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1 Motivation

Measuring the similarity between two strings, through such standard measures as
Hamming distance, edit distance, and longest common subsequence, is one of the
fundamental problems in pattern matching (see, e.g., [2] and references therein). We
consider the problem of finding the longest common subsequence of two strings. A
well-known dynamic programming algorithm computes the longest common subse-
quence of strings X and Y in O(|X| - |Y]) time. In this paper, we develop signif-
icantly faster algorithms for a special class of strings which emerge frequently in
pattern matching problems.

A string S is run-length encoded if it is described as an ordered sequence of pairs
(0,1), each consisting of an alphabet symbol o and an integer i. Each pair corresponds
to a run in S consisting of ¢ consecutive occurrences of ¢. For example, the string
aaaabbbbcccabbbbee can be encoded as a’b'c?alb?c?. Such a run-length encoded string
can be significantly shorter than the expanded string representation. Indeed, run-
length coding serves as a popular image compression technique, since many classes
of images, such as binary images in facsimile transmission, typically contain large
patches of identically-valued pixels.

The need to approximately match run-length encoded strings emerged during
development of an optical character recognition (OCR) system. This system, built in
association with Data Capture Systems Inc. [9], has been designed to achieve a low
substitution error-rate via fixed-font character recognition. The 7th row or column of
pixels in a given query character image will define a binary string containing a small
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number of white-black transitions. By comparing this run-length encoded string
against the ith row or column of each of the character image-models, we can identify
similar characters. Since a typical row/column of the image contains approximately
50 pixels but only 3 to 4 white-black transitions, a time savings of roughly two orders
of magnitude follows from matching in time proportional to the product of the run
lengths, instead of the full string lengths.

This problem of matching of run-length encoded strings is a natural generalization
of the original string matching problem. Indeed, any matching algorithm which takes
time proportional to the product of the run lengths on encoded strings would have
the same worst-case complexity as standard matching algorithms, while exploiting
any runs which happen to exist.

Our problem is a simplified version of the previously studied Set LCS and the Set-
Set LCS problems [6, 10]. In this paper, we present the first algorithm which finds
the longest common subsequence of strings X and Y in time polynomial in the size of
the compressed strings. Our final algorithm runs in O(kllog(kl)) time, where k and [
are the compressed lengths of strings X and Y, and is a substantial improvement on
the previously best algorithm of Bunke and Csirik [3], which runs in O(I|Y| + k| X])
time. Our algorithm is elegant but non-trivial, and suitable for implementation.

2 Preliminaries

Throughout this paper, we use the following notation. Let X; X, ... X, denote the run
length encoding of string X, where X; is a maximal run of identical characters and
| X;| denotes the length of this run. The length of string X, denoted | X |, represents
the total number of characters in X, so |X| = ¥!_, |X;|. Let x; denote the unique
character comprising run X;. Similarly Y;Y5...Y) denotes the run length encoding
of string Y.

A string W is said to be a subsequence of X if W can be obtained from X by
deleting one or more symbols. The Longest Common Subsequence (LCS) problem for
input strings X and Y consists of finding a longest string W which is a subsequence
of both X and Y. String editing and LCS problems have been extensively studied,
resulting in a copious literature for which we refer to [2].

When the size of the alphabet ¥ is unbounded, an Q(|X|log|X|) lower bound
for computing LCS applies, due to Hirschberg [4]. The best known lower bound
for bounded X is linear. Aho, Hirschberg and Ullman [1] showed that, for un-
bounded alphabets, any algorithm using only “equal-unequal” comparisons must take
Q(]X %) time in the worst case. The asymptotically fastest general solution rests on
the algorithm of Masek and Paterson [7] for string editing, and hence takes time
O(1X Ploglog | X|/ 1og X ).

In practice, one could use the following ©(|X| x |Y|) dynamic programming algo-
rithm from Hirschberg [5]. The algorithm starts with a matrix L[0...| X, 0...]Y|] filled
with zeroes, and then transforms L so that L[i, j] (1 <i < |X]|,1 < j < [|Y]) contains
the length of an LCS between x;x5...2; and y1ys...y;:



for i =1 to | X| do
for j =1 to |Y| do if z; # y; then L[i, j] =Max {L[i,j — 1], L[i — 1, j]}
else L[i,j] = Lli—1,j—-1] + 1

3 Longest Common Subsequence — initial algorithm

In this section, we present an algorithm for computing the longest common sub-
sequence of run length encoded strings X = X;X,...X; and YV = Y Y5...Y} in
O(Kkl(k + 1)) time. This algorithm maintains an [ X k matrix M of blocks, such that
MTi, j] contains the value of an optimal solution between prefixes X = X, X, ... X;
and YY) = 1Y, .. .Y;. The correctness of our algorithm follows because M contains
all the essential information of the standard |X| x |Y| alignment matrix L associated
with the uncompressed strings.

A B A B

Figure 1: Light and dark blocks defined by strings X and Y.

Figure 1 illustrates this matrix of blocks for input strings X = a*b°c'a* and
Y = a®b®a®b® We say that block (i,7) is dark if the corresponding characters match,
ie. m = y;. Block (i,7) is light if z; # y;. Any common subsequence defines a
monotonically non-decreasing path from (0,0) to (|X|, |Y|). Each rightward step on
this path denotes the deletion of a character from Y, and each downward step a
deletion from X. The matched characters in the common subsequence correspond to
diagonal down-right steps across M, hence the LCS maximizes the total number of
such diagonal steps through the dark blocks of M.

Any such path can exit a dark block in one of three ways — at the lower right corner,
along the bottom side, or along the right side. The longest common subsequence of
Figure 1 (shown as the solid line), happens to enter and exit each dark block only
through its corners. An optimal path with this additional constraint can be computed
easily in O(kl) time by dynamic programming. However, paths which exit dark blocks
through sides are more complicated to account for, since the number of possible exit
points on either side of a block can dominate the number of blocks on very long runs.

We now consider two special classes of paths across M. We define a corner path as
one which enters dark blocks only at the upper-left corner and exits only through the
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lower-right corner. We say that a path beginning at the upper-left corner of a dark
block is forced if it traverses dark blocks by strictly diagonal moves and, whenever
the right (respectively, lower) side of an intermediate dark block is reached, proceeds
to the next dark block by a straight horizontal (respectively, vertical) “leap” through
the light blocks in between. As illustrated by the dotted line in Figure 1, there is
precisely one forced path beginning from the upper lefthand corner of any dark block.

A subpath p;...p; of path P is a contiguous chain of edges from P. Subpaths of
forced and corner paths can be composed to define the longest common subsequence.
Intuitively, whenever we enter a dark block in a upper-left corner, it will be the start
of a forced path. The forced path stops when we hit a side, where we decide to follow
the side to the lower-right corner. At this point, the LCS moves along sides till we
start a new forced path by entering a new upper-left corner:

Lemma 1 There is always a longest common subsequence W of X and'Y such that
W is defined by a path composed of subpaths of forced and corner paths.

Proof: Consider any path through M which defines the longest common subsequence
of X and Y. We now describe a sequence of transformations which reduce it to a
path of the prescribed shape.

First, consider any maximal subpath passing only through light blocks. Such
a subpath consists only of rightward and downward moves, for it contributes no
matched characters to the longest common subsequence. Since our maximal subpath
is part of an optimal solution, there can be no matched character (whence, no dark
block) between its beginning and end. In other words, the light blocks traversed by
the subpath are lined up either horizontally or vertically. But then, without loss of
generality, all of the rightward moves can be collected to appear before any of the
downward moves in the subpath.

Figure 2: Converting an arbitrary subpath into a forced subpath.

Second, consider any maximal subpath through dark block (7, 7). This path cannot
contain both a rightward and a downward move, since by replacing these with a
diagonal move we increase the length of the putative longest common subsequence.



Therefore, without loss of generality, all of the diagonal moves can be collected to
appear before any of the vertical/horizontal moves.

Finally, we consider the dark blocks in the order they are encountered on the path
from (0,0) to (|X|, |Y|). Consider the first dark block which is either (1) not entered
through its upper-lefthand corner or (2) is not exited through its lower-righthand
corner. Case (1) cannot occur before Case (2) in a longest common subsequence,
since the subsequence will be lengthened by entering in the upper-lefthand corner.
Case (2) describes the start of a forced subpath, unless dark blocks are not completely
traversed. The reduction of Figure 2 converts this subpath into a forced subpath, thus
giving the claimed result. g

A Y A Y B Y B

Figure 3: A longest common subsequence composed of two forced subpaths.

Theorem 2 A longest common subsequence of run length encoded strings
X=X1Xy...X; and Y = Y1Ys...Y} can be computed in O(kl(k + 1)) time.

Proof: Lemma 1 guarantees that a longest common subsequence of X and Y can
always be obtained by the concatenation of subpaths of forced and corner paths. The
following algorithm exhaustively constructs all such subpaths via dynamic program-
ming:

LCS1(X,Y)
Mli,j]=0, 1<i<l, 1<j<k
fori=1to k
for j=1tol

if (color(i,j) == “light”) then
else begin (* dark block *)
d = min(|.X;], [Y])
M[Zaj] = maX(M[Z - 17] - 1] + d:M[Z:]]aM[Z - 1aj]:
Mli,j —1])
ForcedPathUpdate(i, j, M)
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end

The procedure ForcedPathUpdate explicitly traces out the forced path originating
at block (4, j), proceeding vertically if | X;| < |Y;| and horizontally if | X;| > |Y]|, until
the next dark block (say (7', j)) is encountered. On exiting each dark block (', j) along
this forced path, the block value is updated where M[i’, j| = max(M[d', j], M[i, j]+d'),
where d' is the diagonal length of the contribution to the forced path through (7', j).
This process continues until the forced path exits the corner of a block, or the end of
one of the strings is encountered. This ForcedPathUpdate operation can be computed
in O(k + 1) time for any block (4, j).

Each light block requires constant time to update, while each dark block takes
O(k +1). The total time complexity follows since there are O(kl) dark blocks.

4 Longest Common Subsequence — a faster algo-
rithm

In this section we present an algorithm that computes the LCS of the run length
encoded strings in O(kllog(kl)) time.

In the previous algorithm, each iteration (i, j) was computed in O(1) if color(i, j)
is “light”. When color (i, j) is dark, the iteration computed M|z, j] in O(1) time before
performing a ForcedPathUpdate operation in O(k + 1) time. In this section, we show
how to replace this ForcedPathUpdate by a much more efficient operation.

The ForcedPathUpdate operation starts from (7, j) and updates all M[i', j']s en-
countered on the way toward the lower right corner. Eventually, each dark M|, j']
is updated by all forced paths that cross its block. In this improved algorithm, the
ForcedPathUpdate is eliminated. While computing M][i, j], only two forced paths
from previous iterations will be considered, and their relevant values will be quickly
computed upon request.

Lemma 3 All characters which are matched on any given forced path will be identical.
Also, two forced paths which proceed on matches of different instances of the same
character will never cross each other.

Proof: See Figure 4. Consider a forced path that starts in an upper left corner of
a dark block (7,j) of character . Its initial value v is M[i — 1,5 — 1]. This path
moves down and to the right in light blocks and diagonally on dark blocks that match
a’s. This path cannot cross blocks that match characters other than «, because it
never leaves a row or column of character . Take now any other forced path that
shares, say, some initial column j’ with the path under consideration. As long as these
paths co-exist, however, we have that each diagonal move of the second path must
be accompanied, on the same column, by a diagonal move of the first one. Therefore,
the two paths cannot meet. J
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Figure 4: Two forced paths that match the character A.

In our algorithm, the following information is kept for each forced path: (a) (4, j)
- starting location of the path; (b) the letter of the match; and (c) its initial value v.
Define TOP?(«) to be the number of occurrences of the letter o in the uncompressed
version of Y;...Y;, and LEFT'(a) to be the number of occurrences of the letter
a in Xy...X;. For example, when string X = aaaabbbbcccabbbbee is encoded
as a'b*cPalvic®, LEFTS(b) is 8. LEFT(a) will be defined only when X; = a or
Xiy1 = «, and TOP?(«) defined only when Y; = « or Y} 1 = «. Tables LEFT and
TOP are computed straightforwardly in O((k + 1) time from the encoded strings.

Consider a forced path which starts at (i, j) and matches o with an initial value
v. When this path crosses column j' > j, its value will be v = v + TOP? (a) —
TOP’ (a). See Figure 4 for an example. In addition, it crosses column 5" at row 4*,
where ¢* is the minimum row such that

LEFT" (a) > LEFT" () + TOP’ (a) = TOP'™'(a)

Moreover, in the uncompressed version it crosses at the ¢““th row of the 7*th block
and
" = (TOP? (a) — TOP'~Y(a)) — (LEFT" “Y(a) — LEFT"}(a))

Similarly, when this path crosses row i’ > i, its value will be v’ = v+ LEFT? (o) —
LEFT*'(a), and it crosses row ' on column j* such that

TOP7 (a) > TOP*~Y(a) + LEFT" (a) — LEFT" (a)

Lemma 4 Consider a forced path which starts at (i,j) and matches o with an initial
value v. Given a column j' (row i'), the value of the forced path that crosses this
column (row) can be computed in O(1) time, following O(k + 1) time preprocessing.

Proof: Immediate from the above discussion.

As described in Section 3, M[i, j] is the maximum of M[i — 1, j], M[i,j — 1] and
the forced paths that cross its block, including the one that starts on its upper left
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corner. The set of forced paths can be divided into two groups. The first group
contains all paths that cross column j above row 4, while the second group contains
all paths that cross row ¢ on the left of column j. Our goal is to find the path with
the highest score in each group, so that M][i, j] can be computed in O(1) time. Below,
we discuss only how to find the highest in the first group, considering forced paths
that match the character . The second group and other characters can be handled
similarly.

Since two forced paths that match the same character never intersect, the forced
paths of character a obey a top-down order. We define the rank relative to this order
of a path starting from M, j] as RANK (a;i,5) = TOP (o) — LEFT* («). The
paths intersect any column j' according to the value of RANK. In principle, the
values of the candidate partial solutions associated with all forced paths at column j
do not necessarily increase monotonically according to their crossing order, because
some of the forced paths may begin with lower initial values. However, consider two
arbitrary forced paths of a same character «, both crossing some column j'. In order
for these paths to reach some column j”, they must both match precisely all instances
of « that fall between j’ and j”. In other words, forced paths maintain the following

property:

Lemma 5 Consider two forced paths with values vi and vy when they cross column
J', and v and v§ when they cross column j". Then those values obey the equality:

! ! 1 "
Uy =V =V — Uy

Therefore, whenever a forced path p; intersects column j' lower than another
forced path po, but the value of p; at j' is smaller than the value of p, at j', then path
p1 can be deleted from further consideration. Our goal is to maintain, in order, only
the paths which have higher values than the paths above them. Namely, to keep the
forced paths sorted by ranks and by values.

In order to be able to maintain the above properties we need a data structure that
keeps the forced paths ordered, and allows adding and deleting of forced paths. A
record with its RANK, its initial value v, and its starting location (i, j) is kept for
each forced path. The key of the record is the RAN K. We are using balanced binary
search trees, where the records are stored in the leaves, as our data structure. Note
that in the balanced binary search tree the leaves are sorted according to their keys,
and a record can be found, added, or deleted in logarithmic time. The tress will keep
the paths sorted according to their ranks and the algorithm bellow will keep them
sorted according to their values.

Since forced paths that matches different letters are independent they are main-
tained separately. In addition, we maintain separate trees for the forced paths crossing
rows and columns.

Hence, we will maintain two balanced binary search trees for each letter a, one
maintaining the ordered list of paths matching the letter a and crossing columns, the
other maintaining the ordered list of paths matching the letter & and crossing rows.
These two trees will be used in dealing with all dark blocks that match a. For each



such block M[i, j], we insert, separately, into both trees a new forced path that starts
from the upper left corner of M]3, j].

As was described in the previous section when color(i, j) is dark, M]Ji, j] is the
maximum of M[i — 1, j], MJi,j — 1] and the values of all forced paths that cross
its block. Here, since the paths are sorted according to their ranks and values, it is
sufficient to consider only two forced paths. These paths are the closest paths to the
lower right corner of MTi, j|, one that crosses the right side of M|[i, j| and one that
crosses the lower side of M|[i, j|, and we get them one from each tree.

When computing a dark block M[i, j], we perform the following operations:

Step I. Insert a new forced path according to its rank, and keep the paths
sorted according to their value.

Step II. Find the highest score (C) of the forced paths on column j, above
TOW 1.

Step III. Find the highest score (R) of the forced paths on row i, left to
column j.

Step IV. M[i, j] = max(M[i — 1, 4], M[i,j — 1],C, R).

Step | - Inserting a new path.

(a) Compute RANK (;4,j) :== TOP'"'(a) — LEFT" ! (a).

(b) Compute v := M[i —1,j — 1].

(c) Insert the new path into the trees.

(d) Compute the value of the path that is stored in the leaf on the left. If its value is
greater than v delete the new path.

(e) Compute the value of the path that is stored in the leaf on the right. If its value
is smaller than v, delete the old path. Continue until you reach a path with a greater
value.

Step Il - Finding the highest score of the forced paths on column j, above row .
(a) Compute O := TOP’(a) — LEFT(a).

(b) Find the location of O in the tree.

(c) Compute the value C, of the path that is stored in the leaf on the left.

Step III is computed in an analogous way to Step II.

Theorem 6 A longest common subsequence of run length encoded strings
X=X X5...X; and Y =Y1Y5... Y, can be computed in O(kllog(k +1)) time.

Proof: The correctness of this procedure follows because all the relevant forced
paths from the algorithm of Theorem 2 are evaluated in the dynamic programming
phase of the current algorithm. The time complexity may be analyzed as follows.
Precomputing the variables LEFT and TOP as in Lemma 4 takes O(k + [) time.
Each of the 2 - X balanced binary search trees has at most kl nodes, so any insertion,



deletion or membership operation takes O(log(kl)) time. We perform Steps I to IV
for each of the kl blocks. Step I takes O(log(kl) + (number of deletions)log(kl))
time. Since each deleted block must previously have been inserted, the total number
of deletions is O(kl). Steps II and III are computed in O(log(kl)), while Step IV
requires O(1) time. Therefore, O((kl)log(kl)) time suffices to compute the longest
common subsequence of X and Y.

5 Conclusion

It is well known that the LLCS problem may be regarded as a particular case of
the more general string editing problem. In this latter problem, we are asked to
transform one of two given strings in the other by an optimal sequence of elementary
edit operations consisting each of the deletion of a symbol, or the insertion of a symbol,
or the substitution of a symbol with another one. Note that a substitution may be
always implemented by one deletion followed by one insertion. The special case of
string editing represented by the LCS problem is achieved by assigning, e.g., unit
weights to insertion and deletion, and a weight of at least 2 to substitution. Under
these conditions, an optimal solution may always achieve the effect of a substitution
by a combined deletion-insertion. In the notation of the present paper, this means
that in pursuing an optimal path it is safe to jump across a light box by an either
horizontal or vertical transition. The algorithm presented in this paper makes crucial
use of this fact, which no longer holds when considering more general cases.

Mitchell [8] has recently obtained O((d+ k + 1) log(d + k + 1)) algorithm for more
general string matching in run-length encoded strings, where d is the number of dark
blocks. His algorithm is based on computing geometric shortest paths using special
convex distance functions.
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