f(s) will start, in the step
following the step in which f(r) was computed. By (informal) induction on the depth of a state,
f(r) is computed by step 2n(r) — 1 — n(f(r)). We will show that it will end no later than in step

2(s) =1 =n(f(s))-

During the computation the processor P allocated to s (technically this is one of the pro-
cessors allocated to the string whose prefix of length 7(s) terminates at s) follows the sequence
f(r), f(ra), ..., f(ry—1), v > 1, described above, with one step required for examining each f (and
associated ¢). However, we need to ensure that processor P does not wait by more than a constant
amount of time to determine each of the f(r;) for 1 < ¢ < (v — 1), or else processor P might have
to “wait” for the processor computing f(7;) to complete its computation.

We will therefore first prove the following crucial bound on the time, that relates 7(r;) and 7(s).
Specifically,

LEMMA 2.2. For1<i<(v—1), 7(r;) <2n(s) —n(f(s)) —v—i+ 1.

Proof We first recall that f(r;) = r;41 and that n(r;) > n(r;y1), by construction. Therefore, we

note that n(s), n(r1),n(r2), ..., n(ry—1) is a strictly decreasing sequence of integers. From the above,
it immediately follows that
(1) n(ry) < on(s)—i

From the monotonicity of the depths of the sequence r;, it also follows that
(2) n(ry) < nri) —(v—1)

on, since n(f(s)) = n(r,) + 1,

3) n(f(s)) =1 < nri) = (v —1i)
Equivalently, replacing ¢ with ¢ + 1 we have

(4) n(f(s)) =1 < nlrig) —(v—i—1)

4 In our actual application, all the pattern strings are of (equal) D = logm length.
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From (4) above and the fact that n(f(r;)) = n(ri41), it immediately follows that

() n(f(s)+—1)=2 < n(f(r:))
By our induction on the depth of the state, please recall that
(6) m(r) < 2n(r) — 1—=n(f(ri))

for 7 < v. Substituting in (6) for n(r;) and n(f(r;)), respectively from (1) and (5) above simplifying
we have,

(M T(ri) < 2(s) —n(f(s)) —v—i+1

From the above Lemma, we deduce that f(ry) is the last of the failure functions to be computed
from the sequence f(r1), f(r2)...f(ry—1). Furthermore, it is computed by 7' = 25(s) — n(f(s)) — v,
derived by substituting ¢ = 1. This implies that all the required v — 1 values of f are known
by step T. Let us now recall that in order to compute f(s), processor P follows the sequence
f(r), f(ra), ..., f(ry—1), v > 1, described above, with one step required for examining each f (and
associated ¢). Assuming that processor P starts the computation of f(s) after time step T we con-
clude that this computation is completed by step T+ (v — 1) = 25(s) —n(f(s)) — 1, and the theorem
is proved. 0O

2.4.4. Computing characteristics of substrings of length logm. From the construc-
tion in Section 2.4.3, it is easy compute the characteristics of the set of m/logm substrings
o, Alogm, - - - » Gm—logm Of A (used to derive fi) As these strings are all of equal (short) length
of log m symbols, 1t follows from Theorem 2.1 that

OBSERVATION 2. The Aho-Corasick automaton M, accepting strings do, Giogm, - - -, Gm—logm;
can be constructed in work O(m) and time O(logm). The x values for the substrings of A are
simply the names of the states that accept them in the automaton.

We now proceed to assign characteristics to the m — logm substrings of B as follows.
Dedicate a processor Pp (here 0 < &k < m/logm — 1) to compute the characteristics
brlogm, Oklogm+1, -+ O(ks1)logm—1 Of the logm substrings

bk logm - - ~b(k+1)logm—17 bklogm+1 .- ~b(k+1)logm7 B b(k+1)logm—1 .. ~b(k-|—2)logm—2~

This is easily done by running the automaton on the string bxiogm - - - b(x42)10g m—2 sequentially! If
a substring of length log m is accepted, we characterize it by the name of the accepting state. If 1t is
not accepted, we characterize with the name of the state the automaton reached after processing it.
This sequential computation is done in O(logm) time per processor. (Note that we are not actually
assigning distinct characteristics to the substrings of B that are not equal to any of the m/logm
substrings of A. As it turns out, this does not affect the correctness of our algorithm.)

2.4.5. A sketch of one of the cases. Assume for now that we have computed the characteris-
tics of the following set of 2m/logm substrings of length logm of A and B: a; = x(a; . .. ditlogm—1)
and b; = x(b; .. ~bi+logm—1)7 where 7 is a positive integer multiple of log m. a; and b; are symbols from
a suitable alphabet, and can be encoded in O(log m) bits. Now, consider the two strings A = o dlog m
A2logm - - - Gm—logm and B = bobiogm b21ogm - - -bm—logm. These two strings are of length m/logm
each. The characteristics of the suffixes and the prefixes defined by these two strings can therefore
be computed in work O((m/logm)log(m/logm)) = O(m) using our algorithm from Section 2.3.
This will give a partial solution to the problem for the original input strings A and B. Specifically,
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we solve the problem of computing the characteristics, but only for the suffixes of A and the prefixes
of B whose lengths are divisible by log m. Notice that in this computation O(m) work was devoted
to A derived from A, but only O(m/logm) work was devoted to B derived from B. The extension
of the approach to handle the complete problem will balance the requirements so that O(m) work is
devoted both to strings derived by A and those derived from B as well.

2.4.6. Computing characteristics for the original inputs. To generalize from Section
2.4.5, assume that we have computed the characteristics of the following substrings of A and B,
each of length logm:

bibit1 .. . biyiogm—1,fori=20,1,...,m—logm, and a;a;41 ... @i 410gm—1, for 7 divisible by log m.
Denote:

Ei = X(b2b2+1 Ce bi_|_logm—1)
a; = X(aiai-l—l Ce ai+logm—1)

We will now proceed to solve the original problem by considering suffixes of the single string A
and prefixes of the logm strings derived from B of the form

1ogm-|—11221ogm-|—1 .. ~12m—210gm+1a

eulllwe]

1= bib
2 = b2blogm+2b21ogm+2 cee bm—Zlogm-I—Za

Blogm = blogmeIOgm cee bm—logm~

Tt can be verified that, disregarding “remainder” strings of length < logm, (this is sketched in
Section 2.4.7) every potential matching of a suffix in A with a prefix of B is covered by one of these
log m strings. Therefore, we characterize the set of all suffixes of A and the prefixes of each of the
log m strings By, B, ..., Blogm. Furthermore, from the previous discussion, it follows immediately
that

~ OBSERVATION 3. The characteristics of A can be computed in O(m), and those of each of the
B; in work that is linear in the size of (O(m/logm)). Hence the total work done is O(m).

2.4.7. Computing characteristics of the remainders. In B there are only logm distinet
“remainder” strings of the form bgby ...b,; where 0 < z < logm — 1. In other words, these are all
possible prefixes of the substring formed by the first log m positions of B. In A, there are a total
of m possible remainders. To see this, let us consider A as being decomposed into m/logm disjoint
substrings each of length logm. Each of these substrings contributes exactly logm of its suffixes as
possible remainders. For example, consider the substring @ciogm - - - @(c41)10gm—1- In this case, the
remainders are all of its suffixes including the substring itself. This computation can be viewed as
solving m/log m s-p matching problems, one for each of the substrings of A and a unique pattern
string from B. However, the pattern in this case is only O(log m) characters long. Therefore, to solve
the problem in parallel, we need to only assign log2 m processors; logm proccessors are assigned
to each of the distinct prefixes of B. Consider one of the substrings of A in question, of length
logm. With a single processor, its suffixes are named using the techniques outlined in Section 2.3
in O(logm) time ( and work). (Note that in Section 2.3 the computation of the prefixes is efficient
while the computation of the suffixes 1s less efficient. One can easily reverse this, namely, design
an algorithm that has linear work on the suffix computation and O(mlogm) work on the prefix
computation.) Therefore,

16



OBSERVATION 4. the characteristics of the set of the remainder strings can be computed in
O(m) work and O(logm) time using up to m/logm processors.

2.4.8. s-p matching from characteristics. We use characteristics to compute the vector 4.

Let j € {1,2,...,m} and we write j = ¢1 logm + ¢35 where ¢; > 0, and 1 < ¢y < logm. Also,
let ¢ = j — 1. Then, 8[¢] = 1 if and only if

1. Am—cylogmm—cq logm+1 - - - Gm—1 = chch+1 .. 'bi:C2—1+C1 logm and,
2. Upp—ja1Qp—i - - ~Am—cqylogm—1 = boby .. ~ch—1~

It is easy to see that the first condition i1s equivalent to verifying the following relationship
between characteristics:

X(Elm—cl logmam—(cl—l)logm . Zlm—logm) = X(bc—zbc—z-l—logm .- ~ch+(c1—1)logm)~

The condition checks whether the suffix of length ¢; of A (of length ¢; logm in A) is equal to the pre-
fix of length ¢; of B, (substring of length ¢1 logm of B that starts with b.,). The second condition
checks whether the remainders of length ¢5 in both A and B are equal.

2.4.9. Complexity. We first state the time/processor complexity of the algorithm. The proof
of the theorem is not given here as it follows in a straight-forward manner from the statement of the
algorithm and the discussion and observations in the previous sections.

THEOREM 2.3.

The above algorithm solves the s-p matching problem in O(logm) time using work of O(m) on
a CRCW PRAM, given input strings A and B of size m each.

Given this theorem and using Brent’s lemma, we immediately obtain an algorithm that solves
the s-p matching problem in O(log m) time using m/ log m processors (of a CRCW PRAM as well),
given input strings A and B of size m each. Starting with Section 3, we will use this modified
algorithm

To reiterate, our algorithm relies on two basic ideas. These ideas are:

1. computation of characteristics and
2. the usage of failure functions for recognizing very short strings of equal length by means of
the Aho-Corasick automaton.

Using the first idea alone will give a sub-optimal speedup algorithm of work O(mloglogm). This
is because we can replace the Aho-Corasick automaton and its application in naming the strings in
Steps 1 and 2 of our algorithm (Section 2.4.1) with a procedure for computing characteristics. Tt is a
simple exercise to verify that this replacement will require an additional O(loglogm) multiplicative
work overhead, due to the computation on B.

3. Applying the s-p matching algorithm. We will now describe various applications of our
algorithm for s-p matching.

3.1. Multiple s-p matching problems. Most of the subsequent algorithms can be put in
a setting of simultaneously solving the matching of several suffixes against several prefixes. Say
we are given u text strings 77,75, ...,T,, respectively of lengths ny,ns,...,ny, and v patterns
Py, Py, ..., Py, each of length m < n; for 1 <i < u. We wish to determine which suffixes of the 7T;’s
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match which prefixes of the P;’s. It is possible to formulate an algorithm for this general problem
at this point, but instead we will develop various special cases of it as needed.

3.2. String matching. The classical string matching problem is defined by:
Input:. A pattern string of length m and a texzt string of length n > m.

Output:. All the positions in the text in which the pattern matches.

We will show how to reduce the solution of the problem to the solution of a version of multiple
s-p matching problem.

Let the pattern string be P = pyps...pm and let the text string be T = #1t5...¢,. “Cut”
T into [n/m] non-overlapping substrings 71,75, ..., Tia/m]- Tj = t(j—1ymt1t(j—1)m+2 - - -Ljm for
j< [n/m] and T[n/m] =trn/m]t[n/m]+1 - - - In- Thus, T =T\T5 .. .T[n/m] .

It is easy to see that the pattern matches some position in the text if and only if for some
J, a suffix of length & > 0 of T; matches a prefix of P and a prefix of length m — &k of T; 44
matches a suffix of P. Tf k = m or j = [n/m] then j + 1 is undefined. This observation can
be used to immediately produce an algorithm for string matching. For a simple example consider:
P = abaa, T = babaaaaabaa. Here, Ty = baba, Ty = aaaa, T3 = baa.

P matches T in position 2 because:

1. aba 1s both a suffix of 77 and a prefix of P.
2. ais both a prefix of 75 and a suffix of P.

Thus, in general, we need to solve two subproblems:

1. The s-p matching problems for finding the matches between all the suffixes of the strings
T1,Ts, ..., Trnym] and the prefixes of the string P.

2. The s-p matching problems for finding the matches between all the suffixes of the string P
and the prefixes of the strings 11,75, ..., T{n/m]-

These two subproblems can be solved in time O(log m) and work O(n) by a straightforward ap-
plication of the standard s-p algorithm. For instance, the first subproblem, can be solved by parallel
solution of the [n/m] s-p problems, each defined by a pair of strings (7}, P). This will characterize
the set consisting of all the suffixes of 11,75, ..., T, /m] and the prefixes of P. (T[n /m] could in
general be shorter than m, but this is not significant.) Again, following Brent’s lemma:

THEOREM 3.1.

Given a text string of length n and a pattern of length m, the above algorithm solves the string
matching problem using n/logm processors in O(logm) time of a CRCW PRAM.

3.3. Multi-pattern string matching. We will now define the multi-pattern string matching
problem.

Input:. A text string of length n and v patterns each of length m. (The patterns are not neces-
sarily distinct.)

Output:. For each position in the text indicate if a pattern matches there. If a match exists,
report one of the matching patterns.
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Let T be the text string, and let Py, Ps, ... P, be the patterns. Again consider an example first.
Let

T = abbbab
Plzpzzab, P3:ba.

Then ab matches T' at positions 1 and 5, and ba matches T at position 4. Thus there are 4
“acceptable” representations of the output depending on whether we state that P; or P, match at
positions 1 or at position 5. So if 0 indicates no match, the answer could be given by any of the
four strings: 10031, 10032, 20031, 20032. To help in making the presentation easier, in the rest of the
paper, we will represent outputs in which all the occurrences of a substring corresponding to more
than one pattern be denoted by a single symbol. Thus we would allow 10031 or 20032; however,
10032 and 20031 are disallowed as valid representations of the output. We will therefore require that
the output is in a canonical form:

Oulput:. A string @ = q1qs .. .¢n—m+1 over the alphabet {0, 1,... v}, satisfying the conditions:

1. ¢; = j > 0if P; matches T at position 7. ¢; = 0 if there is no match.
2. q;;, = ¢;, if and only if P;, matches T" at position #;, P;, matches T" at position i and
P, = P;,.
For ease of exposition, assume, without loss of generality, that m divides n, and let ¢ = n/m.
Furthermore, we assume that all the patterns are distinct. We do this to obtain the output in normal
form. There is no loss of generality in making this claim, since given a set of patterns Py, Ps, ... Py,
we can eliminate duplicates and compute the reduced set consisting of only distinct patterns easily
using naming (as in the case of string A before), in linear work and time O(log m).

Again cut the text 7" into ¢ non-overlapping pieces of length m each: 71,75, ...,T,. Compute
the characteristics of the set consisting of all the prefixes and all the suffixes of the set of strings
A={P, P, ..., P, T1,Ts, ..., T;}. To derive linear work, the following algorithm is used:

1. Each string in A is cut into m/ log m non-overlapping substrings of length log m. Construct
the automaton accepting all these substrings. Each substring is characterized by the name
of the state accepting it. Compress the strings, obtaining (v + ¢) strings of length m/logm
each. Here each string in A plays the role of A in the s-p algorithm; this step is analogous
to step 1 of the s-p algorithm.

2. For each string in A create logm strings of length m/logm — 1 each. A symbol in a new
string, stands for a substring of length logm in the original string. We obtain (v + ¢)logm
strings of length m/logm — 1 each. Here each string in A plays the role of B in the s-p
algorithm; this step is analogous to step 2 of the s-p algorithm.

3. Compute the characteristics of the set consisting of all the proper suffixes of the strings
computed in step 1 and all the proper prefixes of the strings computed in step 2. This step
is analogous to step 3 of the s-p algorithm.

4. Compute the characteristics of the “remainder” strings. This step is analogous to step 4 of
the s-p algorithm.

5. Generalizing from our pattern matching algorithm we note that P; matches T at position
j=am—03,1<a<q¢0<8<m—-1,1<j<n—m+1if and only if the suffix of length
(84 1) of T, matches the prefix of length (8 + 1) of P; and the prefix of length (m — 3 —1)
of Ty41 matches the suffix of length (m — 3 —1) of P;. This can be done, as sketched below.
Assume the existence of some vector V of length (2(n + vm) + 1)? initialized to 0. For a
string S, let pref(S,7) and suf(S,7) denote respectively the prefix and the suffix of length
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iof S.
From the previous steps, we can assume that we have computed the characteristics of all
the prefixes and all the suffixes of the patterns and the text pieces. We proceed now in two
steps:

(a) We assign a processor to each position of each pattern. In parallel, for each posi-
tion v < m of each pattern P;, the processor assigned to it writes ¢ in the location
Vix(pref(Pi, 7)) + (2(n + vm) + )x(suf(P;,m — v))]. As the result of this step, we
have “coded” all existing pairs of prefix-suffix for each pattern.

(b) We assign a processor to each position of each 7. The processor at position m—+y+1 of
T; reads the value of V[x(suf(Tj,7))+ (2(n+vm)+ 1)x(pref(Tj4+1, m—=))]. Pattern
P; matches T" at position jm — v + 1 if and only if the value read was 1.

Step 5.a was needed to make sure that a spurious match is not obtained by combining a
prefix of one pattern with the suffix of another pattern.

THEOREM 3.2.

Given a text string of length n and v patterns each of length m, the above algorithm solves
the multi-pattern string maiching problem using (n 4+ vm)/logm processors in O(logm) time of a

CRCW PRAM.
3.4. Multi-text/multi-pattern problem.

Input:. u text strings and v patterns. The length of the ith text string is n;, and the length of
all patterns m, 1s the same.

Output:.u strings @Q1,Q2,...,Q, over the alphabet {0,1,... v}. Each @; =
4,195,2 - - - @j,n;—m+1 18 of length n; —m 4 1 and satisfies the condition

1. gx; = j > 01if and only if P; matches T} at position 7. (0 indicates no match.)
2. if P;, matches T}, at position ¢ and P;, matches T}, at position #5 and P;, = P;,, then
Qk1iy = Gkaiz-

THEOREM 3.3.

The obvious modification of the algorithm in Section 3.3 solves the multi-text/multi-pattern
matching problem in time O(logm) using (vm + 2;21 n;)/logm processors.

3.5. Multi-dimensional pattern matching. We now describe our parallel algorithm for the
multi-dimensional pattern matching problem.

Input:. A d-dimensional pattern array P[l..m,1..m,...,1..m] of size m? and a d-dimensional
text array T[1..n,1..n, ..., 1..n] of size n¢. (P[l.m, 1..m, ..., 1..m] stands for {P[iy,i2,...,i4] | 1 <
i1,79,...,1a < m}, etc.)

Output:. A d-dimensional array Q[l.n—m+1,1.n—m+1,...,1.n—m+ 1] over {0, 1} such
that Q[i1,ia,...,ig] = 1 if and only if the pattern matches the text in position (iy,4s,...,4q), that
is T[iy..ip +m —1yig.do+m—1,... ig..ia+m—1]= P[l.m,1.m,..., 1.m].

Essentially, we use the same framework as given in [Ba78, Bi77, KR87] in the sequential case.
The sequential algorithm requires time of O(dn?). In [ALS88] a parallel algorithm for this problem
was given requiring work of dn?logm and time of O(dlogm). The improvement in complexity in the
algorithm implementation we will present, comes from the fact that now we overcome the bottleneck
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in earlier algorithms by using our optimal algorithm for multi-text/multi-pattern string matching
from Section 3.4

We describe the algorithm recursively:

1. Match the set of strings of the form P[iy,is,...,44-1, 1..m] in the set of strings of the form
Tlki, ko, ... ka—1,j..j +m—1]. Present the canonical output as several (d — 1)-dimensional
arrays. Specifically, we get the following arrays:

(a) R[1.m,1..m,...,1..m]. R[i1,da,...,44-1] is X(P[i1,72,...714-1,1..m])

(b) S;[l.n,lom,...;Ln], i =1,2,...,n—m+ 1. Sj[k, ks, ..., ka—1] is the characteristic
of the string from P matching T" at position (ki, ka, ..., kq—1,7), if such pattern exists;
it 1s 0 if no such pattern exists.

2. Recursively solve several (d — 1)-dimensional problems.  Specifically, match R in
S1,59, ..y Sn—m41-

P matches T at position T[ki,ks,..., ka—1,j] if and only if R matches S; at position
ki, ko, .. k1.

We now proceed to analyze the complexity of the algorithm. From section 3.4 we know that

FacT 1. v pattern strings of length m each can be matched in u > v text strings of lengthmn > m
each in work ¢ X u x n for an appropriate constant c. Using this fact, we need to show that

LEMMA 3.4. For the above algorithm, Wa(n?), the work required by the text of size n?, satisfies
Wa(n?) < edn? and the time required is O(dlogn).

Proof Let us review the two steps above. In the first step we match m?~! pattern strings of length
m each in n%~! text strings of length n each. This can be done in work of en? 'n = en? and time

of O(logn).

Tn the second step we solve in parallel n — m + 1, (d — 1)-dimensional problems each consist-
ing of matching a pattern of size m?~! in text of size n%~'. By induction and the previous fact,
this can be done in work (n — m + 1)Wy_1(n?1) < ne(d — 1)n?=t = ¢(d — 1)n?. The time re-
quired is O((d — 1)logn). Combining the complexities of the two steps we obtain that the work is
Wa(n?) < edn? and the time is O(dlogn). O

By interpreting the above lemma appropriately, we have

THEOREM 3.5. The above algorithm solves the multi-dimensional pattern matching problem in
time O(dlogm) using n?/logm processors of a CRCW PRAM.

We now present an example. In this example, d = 3, m = 2, and n = 3. The problem instance

is defined by:

P[1..2,1.2,1] = Z z
P[1.2,1.2,2] = | Z
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>
Q

Q

T[1..3,1.3,1] =

T[1.3,1.3,2]= a b b

T[1..3,1..3,3] =

)
Q o~
)

(Note that P matches T at position (1,2,2)).

The recursion has 3 stages:

1. We compute the characteristics of the appropriate substrings of P. Without loss of gener-

ality, they are:

P[1,1,1.2] = ab, x(P[1,1,
P[1,2,1.2] = ba, Y(P[1,2,
P[2,1,1.2]=bb, x(P[2,1,
P[2,2,1.2]=bb, Y(P[2,2,

We obtain the following characteristics for the strings of

The pattern 1s now coded as a two-dimensional object

]=aba, x(T[1,1,1..2))=1,
]=bab, \(T[1,2,1..2]) =2,
]=aba, x(T[1,3,1..2))=1,
]=bab, x(T[2,1,1..2]) =2,
1= abb, x(T[2,2,1..2]) =1,
]=abb, x(T[2,3,1..2]) =1,
]=baa, x(T[3,1,1..2]) =2,
]=bba, x(T[3,2,1..2]) =3,
3] = bba, (T[3,3,1..2)) = 3,

1.2)h)=1

1.2))=2

1.2))=3

1.2))=3
T:
x(T[1,1,2.3))=2
x(7[1,2,2.3))=1
x(T[1,3,2.3))=2
x(T[2,1,2.3))=1
x(T[2,2,2.3))=3
x(T[2,3,2.3))=3
x(T[3,1,2.3))=0
x(T[3,2,2.3))=2
x(T[3,3,2.3))=2

R[1..2,1..2]; RJ[i,J] stands for the

characteristic of P[7, j, 1..2]. The text is coded as two two-dimensional objects S1[1..3,1..3]
and S5[1..3,1..3]; Sk[i, j] stands for the characteristic of Tz, j, k..k + m — 1].

R[1.2,1.2] = ; g

1
Si[1.3,1.3]= 2
2

Lo =N
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S5[1.3,1.3] =

S =N
N o =
N Qo BN

(Note that R matches Sy at position (1,2).)

. As stated in the description of the algorithm we should now solve two matching problems:
R in S; and R in Ss. It is simpler to combine these two problems into the single problem
of matching R in S7 and S,.

We compute the characteristics of the appropriate substrings of R. Without loss of gener-
ality they are:

R[1,1.2]=12, x(R[1,1.2])=1
R[2,1.2]=33, x(R[2,1.2])=2

We obtain the following characteristics for the strings of S; and Ss:

Si1,1.3] =121, y(Si[1,1.2))=1, x(5i[1,2..3])=0
51[2,1.3] =211, y(S1[2,1.2))=0, x(51[2,2..3])=0
51[3,1.3] =233, y(Si[3,1.2)) =0, x(51[3,2..3])=2
So[1,1.3] =212, y(S=[1,1.2)) =0, x(S:[1,2.3))=1
55[2,1.3] = 133, y(S=[2,1.2)) =0, x(S:[2,2..3])=2
55[3,1.3] = 022, y(S=[3,1.2))=0, x(S55[3,2..3])=0

The pattern is now coded as a one-dimensional object U[1..2]; U[i] stands for
the characteristic of R[i,1..2]. The text is coded as four one-dimensional objects
V1,1[1..3], Vi 9[1..3], Vo 1[1..3], Va o[1..3]; V; & [4] stands for the characteristic of S;[i, k..k + 1].
(U and V play the same role as R and S in the previous stage.)

U1.2] =12

Vlyl[l..3] = 100

Vlyz[l..3] = 002

Va1[1..3] = 000

Vo o[1..3] = 120

(Note that U matches V4 5 at position 1.)
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3. We should now solve four matching problems. Again we combine them into a single problem.
We compute the characteristics of the appropriate substrings of U. Without loss of gener-
ality they are:

Ul.2]=12, y(U[L.2)=1

We obtain the following characteristics for the strings of V4 1, V1 9, Va1, Va2t

Vlyl[l..3] = 100, X(V171[12]) = 0, X(V171[23]) =0
Vlyz[l..3] = 002, X(VLQ[lQ]) = 0, X(V172[23]) =0
Vou[1..3] =000, x(Van[l.2])=0, x(Va:1[2.3])=0
Voo[l.3] =120, x(Vao[l.2))=1, x(Va2[2.3])=0

In stage 3 we found that U matches V55 at position 1. Therefore, the output of stage 2 is
that R matches Ss at position (1,2). Hence, in stage 1, we indeed deduce that P matches T at
position (1,2,2). Of course, the answer could be written in the form of @, as required by the formal
specifications of the output.

3.6. The pattern occurrence detection. In this section we consider the problem of string
matching when the text has been cut into a number of pieces. Formally, we have:

Input:. A patternstring P = popy - . . pm—1 of length m and [ distinct text substrings 11,75, ..., T;
of length k each.

Output:. Decision whether there exists a permutation of the text substrings for which the pattern
is a match, and if yes, produce one such permutation and the match position for it.

Before we proceed with the description of our algorithm, several remarks are in order. Generally,
one might consider that the strings are of arbitrary lengths and possibly replicated. Then the “assem-
bling” of strings into a single text string is difficult. The deterministic problem of pattern matching
in this case is NP-hard [TU88]. Approximation algorithms for this more difficult problem, which
appeared in molecular biology [TU88], were given in [CD88, TU88, KM95, Tur89, Ukk90, BJLTY91].

We now proceed with the description of our algorithm solving the simpler problem we have
formally defined above. To simplify the exposition, consider the case when m > 3k and m is a
multiplication of k. Observe that a matching permutation exists if and only if there exist distinct
J1sJ2,- -+, Js, Wwhere j; > 3 such that the pattern is equal to a suffix of T}, followed by T;,,..., 7T} _,,
followed by a prefix of T;_.

.y

The algorithm proceeds in two steps.

1. We compute an integer vector CENTERJ0,..,m — 1].
CENTERJ[i| = j if and only if pipiy1...pitk—1 = tjotj1 ...t 5—1; if no such j exists set
CENTERJi] = 0.
2. We compute a bit vector ENDS[0..k — 1]. ENDS[0] = 1. For i > 1, ENDS[i] = 1 if and
only if there exist distinct j, and j; such that:
(a) suf(Tj,,t) = pref(P,i) (po...pi—1 is equal to the suffix of length ¢ of Tj,.)
(b) pref(ij,k— 2) = Suf(Pak_ 2)
(c) Foreach r=0,1,...,m/k—2, piyrr - Pig(r+1 k-1 is different from both T;, and T}, .

A match exists if and only if for some ¢ = 0,1,...,k — 1, (i) ENDS[i] = 1, (ii) all
CENTER[i+rk], forr =0,1,...,m/k — 2, are # 0 and distinct.
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All these vectors can be computed in time O(logm) using O(kl) work. Tt is easy to see how to
complete the algorithm to produce the output in those complexity bounds too.

If m < k we also have to test whether the pattern matches one of the text pieces, which too
can be done in optimal speedup. Therefore,

THEOREM 3.6.

The above algorithm solves the pattern occurrence detection problem in time O(logm) using

kl/logm processors on a CRCW PRAM.

3.7. On-line string matching. In this section we consider the parallel version of the on-line
string matching problem.

On-line Input:. A pattern string P and a sequence of | text substrings Ty,T5, ..., T} given dy-
namically.

On-line Output:. For each i, 2 =1,2,... 1, after producing the output for 71,75, ..., T;_1, pro-
duce the output consisting of all those positions in which P matched 7175 ...7T;_17T;, and that were
not reported previously.

To specify the complexity of an on-line parallel algorithm, we will need to introduce a few no-
tions. Let m denote the length of P and for each 7, let k; denote the length of 7; and let n; = EZ kj.

ji=1
Let now 7 be in {1,2,...,1}. Consider the time instant when the algorithm finished processing the
text substrings 771,75,...,T;—1 and produced the corresponding output. It is now given 7; and

produces the “incremental” output. Let T'(n;—1,m, k;) and P(n;—1,m, k;) respectively denote the
time and the number of processors required by the algorithm to produce that output. The total
amortized work done by the algorithm is defined as 2221 P(ni—1,m, k;)T(n;—1,m, k;). We say that
this algorithm has optimal amortized speedup provided for all possible inputs the amortized work
done is within a constant factor away from the time complexity of solving this problem by the best
known sequential algorithm.

We will now sketch an optimal speedup (on-line) algorithm briefly. The details are easy to fill
out. To simplify the exposition, consider just the case when pattern matching was done for some
pattern and some string, and then the string is further extended and pattern matching needs to
be done for the new longer string. Assume then, that using our algorithm from Section 2 pattern
matching has been solved for pattern of length m and text string S of some length n and then an
additional text string S of length k is presented. The main idea behind the on-line implementation
is to use the algorithm and data structures used in the off-line case described in Section 2, but
handling each extra text chunk as it is given to the to the algorithm dynamically. Of course, it is
important to be able to do this without recomputing most of the information that was done earlier
on. The work bounds are estimated by amortizing on text chunks that are multiples of log m.

We must now solve the pattern matching problem for the augmented string SS’. In general,
assuming that n > 2m, we can write: S = 515253 where length(Sy) is a positive multiple of m,
length(S2) equals m, and length(Ss) is smaller than m. We have all the suffix information for S,
and all the prefix information for Ss.

We consider two cases:

1. length(S3) + k < m : To avoid simple case analysis, assume k > logm. We need to extend
the prefix information available for S5 to get the prefix information for S35’. By applying
the automaton M, it is possible to do so in work of O(k) in time of O(logm). (By refining

25



our algorithm, the total time could be lower for certain cases where k is smaller than m,
but it is not worth considering this here.)
2. length(Ss) + k > m : Write S’ = S5, where length(S,) = m — length(Ss). We will need

to compute

(a) The prefix information for S5.5,. This is done as described above.

(b) The suffix information for S3.5,. This is done as in our algorithm for regular string

matching, in time O(logm) and work O(m).
(¢) The prefix information for Sy. This is also done as described above.

THEOREM 3.7.

The above algorithm solved the on-line pattern occurrence problem in parallel amortized linear
work. The time for processing each substring is O(logm).

4. Conclusions. In this paper, we employ s-p matching as the core computation in several
pattern and string matching problems. Our main result is a parallel algorithm for computing s-
p matching, which has optimal speedup on a CRCW PRAM. This algorithm is based on novel
techniques that combine notions of characteristic functions, with the well-known automaton based
approach to string matching that uses failure functions. Briefly, we first break the text and pattern
(both of length m) appropriately into “small pieces” of size O(logm). Then, using a parallel variant
of the algorithm due to Aho and Corasick [ACT5] for short (logm length) strings, we group these
small pieces into equivalence classes based on string equality. Given such equivalence classes, we
assemble these small pieces together and solve the problem on the entire input. This 1s done by
successively and consistently refining the equivalence classes. Using this algorithm for s-p matching
as the basic building block, we specify optimal speedup parallel algorithms for several pattern and
string matching problems.
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