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Abstract

In this paper we present an efficient method to index a text stream on-line in a fashion that
allows, at any point in time, to find the longest suffix of the text that has appeared previously,
and the closest (farthest) times in which it has appeared. Our algorithms allow efficient answers
to these queries.

1 Introduction

Many pattern recognition tasks are solved by ad-hoc heuristics that try to exploit special knowledge
of domain properties with varying degrees of success. Recently, there have been attempts to solve a
class of pattern recognition problems by analysis of repetitions and periods in a sequence of images
taken over time [10]. These methods are more general and not domain-specific.

Johansen [10] used this idea for surveillance, character labeling, and discrimination of handwriting
and texture. In the surveillance application, the goal is finding “unexpected” changes in a sequence
of photographs, when there is no prior definition of “unexpected”. The “surprising” nature of an
image is to be detected from the syntax of the sequence of images. Johansen uses exact matching
in his applications.

Thus, the assumption is that there are some repetitions in the behavior of the sequence of images.
At any point in time, there should be some recent subsequence that is equal to the one ending now.
Our task is to quickly find the longest and closest such subsequence.
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In this paper, we abstract the exact matching version of this problem to its combinatorial essence
and give efficient solutions. While finding the longest subsequence that occurred earlier as well as
its earliest occurrence can be easily done using, say, the suffix tree construction of [14], finding the
latest occurrence, or the z first or latest occurrences is trickier. Weiner’s suffix tree construction
algorithm [15], when applied on the reversal of the string, turns out to be a suitable 'on-line’
method that will serve as the basis of our developments.

2 Problem Definition and Preliminaries

2.1 Problem Definition

Definition 1 The online time stamped text indexing problem is defined as follows.
INPUT: An incoming stream (text) of symbols from alphabet 3.

QUERIES: Assume at point i in time, the stream si,S9, ..., S; has been input. We want to:

1. Find the longest Suffit S; g, Si ki1, Si—1,Si that occurred previously in the text (indexing).

2. Find the latest occurrence of this longest suffix, i.e. the largest index £, £ < 1 for which
i ks Si ks s Sic1,8i = 80 kyS¢ k41,501, 5¢ (latest occurrence).

3. Find the earliest occurrence of this longest suffiz, i.e. the smallest index £, £ < i for which
Si—ls Simktly ey Sio1ySi = St—ks St—k+1s - S0—1, S¢ (€arliest occurrence).

4. Given x, find the last © occurrences of this longest suffix, i.e. the largest x indices £y, ..., Ly,
1> by >y > >0y > 1 for which Si_k, Si k15 8i-158i = Stu—ky Sty—k+15 -+ Sty—15 54, 5
r=1,...x. If there do not exist x different such indices, then return the largest x1, z1 < x
indices where the suffiz equality holds (latest x occurrences).

5. Given z, find the first x occurrences of this longest suffiz, i.e. the smallest x indices 41, ..., 44,
1>l >y 1>-->0 >1 fO’I“ which Si— ks Si—kdly -y Sim15Si = St,—kySlp—k41s 980 —19S50, )
r=1,...,z. If there do not exist x different such indices, then return the largest x1, x1 <=z
indices where the suffiz equality holds (earliest x occurrences).

The difficulty with the online time stamped text indexing problem lies with the time stamping
requirement. The tezt indering requirement is well studied and can be easily solved.

2.2 The Indexing Problem

The indexing problem assumes a (usually very large) text that is to be preprocessed in a fashion
that will allow efficient future queries of the following type. A query is a (significantly shorter)
string of symbols from 3 which we call a pattern. One wants to find all text locations that match
the pattern in time proportional to the pattern length and number of occurrences.

Weiner [15] invented the suffiz tree data structure whereby the text is preprocessed in linear time,
and subsequent queries of length m get answered in time O(m + tocc), where tocc is the number of



pattern occurrences in the text. The times above are to be multiplied by logm in case the alphabet
size is unbounded.

Weiner’s suffix tree in effect solved the indexing problem for exact matching of fixed texts. Succeed-
ingly improved algorithms for the indexing problem in dynamic texts were suggested, for example
by [7, 12]. For the sake of completeness we review below how Weiner’s suffix tree can solve the
indexing problem.

Definition 2 A trie T for a set of strings {S1,---, Sy} is a rooted directed tree satisfying:

1. Fach edge is labeled with a character, and no two edges emanating from the same node have
the same label.

2. Each node v is associated with a string, denoted by L(v), obtained by concatenating the labels
on the path from the root to v, L(root) is the empty string.

3. There is a node v in T if and only if L(v) is a prefix of some string S; in the set.

A compacted trie T’ is obtained from T by collapsing paths of internal nodes with only one child
into a single edge and by concatenating the labels of the edges along the path to form the label
of the new edge. The label of an edge in T” is a nonempty substring of some S;, and it can be
succinctly encoded by the starting and ending positions of an occurrence of the substring. The
number of nodes of a compacted trie is O(r).

Let S[1,n] = s189--- 5,19 be a string, where the special character § is not in X. The suffiz tree
Ts of S is a compacted trie for all suffixes of S. Since $ is not in the alphabet, all suffixes of S
are distinct and each suffix is associated with a leaf of T's. There are several papers that describe
linear time algorithms for building suffix trees, e.g. [15, 11, 4, 14, 6].

Fact 1 Let St be the suffix tree of text T'. Let P = py---py, be a pattern. Start at the suffix tree
root and follow the labels on the tree as long as they match py---py,. If at some point there is no
matching label, then P does not appear in T. Otherwise, let v be the closest node (from below) to
the label where we stopped. The starting locations of the suffizes that correspond to the leaves in
the subtree rooted at v are precisely all the text locations where the pattern appears. These locations
can be located and listed, for a fized bounded alphabet, in time O(m + tocc).

Implementation Remark 1 From now on, Weiner’s algorithm will be used in a novel way to
to build a variant of the suffiz tree. Given a string S[1,n] = s1...s,-1%, Weiner’s algorithm
in its standard form computes in an incremental fashion n suffic trees of the substrings S[i,n],
i =mn,n—1,...1. The suffiz tree for S[i,n] is obtained by inserting string S[i,n] to the tree for
S[i+1,n]. The algorithm moves on the string from right to left. In this paper the input for Weiner’s
algorithm is instead of S[1,n] the reversal of it - the string S[n,1] = sp—1...51%. Now Weiner’s
algorithm in effect traverses the original string in the natural left-to-right order. The resulting tree
represents, at time point i, the reversals of the prefizes of S[1,i]. This structure serves as a full
text index for S[1,14] like the standard suffiz tree; one has only to reverse also the pattern P when
making a query.



Recall that we are interested, at every point 4, in the longest suffix s;_ ... s; of the stream that has
occurred previously. Weiner’s construction is suited to our needs since it constructs the suffix tree
(compacted trie of the reversed prefixes) online as new symbols are coming in, which is precisely
our model.

In addition, by Weiner’s construction, the largest suffix we are seeking is no other than the one
ending at the parent w of the latest leaf v; added to the tree. This is because the parent node
w is the internal node that is closest to the leaf v; and therefore, L(w) is the longest prefix of
L(v;) = si...519% that occurred previously. Hence the (reversal of) string L(w) = s;...8;_j is the
longest substring ending at s; that occurred previously. The locations of L(w) can be found from
the leaves of the subtree rooted at w.

Time for computing the longest suffix: Using the O(n) time Weiner’s suffix tree algorithm we
can compute, at every step i, the answer for query 1 (the longest suffix) for sj...s; in O(1) time.

In the remainder of this paper we show how Weiner’s suffix tree construction can be extended
to enable timestamping which allows us to solve fast the remaining queries as well. We will first
concentrate on finding, for every node v in a suffix tree, the latest (earliest) leaf to be added to
v’s subtree. We then show how our method extends to enable finding the earliest and latest x
occurrences.

It should be noted that query type 3 (earliest occurrence) on its own is simple to solve. For every
node v, mark the oldest leaf in the subtree of v (see Section 3.3). This leaf would give the earliest
occurrence of the substring ending at v. However, this idea would not suffice for finding the earliest
x occurrences (type 5 queries). Thus we will actually treat in an equal (and symmetric) way queries
of types 2 and 3, latest and earliest occurrences.

Also note that query type 3 is possible to solve using the other well-known suffix tree algorithms
[11, 14] without the need to work with reversed string. However, they are not suitable as such for
solving the other queries: McCreight’s method [11] is not strictly on—line as it has to look beyond
the current symbol s;, and Ukkonen’s method [14] uses implicit presentation of the intermediate
trees which should be made explicit in the present application.

3 Time Stamped Suffix Trees

As each new leaf is inserted to the suffix tree, label it by a number from {1,...,n}, depicting the
order of its insertion in the tree. Call this number the leaf’s timestamp. Maintain a linked list of
all the leaves of the tree from left to right. The order in this list is determined just by the (ordered)
branching structure of the tree. At each node v, we maintain in O(1) time the pointers to the
leftmost leaf and to the rightmost leaf in the subtree rooted at v, in a growing tree. That these
leaves do not change while the tree grows, is a crucial requirement whose implementation will be
given in Section 3.3.

At point i of the suffix tree construction, a new leaf v;, such that L(v;) = s1s2... s;, is inserted into
the tree. (In our implementation L(v;) is actually the reversed string s;8,_1...519.)

The pointers to the leftmost and rightmost leaves of the subtree rooted at v;’s parent w are precisely
the pointers to the linked list of leaves that designate the interval from which we need to extract
the smallest (largest) time stamp value to solve the queries of types 2 and 3.



This extraction problem is known in the literature as the range minimum (mazimum) problem. In
this problem a given array is preprocessed in a manner that subsequent queries of the form [i, j]
are answered with the first index ¢, 7 < ¢ < j where the array’s value in location £ is the smallest
(largest) value in the range [i, j].

Gabow, Bentley and Tarjan [8] showed an algorithm that solves this problem by using Cartesian
trees and Lowest Common Ancestor (LCA) queries.

Definition 3 Let H = hy, ..., hy, be a list of n numbers.

A Cartesian Tree of H is a rooted binary tree defined recursively as follows:

Let hpoot = min{hy,...,h,} (for the range mazimum problem take hyoor = max{hi,...,hn}). Then,

1. hyoot 18 the root of the Cartesian tree
2. the left child of the root is the Cartesian tree of hi, ..., Apoot—1

3. the right child of the root is the Cartesian tree of hroot11, -y n -

In [8] it was shown that, following a linear time preprocessing of H, the Cartesian tree of H can
be constructed in time O(n).

Definition 4 Let S be an n node tree, v,w nodes in S. The lowest common ancestor of v and w
(LCA(v,w)) is the node x such that = is an ancestor of v and w, and every ancestor y of both v
and w s either equal to x or an ancestor of x.

Harel and Tarjan [9], and afterwards other authors (e.g. [13, 3, 2]) showed methods of preprocessing
the tree S in time O(n) such that subsequently LCA queries can be answered in constant time.

Observation 1 Gabow, Bentley and Tarjan [8] observed that in a Cartesian tree, LC A(x,y) is
the node with the smallest value between nodes x and y. By [9] the LCA can be found in constant
time.

We need to show how to solve the online range maximum/minimum query problem in a growing
list of timestamped leaves.

3.1 Computing the latest occurrence

Using balanced binary search trees one can solve the dynamic range maximum/minimum problem
in time O(logi) per range maximum or minimum query, where there are i entries in the list (see
e.g. [16]) . However, it was demonstrated [1, 17] that the range minimum problem on a changing
list can not be solved in the cell probe model with amortized constant time per query.

This seems to bode ill for our time stamped indexing problem. Indeed, for the latest occurrence
query we do not know how to answer a query in linear time.

Time for computing the latest occurrence at time point i: A range maximum query can
be done in O(logi) time.
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Figure 1: The linked list of leaves 1,...,5 and their Cartesian tree.

3.2 Computing the earliest occurrence

As regards the earliest occurrence queries, we can benefit from the fact that the inputs to our lists
are not general. New leaves are inserted in the increasing order of the time stamp values. We will
now show that it is possible to perform range minimum queries in constant time for a growing list
where the data values are increasing. This optimally answers the earliest occurrence case.

Our solution involves the following two operations:

1. Comnstruct Cartesian tree online.

2. Enable efficient LCA queries in a dynamically changing tree.

3.2.1 Online Cartesian Tree Construction

Our problem is the following: We are constructing a permutation of the numbers {1,...,n}. The
numbers are being input in ascending order, from 1 to n. When the ¢+ 1st number is input, there is
a permutation of the numbers {1, ...,i}, as well as a Cartesian tree of those numbers (appropriately
double-linked). The number 7 + 1 is inserted at some position in this list, and it is to be inserted
correspondingly at the Cartesian tree. For an example see Figure 1 where i = 5.

Insertion into Cartesian Tree in Constant Time: Assume the list and Cartesian tree of
{1, ...,4} have been constructed and 7 + 1 is inserted in the list between numbers z and y. Assume
that z < y and y is to the right (left) of = in the list. Then

Add i+ 1 as a left (right) son of y.

See Figure 2 for an example.
The following lemma assures us that we can add ¢+ 1 to the Cartesian tree in the manner proposed

above.

Lemma 1 Let ¢ and y be two adjacent numbers in a linked list, and let x < y. Then y does not
have a left son.

Proof: Since z < y it can not be a left son of y, by definition of Cartesian tree. The Cartesian tree
definition also assures us that there is no other left son of y, otherwise that son had to be between
z and y. |
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Figure 2: Adding 6 to the Cartesian tree.

3.2.2 Dynamic LCA

Cole and Hariharan [5] show how to compute the LCA in constant time in a tree where leaves and
nodes are being added.

3.2.3 Earliest Occurrence in Constant Time

The results of Sections 3.2.1, 3.2.2, and 3.3 together give a constant time solution to query type 3:

Time for computing the earliest occurrence: A range minimum query can be done in O(1)
time.

3.3 Leftmost and Rightmost Leaves Pointers

The only remaining problem is how to know in constant time who is the leftmost leaf and who is the
rightmost leaf of the subtree rooted at a given node, while the tree is constantly growing (because
of the Weiner construction). The problem is caused by the fact that the left-to-right order of the
children of a given node is not determined by their timestamp but rather by the lexicographic order
of the alphabet symbol on each child.

The solution is surprisingly simple. While the lexicographic order is necessary for constructing the
tree efficiently, the time will not deteriorate asymptotically if a constant number of children of every
node need to be checked especially. We therefore fix the right and left children of every node, and
all additions will be between these fized children. The additions will follow the lexicographic order
of the alphabet.

The rules for adding left and right children are as follows:

1. The left and right pointers of a leaf are pointers to the leaf itself.
2. The first son added to a leaf is always its right son.

3. Suppose an edge (w, z) is changed to the two edges (w,v) and (v, ), with a new leaf y added
as a left child of v (i.e. add edge (v,y)). See figure 3. The new edge will be to the left unless
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Figure 3: Adding a new edge to the middle of an existing one.

z is the leftmost child of w. Therefore, the left and right pointers of w as well as those of
T remain unchanged. v’s right pointer is x’s right pointer. v’s left pointer is y. If z is the
leftmost child of w then y is added as the right son of v. All pointers remain unchanged. v’s
leftmost son pointer is z’s leftmost son pointer, and v’s rightmost son pointer points to .

4 Latest and Earliest z Occurrences

For the sake of alleviating awkwardness, we will consider only the latest occurrence throughout
most of the ensuing discussion. The earliest occurrence case is entirely symmetric.

Let S = s1,..., 8, be a list of numbers. Denote by M(p,q) the first index z (p < z < ¢) such that
Sy > 84, £ =p+1,...q9— 1. In other words, M(p,q) is the index of the first occurrence of the
maximum value between indices p and gq.

Observation 2 Let sy, ..., Sy, be the z largest numbers in the range [p,q] and assume {1 < ly <
-+« < Uly. Then the x + 1 largest number in range [p, q| is

maX{M(p - 1761)1 M(£17£2)1 M(£25£3)1 [EES) M(gm—laezv)a M(ea:a q+ 1)}

Note that even if a range maximum query can be done in constant time, computing the z largest
numbers naively using the above observation will take time O(z?). However, this can be avoided by
keeping the = + 1 extra elements {M(p — 1,£41), M (£1,£49), M (L2, €3), ... M (by_1,4z), M(by,q + 1)}
(and their ranges) in a priority queue. Generating sy ., is now simply a matter of choosing the
top of the priority queue (maximum). Assume k is the index such that £, 1 = M (ly, lk11), ie.
M (b, k1) is the largest of {M(p—1,41), M (¢1,43), M (¢2,03),.... M (£y—1,£3), M(£y,q+1)}. Then
delete sy, , from the priority queue and insert two new elements, M (¢, £y 1) and M (£yy1, L)
We have a constant number of range maximum queries and a constant number of priority queue
operations for every additional number.

Time: Let ¢ be the time for a range maximum query. Since we do O(z) queries our total query
time is O(zt). A priority queue can be implemented as a heap so that insertions and deletions can
be done in time O(logz) each, where z is the heap size. Thus our total priority queue handling
time is O(z log z).



Time for computing z last occurrences of longest suffix at time point i: A range maximum
query requires time O(log ), where i is the current length of the string. Thus the time is O(z log ).

Time for computing = earliest occurrences of longest suffix at time point i: A range
minimum query can be done in constant time. Thus the time is O(z log z).

5 Open Problems

The dynamic range minimum problem can not be solved with a constant query time. However, we
have presented an algorithm that answers such queries in time O(1) for the special dynamic case
in which insertions in the increasing order of the values are allowed. We were not able to find such
algorithm for the range maximum problem. Such an algorithm would be interesting and useful for
our application.
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