
1 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

Performance Analysis in Modern Multicores

Ahmad Yasin

CPU Architect, Intel Corporation
14 January 2018

Practical Parallel Programming
course - Winter 2017
CS @ Haifa University

2 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

Outline

• Architecture

• Performance Monitoring

• Hands on 1: VTune
- Introduction, Advanced Hotspots, custom analysis, OpenMP support

• Top-down Microarchitecture Analysis (TMA) method

• Hands on 2: Matrix Multiply Optimizations
- General Exploration (TMA) reflecting Parallelization, Vectorization, µarch tuning

• Summary & Pointers

3 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

Skylake processor & memory subsystem

Source: Inside 6th-Generation Intel Core: New Microarchitecture Code-Named Skylake. Jack Doweck, Wen-Fu Kao, Allen Kuan-yu Lu, Julius

Mandelblat, Anirudha Rahatekar, Lihu Rappoport, Efraim Rotem, Ahmad Yasin, Adi Yoaz. IEEE Micro, Volume 37, Issue 2, 2017. [IEEE]

http://ieeexplore.ieee.org/abstract/document/7924286/

4 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

Modern Out-of-Order cores

• Pipelined

• Superscalar

• OOO Execution

• Speculation

• Multiple Caches

• Memory Pre-fetching and
Disambiguation

• Vector Operations

Source: Fine-Grain Power Breakdown of Modern Out-of-Order Cores and Its Implications on Skylake-Based Systems. Jawad Haj-Yihia, Ahmad Yasin,

Yosi Ben-Asher, Avi Mendelson. In ACM Transactions on Architecture and Code Optimization (TACO) Journal, Volume 13 Issue 4, December 2016

5 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

Skylake Core microarchitecture

Source: Inside 6th-Generation Intel Core: New Microarchitecture Code-Named Skylake. Jack Doweck, Wen-Fu Kao, Allen Kuan-yu Lu, Julius

Mandelblat, Anirudha Rahatekar, Lihu Rappoport, Efraim Rotem, Ahmad Yasin, Adi Yoaz. IEEE Micro, Volume 37, Issue 2, 2017. [IEEE]

http://ieeexplore.ieee.org/abstract/document/7924286/

6 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

X86 vectors for Floating Point (FP)

• FP

- Single Precision (SP)
 32-bits

 8 elements in AVX2

 ‘float’ in C

- Double Precision
 64-bits

 4 elements in AVX2

 ‘double’ in C

ISA Max Vector
width

FP-SP
elements

Introduced in
processor

SSE 128-bit 4

AVX 256-bit FP only 8 Sandy Bridge
(2nd gen Core)

AVX2 256-bit (adds
integer, FMA)

8 Haswell
(4th gen Core)

AVX512 512-bit 16 Skylake Server
(Xeon Scalable)

SSE’s XMM0
(1999)

AVX512’s ZMM0
(2017)

AVX’s YMM0
(2011)

7 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

Performance Monitoring

8 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

Performance Counters 101

• PMU – Performance Monitoring Unit

- Non-intrusive generic set of capabilities to retrieve info related to CPU execution

- Info: Mostly on microarchitecture performance but also Arch., Energy, and more

- Probably the single such capability to provide what’s going on under the hood

- Example usage: avoid u-arch inefficiencies via code tuning

• Terms

- General-purpose counters

- Predefined HW events

- Counting vs. Sampling modes

- PMI (PerfMon Interrupt) & Samples, Sample-After-Value

9 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

Intel® Core™ Processor PMU

• Architectural PMU (Performance Monitoring Unit)

- 3 fixed counters

 Instructions Retired, Core- and Reference-Unhalted-Cycles

- 4 general-purpose counters

 Expands to 8 when SMT is off (since Sandy Bridge)

- Global Status and Controls

• Rich list of performance events

- Most useful events are model-specific

- A subset of 7 events are architected

• Advanced mechanisms

- PEBS: Precisely tags performance events & profiling data into software location

- LBR: Non-intrusive branch recording facility

10 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

Perf. Counters
(or PerfMon events)

• Links

- VTune Index to PerfMon
Tables of all Intel processors:
https://software.intel.com/en-
us/vtune-amplifier-help-intel-
processor-events-reference

- E.g. Skylake:
https://download.01.org/perf
mon/index/skylake.html

https://software.intel.com/en-us/vtune-amplifier-help-intel-processor-events-reference
https://download.01.org/perfmon/index/skylake.html

11 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

VTune – the rich profiler
Intel Performance tools

12 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

Performance Tools Map

Tool Description
Intel® VTune™ Amplifier Performance Profiler
Intel® Top-Down Bottleneck analysis using Performance Monitoring Units
Intel® Emon Event monitor – collect HW counters
Intel® Compiler Highly optimizing compiler, lead in autovectorization
Intel® Architecture Code
Analyzer

Static performance analyzer, good for theoretical
performance threshold.

Intel® Intrinsics Guide Intel GUI tools that helps writing in intrinsics
Intel® Integrated Performance
Primitives (Intel® IPP)

low-level building blocks for image processing, signal
processing, and data processing

Intel® Math Kernel Library
highly optimized, threaded, and vectorized math functions
that maximize performance on each processor family

Intel® Threading Building Blocks
(Intel® TBB)

Widely used C++ template library for task parallelism

Ack: Asaf Hargil

13 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

VTune

14 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

Hands On #1
VTune 2018 Introduction

15 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

VTune small tips

• Installation

- Disable Virtualization (in BIOS) for Windows 10

• Measurements

- Close all applications (e.g. Chrome) and unneeded services or even do a clean boot

- Disable SMT (Hyperthreading) and Turbo Frequency if you can

 Often introducing indeterminism and run-to-run variations

 Remember to turn it on once done

- Use affinity esp. when utilizing subset of cores/threads

 E.g. taskset 0x<mask> in Linux or start /affinity 0x<mask> in Windows

• Optimizations

- Try one optimization/change at a time!

16 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

VTune for OpenMP

Source: Enhanced OpenMP Analysis in VTune Amplifier XE 2015 - Ahmad Yasin for Corey Alsamariae and Dmitry Prohorov (Intel Corporation).

Software Development Conference - Tel Aviv, 1st July 2015.

17 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

Top-down Microarchitecture Analysis
(TMA)

Performance Analysis

18 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

What is Performance Analysis?

• A definition

- “A performance analysis methodology is a
procedure that you can follow to analyze
system or application performance. These
generally provide a starting point and then
guidance to root cause, or causes. Different
methodologies are suited for solving different
classes of issues, and you may try more than
one before accomplishing your goal.

- Analysis without a methodology can become a
fishing expedition, where metrics are examined
ad hoc, until the issue is found – if it is at all.”

Source: Brendan D. Gregg,
http://www.brendangregg.com/methodology.html

Focus
today
Focus
today

http://www.brendangregg.com/methodology.html

19

Skylake Core

Front-end
of processor
pipeline

Back-end
of processor
pipeline

TMA is designed to help developer to focus on areas that matter

+ an instruction
cache miss in

next function g()

uop Queue

Ready µop’s q, Rename

µop Cache I-Cache

Branch Prediction

Memory
Control

D-CacheL2 Cache

Execution
Units

Memory
Scheduler

Execution
Scheduler

Decode

Intel® Microarchitecture, Code Name Skylake

A data cache
miss in current

function, say f()

20 Ahmad Yasin – Performance Analysis in Out-of-Order Cores – Technion 2017

Challenges

• Naïve approach (from in-order cores land)

Stall_Cycles = Σ Penaltyi * MissEventi

• Example

- Branch Misprediction penalty = 50 * # Pipeline Clears // JEClear

• Unsuitable for modern out-of-order cores due to (Gaps):

1) Stalls Overlap

2) Speculative Execution

3) Workload-dependent penalties

4) Predefined set of miss-events

5) Superscalar inaccuracy

21 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

Top Down Analysis

• Identifies true μ-arch bottlenecks in a simple, structured hierarchical process

- Simplicity avoids the μ-arch high-learning curve

 i.e. Analysis is made easier for users who may lack hardware expertise

- The hierarchy abstracts bottlenecks to cover many μ-arch’s

- The structured process eliminates “guess work”

• Addressing Gaps

- Generic performance metrics abstract the many hazards into categories, using

- Top-down oriented perf-counters that count:

 when matters; e.g. stalls vs cycles

 where matters; e.g. single point of division

 at finer-grain; e.g. superscalar width.

- Bad Speculation metric at the top

22

Top Level Breakdown

Uop

Issued?

Uop ever
Retired?

Retiring
Bad

Speculation

Back-end
stall?

Backend

Bound

Frontend

Bound

NoYes

No NoYes Yes

Uop := micro-operation. Each x86 instruction is decoded into uop(s)
Uop Issue := last front-end stage where a uop is ready to acquire back-end resources
Back-end stall := Any backend resource fills up which blocks issue of new uops

23 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

aka Compute Bound:
(1) Execution Units (hardware)
(2) Low ILP (software)

The Hierarchy1 (example)

[1] A. Yasin, “A Top-Down Method for Performance Analysis and Counters Architecture”, ISPASS 2014

24

Top Level for SPEC CPU2006

0

0.5

1

1.5

2

2.5

3

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

4
0

0
.p

e
rl

b
e

n
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
4

5
.g

o
b

m
k

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n

g

4
6

2
.li

b
q

u
a

n
tu

m

4
6

4
.h

2
6

4
re

f

4
7

1
.o

m
n

e
tp

p

4
7

3
.a

st
a

r

4
8

3
.x

a
la

n
cb

m
k

4
1

0
.b

w
a

v
e

s

4
1

6
.g

a
m

e
ss

4
3

3
.m

il
c

4
3

4
.z

e
u

sm
p

4
3

5
.g

ro
m

a
cs

4
3

6
.c

a
ct

u
sA

D
M

4
3

7
.le

sl
ie

3
d

4
4

4
.n

a
m

d

4
4

7
.d

e
a

lI
I

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

a
y

4
5

4
.c

a
lc

u
li

x

4
5

9
.G

e
m

sF
D

T
D

4
6

5
.t

o
n

to

4
7

0
.lb

m

4
8

1
.w

rf

4
8

2
.s

p
h

in
x3

INT FP

TMAM Top Level

Retiring Bad_Speculation Frontend_Bound Backend_Bound IPC

Average 47.1% 9.9% 8.2% 34.8% 1.8

SPEC CPU2006 v1.2, rate 1-copy, Intel Complier 14 targeting AVX2, Skylake @ 3 GHz

μ-arch bottlenecks do greatly vary across workloads

Most Apps are Backend
Bound, esp. FP

Few have high
Bad Speculation

Pipeline fed w/
useful uops

25 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

IPC := Instructions Per CycleMemory Bound (1-core vs. 4-cores)

Memory Bound greatly increased

TMA identifies true bottlenecks for multi-core workloads as well

26 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

Hands On #2

Performance Optimization example:
Matrix Multiply

27 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

Pd3,2

Matrix Multiply insight

for (int i=0; i < rows; i++)

for (int j=0; j < cols; j++)

for (int k=0 ; k < cols; k++)

R[i][j] = R[i][j] +

A[i][k] * B[k][j];

Non
adjacent
cachelines

Fix memory access pattern (Loop Interchange optimization)

28 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

Experimental setup
HW Processor Intel(R) Core(TM) i5-6440HQ CPU @ 2.60GHz

uarch Skylake
Cores 4 (1 thread/core)

L3 Cache 6 MB
Frequency Base of 2.6 GHz w/ Turbo Boost (on) up to 3.5 GHz

Memory Type DDR4

DRAM Frequency 1067 MHz

Size 8 GB

SW OS Microsoft Windows 10 Enterprise

Version 10.0.14393 Build 14393
Virtualization (Hyper-V) Disabled

Compiler Intel® C++ Compiler 16.0 Version 16.0.1.146 Build 20151021
OpenMP Version 4.0

Test Code Matrix Multiply
Data-type FP Double Precision

Single matrix size 32 MB

Tools VTune Intel VTune Amplifier 2018 (build 542108)

TopDown TMA Metrics version 3.31

29 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

Matrix Multiply Optimizations Summary

Step: Optimization Time
[s]

Speed
up

CPI
(*1)

Instructions
[Billions]

DRAM
Bound (*3)

BW Utilization
(*4) [GB/s]

CPU Util-

ization (*5)

1: None (textbook version) 73.9 1.0x 3.71 52.08 80.1% 7.2 1

2:(*2) Loop Interchange 7.68 9.6x 0.37 56.19 10.4% 10.5 1

3: Vectorize inner loop (SSE) 6.87 10.8x 0.92 20.83 20.2% 11.6 1

4: Vectorize inner loop (AVX2) 6.39 11.6x 1.40 12.73 18.2% 11.8 1

5: Use Fused Multiply Add (FMA) 6.06 12.2x 1.93 8.42 47.7% 12.6 1

6: Parallelize outer loop (OpenMP) 3.59 20.6x 3.02 8.59 61.6% 13.8 2.8

(*1) Cycles Per Instruction
(*2) Had to set 'CPU sampling interval, ms' to 0.1 starting this step since run time went below 1 minute
(*3) TopDown's Backend_Bound.Memory_Bound.DRAM_Bound metric under VTune's General Exploration viewpoint
(*4) Per 'Average Bandwidth' (for DRAM) under Vtune's 'Memory Usage' viewpoint.

Measured 'Observed Maximum' was 14 [GB/s]. See more on next foil.
(*5) Per 'Average Effective CPU Utilization' line in Effective CPU Usage Histogram
All Optimization steps are incremental, e.g. Step 6 is on top of Step 5, with the exception that step 4’s baseline is step 2.

30 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

Why CPI increased with
OpenMP (Step 6)?

Step 5 Step 6

31 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

Optimized code

//Step 6: Loop interchange & vectorize & FMA (AVX2) inner loop; parallelize outer loop

#pragma intel optimization_parameter target_arch=CORE-AVX2

void matrix_multiply(int msize, TYPE a[][NUM], TYPE b[][NUM], TYPE c[][NUM]) {

#pragma omp parallel for

for (int i = 0; i<msize; i++) {

for (int k = 0; k<msize; k++) {

#pragma ivdep

for (int j = 0; j<msize; j++) {

c[i][j] = c[i][j] + a[i][k] * b[k][j];

}

}

}

}

32 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

Sample use-cases & Summary
Performance Analysis

33 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

Datacenter Profiling
• Profiling a Warehouse-Scale Computer - S. Kanev, J. P. Darago, K. Hazelwood, P.

Ranganathan, T. Moseley, G. Wei and D. Brooks, in International Symposium on

Computer Architecture (ISCA), June 2015.

- A highly-cited work by Google and Harvard

• First to profile a production datacenter

- Mixture of μ-arch bottlenecks

 Stalled on data most often

 Heavy pressure on i-cache

 Compute in bursts

 Low memory BW utilization

34 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

A Server Workload Optimization

Deep-dive Analysis of the Data Analytics Workload in CloudSuite - Ahmad Yasin, Yosi Ben-Asher, Avi

Mendelson. In IEEE International Symposium on Workload Characterization, IISWC 2014. [paper] [slides]

https://sites.google.com/site/analysismethods/yasin-pubs/AnalyticsAnalysis-Yasin-IISWC14.pdf?attredirects=0
https://sites.google.com/site/analysismethods/yasin-pubs/AnalyticsAnalysis-Yasin-IISWC14-foils.pdf?attredirects=0

35 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

Summary

• Modern multicores utilize sophisticated microarchitectures to increase
performance

• Intel Core™ processors offer useful list of performance counters

- and advanced monitoring capabilities.

• Tools can provide insights on the actual execution to enable software
developers to optimize their applications and thus further increase
performance

• VTune lumps together key profiling techniques – for free for students

• Top-down Microarchitectural Analysis (TMA) simplifies performance
analysis and eliminates the “guess work”

36 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

Useful pointers

• Free Intel tools for students, including VTune:

>>> https://software.intel.com/en-us/qualify-for-free-software/student

• PMU events Documentations

- https://software.intel.com/en-us/vtune-amplifier-help-intel-processor-events-reference

- PerfMon Events – electronic files (.json, .csv etc) for tools

- Intel® 64 and IA32 Architectures Performance Monitoring Events – for humans

• Top-down Analysis

- A Top-Down Method for Performance Analysis and Counters Architecture, Ahmad Yasin. In IEEE International
Symposium on Performance Analysis of Systems and Software, ISPASS 2014. [paper] [slides]

- Session for programmers at Intel Developer Forum

 Software Optimizations Become Simple with Top-Down Analysis Methodology on Intel® Microarchitecture Code Name
Skylake, Ahmad Yasin. Intel Developer Forum, IDF 2015. [Recording] [session direct link]
http://myeventagenda.com/sessions/0B9F4191-1C29-408A-8B61-65D7520025A8/7/5#sessionID=338

- TMA-metric files: https://download.01.org/perfmon/

- toplev: open source tool in Linux by Andi Kleen: https://github.com/andikleen/pmu-tools/wiki/toplev-manual

https://software.intel.com/en-us/qualify-for-free-software/student
https://download.01.org/perfmon/
https://download.01.org/perfmon/
https://software.intel.com/sites/default/files/managed/8b/6e/335279_performance_monitoring_events_guide.pdf
https://sites.google.com/site/analysismethods/yasin-pubs/TopDown-Yasin-ISPASS14.pdf?attredirects=0
https://sites.google.com/site/analysismethods/yasin-pubs/TopDown-yasin-ISPASS14-foils.pdf?attredirects=0
http://intelstudios.edgesuite.net/idf/2015/sf/aep/ARCS002/ARCS002.html
http://myeventagenda.com/sessions/0B9F4191-1C29-408A-8B61-65D7520025A8/7/5#sessionID=338
http://myeventagenda.com/sessions/0B9F4191-1C29-408A-8B61-65D7520025A8/7/5#sessionID=338
https://download.01.org/perfmon/
https://github.com/andikleen/pmu-tools/wiki/toplev-manual

37 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

Backup

38

Matrix Multiply Summary [IDF’15 version]

A function is iteratively analyzed

• Big matrices in memory
- multiply1 is Ext. Memory Bound

step Optimization Time [s] speedup

1
Textbook
(baseline)

41.3 1.0x

2
Loop
Interchange

5.1 8.1x

3 +Vectorization 4.1 10.1x

4 +FMA 2.8 14.7x

Performance bottlenecks vary as the code is optimized

Intel® Microarchitecture, Code Name Skylake

• Loop Interchange
- multiply2 becomes Core Bound due to execution

ports high utilization

• Vectorization
- multiply3 reduces ports pressure but workload is

still Core Bound and Memory Bound

• FMA – Fused Multiply-Add
- multiply4 further reduces instruction count with better

latency/throughput in Skylake. Workload back to Memory Bound

1

1

2

2

33

4

4

Ahmad Yasin – Performance Analysis in Out-of-Order Cores – Technion 2017

• Linux kernel supports TopDown Level-1 metrics

- Since Linux kernel 4.8

- For shipping Core and Atom products!

- Simply do: perf stat -a --topdown <user-app>

Support in Linux

http://lxr.free-electrons.com/source/tools/perf/builtin-stat.c?v=4.8

40 Ahmad Yasin – Performance Analysis in Modern Multicores – Haifa U. 2018

pmu-tools/toplev

% toplev.py -l3 --single-thread ./c-asm numbers

BE Backend_Bound: 64.2%

BE/Mem Backend_Bound.Memory_Bound: ...

BE/Mem Backend_Bound.Memory_Bound.L1_Bound: 49.3%

This metric represents how often CPU was

stalled without missing the L1 data cache...

Sampling events: mem_load_uops_retired.l1_hit:pp,mem_load_uops_retired.hit_lfb:pp

BE/Mem Backend_Bound.Memory_Bound.L3_Bound: 48.7%

This metric represents how often CPU was stalled on L3 cache

or contended with a sibling Core...

Sampling events: mem_load_uops_retired.l3_hit:pp

BE/Core Backend_Bound.Core_Bound: 28.3%

BE/Core Backend_Bound.Core_Bound.Ports_Utilization: 28.3%

This metric represents cycles fraction application was

stalled due to Core computation issues (non divider-related)...

4

41 Ahmad Yasin – Performance Analysis in Out-of-Order Cores – Technion 2017

Abstracted Metrics

• Frontend Bound is an Abstracted Metric

- High-level category of all front-end bottlenecks

• Abstracted Metrics are better for
performance analysis

- Think IPC (Instructions Per Cycle) not MPKI
(Miss Per Kilo Instructions)

• Enable evaluations across

- μarch generations
 Haswell (4th generation Intel® Core™ processor) has improved

front-end through speculative i-TLB and i-cache accesses with
better timing to improve the benefits of prefetching

 Benefiting benchmarks show clear Frontend Bound reduction

- μarch families – e.g. Intel Core™ vs Atom™

- Architectures – e.g. X86 vs. ARM

Abstracted Metrics Enable cross-processors Comparisons

42 Ahmad Yasin – Performance Analysis in Out-of-Order Cores – Technion 2017

IDF’15 Summary foil

• TMA: Top-down Microarchitectural
Analysis method

- Simplifies Performance Analysis using
a structured hierarchy

 Eliminates guess work

 Reduces microarchitecture high
learning curve

- Forward compatibility, consistency
across IA processors

