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The identification of geometric relationships between protein

structures offers a powerful approach to predicting the

structure and function of proteins. Methods to detect such

relationships range from human pattern recognition to a variety

of mathematical algorithms. A number of schemes for the

classification of protein structure have found widespread use

and these implicitly assume the organization of protein

structure space into discrete categories. Recently, an

alternative view has emerged in which protein fold space is

seen as continuous and multidimensional. Significant

relationships have been observed between proteins that

belong to what have been termed different ‘folds’. There has

been progress in the use of these relationships in the prediction

of protein structure and function.
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Introduction
Proteins have complex three-dimensional shapes that, by

eye, often bear striking similarity to one another over their

entire lengths or over shorter regions. In parallel to what

can be deduced from pure sequence relationships, struc-

tural similarities also suggest the possibility of evolution-

ary relationships between proteins. Indeed, because it is

widely accepted that structure is better conserved than

sequence (at least given our current ability to detect

sequence relationships), the identification of structural

relationships between proteins can provide important

structural and functional information not available from

sequence analysis alone. However, detecting geometric

relationships between proteins is a far more uncertain

process than the identification of pure sequence relation-

ships, as the latter can be clearly defined in statistical
www.sciencedirect.com
terms. In contrast, there is considerable ambiguity in how

to describe a geometric relationship between two pro-

teins, resulting in the large number of approaches to this

problem described in the literature.

One effective but qualitative approach is based on man-

ual pattern recognition. Richardson’s [1] classical review

of structural motifs in proteins was a striking example that

has evolved over the years into manually curated struc-

ture classification schemes, as epitomized by the SCOP

[2] and CATH [3] databases. Implicit in SCOP and

CATH is a hierarchical view whereby ‘structure space’

is divided into isolated, non-overlapping ‘islands’ that are

denoted by categories such as folds. It is perhaps surpris-

ing that the concept of a fold has entered the vocabulary

of structural biology in the complete absence of a clear

quantitative measure of how such an entity should be

described. Implicit in the hierarchical view is that protein

structure space is discrete, in the sense that if a particular

protein belongs to one category it does not belong to some

other category.

Does the use of inherently rigid classification schemes

limit our recognition of important relationships that exist

between proteins that have been segregated into differ-

ent categories? In principle, one could consider overlap-

ping classifications, whereby each object is assigned to

multiple classes; unfortunately, there are no overlapping

classifications of protein structure space. Indeed, there is

growing evidence that protein structure space is contin-

uous, in the sense that there are meaningful structural

relationships between proteins that are classified very

differently. In this review, we discuss these alternative

perspectives, and argue that both hierarchical and con-

tinuous views have ranges of validity. We suggest that the

development of computational tools and algorithms that

recognize both descriptions of structure space can

enhance our ability to predict protein structure and

function.

Protein structure alignment
Structural alignment programs define scoring functions

that measure the geometric similarity between proteins

and use various algorithms to search for two substructures

such that these functions are optimal. Most existing

similarity measures can be classified into two main types

depending on what they compare: the distances between

corresponding pairs of atoms in the two structures (e.g.

[4–6]); and the relative positions of the corresponding

atoms of two proteins that have been superimposed (e.g.

[7,8,9�,10,11]). It had been expected that the structural
Current Opinion in Structural Biology 2006, 16:393–398

mailto:
http://dx.doi.org/10.1016/j.sbi.2006.04.007


394 Sequences and topology
alignment problem, under either of these formulations, is

NP-hard [12]; however, Kolodny and Linial [13�] recently

reported a polynomial time algorithm that guarantees

finding an (approximate) optimal solution for a whole

class of scoring functions of the second type. Their main

conclusion is that any efficient solution to the structural

alignment problem must search the ‘superposition space’

of the two structures being compared or, equivalently,

optimize a scoring function of the second type.

Several recent studies have introduced new structure

similarity measures that are quite different from those

used in traditional approaches. Rogen and Fain [14]

suggest describing the shape of a protein backbone by

a vector of 30 values inspired by mathematical knot

theory and define the similarity between two structures

as the (Euclidean) distance between their corresponding

vectors. Calculating the similarity of two structures under

this measure is instantaneous. More importantly, it is a

pseudo-metric and hence satisfies the triangle inequality,

which is paramount to automatic clustering, or visualiza-

tion, of protein structure space. Note that any similarity

measure between two proteins that is defined on sub-

structures of these two proteins cannot satisfy the triangle

inequality [14]. Erdmann [15] suggests another knot-

theory-inspired similarity measure and provides algo-

rithms to calculate it. Ye and Godzik [16], and Shatsky

et al. [17] suggest flexible structural alignment algorithms,

whereby one of the two proteins being compared is bent

at several hinge points; the similarity is measured on

corresponding rigid parts. This approach is especially

important given the large conformational changes pro-

teins can undergo. Friedberg and Godzik [18��] suggest a

similarity measure for protein folds, which is a normalized

count of the number of fragment pairwise alignments

between proteins populating those folds.

The availability of so many structural alignment programs

makes it difficult to establish common standards as to how

structural similarity should be described. Some groups

have carried out comparisons of different programs, using

receiver operating characteristic (ROC) curves to evaluate

how well the similarities found by a structural alignment

method imitate a gold standard classification [19]. Then,

using CATH [20,21] or SCOP [22] as the gold standard,

they compare the ROC curves of different methods. One

problem with this approach is that a program is penalized

for detecting cross-fold similarities, even though clearly

many such similarities exist. Also, the structural align-

ment program SSAP influenced the creation of CATH,

making it, in effect, the gold standard structural align-

ment program [21]. To address this issue, Kolodny et al.
[23��] recently evaluated structural alignment programs

by directly comparing properties such as alignment

length, RMS distance and number of gaps for more than

four million protein pairs. The direct comparison of

alignments from different programs also allows the
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creation of a ‘best-of-all’ method, which returns, for every

pair of structures, the best alignment found by several

programs; this ‘joint effort’ outperforms all the individual

methods that it uses.

The nature of fold space
SCOP [2] and CATH [3] describe fold space in very

similar ways. In SCOP’s manual classification, the first

two levels, ‘class’ and ‘fold’, are defined based purely on

structure; the next level, ‘superfamily’, takes into account

both structure and function, and the level below accounts

for sequence as well, thus grouping proteins with clear

evolutionary relationships. CATH combines manual clas-

sification with the automatic structural alignment pro-

gram SSAP [6]: the topmost level, ‘class’, is based on

secondary structure composition; the second level, ‘archi-

tecture’, is classified manually; the third level, ‘topology

(fold family)’, depends on the shape and connectivity of

the secondary structures, and is classified using SSAP; and

the last level, ‘homology’, uses sequence information.

Ultimately, the presence or absence of a structural rela-

tionship between two proteins is determined by the

category to which they are assigned.

FSSP [24] is a database that does not use a classification

scheme. All-on-all alignments are available and a contin-

uous measure of structural similarity is provided. Isolated

examples of relationships between proteins that would be

treated as unrelated based on hierarchical protein classi-

fication schemes have been observed for some time [25].

However, that this might be a more general feature of

protein structure space has only recently been widely

recognized. This issue was discussed extensively by Yang

and Honig [8], who carried out an all-on-all alignment of

proteins in the PDB using the PrISM program. As empha-

sized in that work, there is no unambiguous way of

clustering proteins into discrete groups, as a significant

number of overlaps and ambiguities will inevitably exist.

Recent applications of structure alignment that do not

incorporate categorizations from the hierarchical databases

and rely only on objective measures of similarity have

provided further examples of cross-fold similarities. A

detailed analysis using the structure alignment program

CE [5] was among the first studies to describe the inter-

relationships between protein substructures [26]. Others

[23��,27] have noticed a similar phenomenon in CATH. In

one study [27], structure alignment was used to calculate a

property of proteins, termed ‘gregariousness’, which

reflects how often a given protein has some substructure

in common with other proteins that are classified as

belonging to different folds. It was found that, for some

classes of proteins, there were a significant number of

cross-fold similarities between substructures and that,

for these classes, a continuous view of fold space may

be more appropriate. Kihara and Skolnick [28] have shown

that small proteins (up to 100 residues) can be similar to
www.sciencedirect.com
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other proteins with very different secondary structure

compositions (‘class’ in the CATH hierarchy). For 24%

of the small proteins in their database, there is some other

protein classified as having a different class with an RMSD

of less than 3.5 Å that overlaps 60% of its structure.

Newer measures of similarity, such as that developed by

Rogen and Fain [14], and Hou et al. [29], have the useful

property that they enable visualization of protein fold

space. That is, proteins can be represented as points in

two-dimensional or three-dimensional space, with the

distance between them reflecting their structural similar-

ity. The pictures (Figure 2 of both studies) produced in

this way are compelling illustrations of the overlap of

different regions of fold space. A further example of this

phenomenon was described by Krishna and Grishin [30��]
in their discussion of ‘structural drift’. They found that

two proteins that are likely to be evolutionarily related

based on sequence and functional analysis belong to

multiple fold categories, depending on how their domains

are defined (Figure 1 in [30��]). In other words, such

proteins are hybrids of two overlapping subdomains that

would be classified as different folds according to tradi-

tional classification schemes.

Figure 1 illustrates the complexities associated both with

classification and with ambiguities in structure alignment
Figure 1

Illustration of a structural relationship between TM1457, a hypothetical prote

The alignment covers 78 residues, representing 81% of the smaller protein

(a) Alignment of the SSEs comprising TM1457 (green) and PMS2 (red). Arro

present in PMS2 but not in TM1457 are in grey. (b) Structure alignment of T

molecular surface of TM1457, showing a cleft that may be a ligand-binding

PMS2, with the transformation relating the two structures having been appl

of the protein: the curvature of the surface, with convex regions colored gre

with residues in blue strongly conserved between sequence homologs of TM
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programs. The figure shows a structural alignment of the

DNA mismatch repair protein PMS2 (PDB code 1ea6)

and TM1457 (PDB code 1s12), a protein of unknown

function from Thermotoga maritima. TM1457 was

described as having a new fold by the group that deter-

mined the structure [31], based on their analysis of a

search for similar structures using the DALI server [4].

Moreover, TM1457 was a target (T201) at the last Com-

parative Assessment of Protein Structure Prediction

(CASP) conference and was classified as a ‘new fold’

target (based on a search for similar structures in the

PDB using the program MAMMOTH) [32]. Despite

being classified as having a new fold, TM1457 is structu-

rally similar to PMS2 (as identified by the SKA program

[33], which is a modified version of the PrISM structure

alignment tool [8]). Both proteins have an identical

arrangement of secondary structure elements (SSEs)

(although, as shown in Figure 1a, PMS2 has several

additional SSEs). Standard measures, such as the DALI

Z-score, suggest that these two proteins are unrelated.

However, as each SSE in TM1457 has a structurally

equivalent SSE in PMS2, the possibility exists that

TM1457 is a related protein, but represents a ‘substruc-

ture’ of PMS2.

That these two proteins might actually be related is

suggested by analysis of their molecular surfaces. In
in from T. maritima, and the DNA mismatch repair protein PMS2.

(TM1457), and has a Ca RMSD of 3.7 Å for the aligned residues.

ws represent b strands and rectangles represent a helices. SSEs

M1457 and PMS2 using the same color scheme as in (a). (c) The

site. An ADP molecule, shown in red, is taken from the structure of

ied to its coordinates. The color scheme is based on two properties

en and concave regions colored grey; and sequence conservation,

1457.
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particular, when the two proteins are structurally aligned,

a cleft on the surface of TM1457, identified by Shin et al.
[31], aligns nicely with a cleft on the surface of PMS2 that

is known to bind ADP (Figure 1c). Moreover, in an

analysis of a multiple sequence alignment of TM1457

homologs, Shin et al. noticed two conserved regions that

line the cleft identified as a putative binding site (mapped

to the molecular surface in blue in Figure 1c). Although

this function prediction has not been tested experimen-

tally, we stress that the classification of TM1457 as a new

fold obscures the intriguing possibility that this protein

might be a nucleotide-binding protein.

Does the description of fold space matter?
Applications
The discrete and the continuous views of fold space have

different advantages. The hierarchical classifications of

proteins into evolutionarily related sequence families and

superfamilies can be carried out in a relatively unambig-

uous fashion, and have the advantage that they are

annotated and validated by experts in the field. Also,

the sequence neighbors of every protein are well defined.

The organization of this information into well-maintained

databases is clearly extremely valuable. The separation of

proteins into folds/topologies, however, is more ambig-

uous and here, in particular, a continuous view may be

more appropriate.

As has been recently discussed [34�], the way fold space is

described is particularly important for protein structure/

function prediction. Indeed, pairs of proteins that are

classified as belonging to different folds can, in fact, be

quite similar over large regions of their structure and share

a common function (Figure 1 in [34�]). Furthermore, it

has become apparent that relationships between remotely

related proteins can be used in the definition of fragments

that can be assembled in the modeling of proteins of

unknown structure. As is evident from recent CASP

results, ‘fragment-based’ methods have proved to be

particularly successful in structure prediction [35]. Such

methods exploit local sequence similarities between tem-

plate structures and a query sequence whose structure is

to be predicted, and assemble final, compact structures

from the fragment templates that have been identified.

These templates may involve as few as approximately ten

residues [36�,37�], partial domains [38�,39�] or larger

substructures [40], and do not, in general, involve proteins

that are categorized as being in the same fold.

Fragment-based methods are also finding increasing

application in function prediction [41]. Friedberg and

Godzik [18��,42] compared a new fragment-based simi-

larity measure of protein structures and a protein function

similarity measure that is based on gene ontology (GO)

descriptors for function annotation. They show a signifi-

cant correlation between these two measures. This is of

particular interest because their fragment-based
Current Opinion in Structural Biology 2006, 16:393–398
similarity measure finds many cases of SCOP cross-fold

similarities. Proteins belonging to different SCOP folds

are not normally expected to have a similar function. Hou

et al. [43��] created a three-dimensional map of protein

structure space (denoted SSM) using the similarities

calculated by DALI and studied the pairwise distances

within this map. They test how different distance mea-

sures predict function, as defined using GO annotation,

and show that SSM distance performs better than the raw

DALI score, the DALI Z-score and the sequence-based

BLAST E-value. Note that the SSM is a metric with the

property that a set of ‘‘modest but consistent’’ similarity

scores between a group of proteins will place them in the

same region of three-dimensional Euclidean space. It is

possible that the reliance on a set of similarities, as

opposed to a simple pairwise similarity measure, may

be the source of the improved function annotation.

Conclusions
The increasing number of protein structures in the PDB

and the availability of many fast programs that compare

protein structures reveal many unsuspected similarities in

protein structure space. Traditional discrete hierarchical

classification schemes group proteins with clear evolu-

tionary relationships. At the structural level, these classi-

fications constitute an abstraction that groups structures

into topologies and folds based on similarities that have

been detected based, in part, on visual inspection. Basing

a classification scheme on such an abstraction can effec-

tively reveal common patterns, but it can also obscure

meaningful geometric relationships between proteins

that have been placed in different categories. As we have

seen, such relationships can be used in the prediction of

structure and function. Consequently, it might be pre-

ferable if the term ‘fold’ was reserved for general descrip-

tions of a given protein (i.e. ‘‘the protein has a fold

consisting of . . .’’) and was not to be used to imply the

existence of a unique relationship between SSEs.

In our opinion, instead of describing a protein as belong-

ing to an existing or new fold, it would be more informa-

tive to report the value of a quantitative measure of

structural similarity to one or more existing proteins.

The similarity can then be quantified by the alignment’s

properties (e.g. RMSD and length); given the alignment,

these quantities are well defined and easily calculated.

Unfortunately, an alignment that is found with one pro-

gram will not necessarily be found with another. Nor is

there evidence that some programs are significantly more

effective than others for all structure pairs. A natural

response to this inherent ambiguity is to use a variety

of programs for a given application.

We suggest that the use of structural alignment methods

offers the promise of identifying structural and functional

relationships between proteins that have not been

detected so far. It is difficult at this stage to do this in
www.sciencedirect.com
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an entirely automatic fashion, but effective tools are

available that facilitate the discovery of functional

insights, such as the one suggested in Figure 1. Structural

genomics initiatives around the world produce large

quantities of structural data that can be used as a basis

for the discovery of new sequence/structure relationships

between proteins. It is our opinion that we should be

approaching the new data with the understanding that we

may emerge from the next few years with very different

views of protein sequence/structure/function space than

we have today. Designing data structures and algorithms

that recognize that our views may be in the process of

changing may thus be of considerable value.
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