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Fast identification of protein structures that are similar to a speci-
fied query structure in the entire Protein Data Bank (PDB) is funda-
mental in structure and function prediction. We present FragBag:
An ultrafast and accurate method for comparing protein structures.
We describe a protein structure by the collection of its overlapping
short contiguous backbone segments, and discretize this set using
a library of fragments. Then, we succinctly represent the protein as
a “bags-of-fragments”—a vector that counts the number of occur-
rences of each fragment—and measure the similarity between two
structures by the similarity between their vectors. Our representa-
tion has two additional benefits: (i) it can be used to construct an
inverted index, for implementing a fast structural search engine of
the entire PDB, and (ii) one can specify a structure as a collection of
substructures, without combining them into a single structure; this
is valuable for structure prediction, when there are reliable predic-
tions only of parts of the protein. We use receiver operating char-
acteristic curve analysis to quantify the success of FragBag in
identifying neighbor candidate sets in a dataset of over 2,900 struc-
tures. The gold standard is the set of neighbors found by six state
of the art structural aligners. Our best FragBag library finds more
accurate candidate sets than the three other filter methods: The
SGM, PRIDE, and a method by Zotenko et al. More interestingly,
FragBag performs on a par with the computationally expensive,
yet highly trusted structural aligners STRUCTAL and CE.

evaluation of structure search | fast structural search of Protein Data Bank |
filter and refine | protein backbone fragments | protein structure search

Finding structural neighbors of a protein, i.e., proteins that
share with it a sizable substructure, is an important yet persis-
tently difficult, task. Such structural neighbors may hint at a
protein’s function or evolutionary origin even without detectable
sequence similarity, as structure is more conserved than se-
quence. Indeed, many methods for protein function (1, 2) and
structure (3) prediction rely on finding such neighbors. Structural
classifications such as SCOP (4) and CATH (5) identify some
neighbors; however, there are many other neighbors, which
although classified differently, are actually structurally similar
and important for function and structure prediction (1, 6). Devis-
ing fast, accurate, yet comprehensive, structural search tools for
the rapidly growing Protein Data Bank (PDB) remains an impor-
tant challenge.

Structural alignment quantifies the similarity between two pro-
tein structures, by identifying two equally sized, geometrically
similar substructures. Many structural alignment methods have
been proposed over the past twenty years [e.g., STRUCTAL
(7), CE (8), and SSM (9)]. Regardless of the way they quantify
similarity and their search heuristics, one can define a common
similarity score to assess the resulting alignments, and create a
best-of-all method that gives the best alignment under that score
(10). Unfortunately, aligning two structures is an expensive com-
putation (10); thus, many structural alignment servers consider
only a representative subset of the Protein Data Bank (PDB)
(e.g. FATCAT (11) and CE). However, by using such sequence-
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nonredundant representative sets we risk excluding interesting
structural variability (12). In any case, naively structurally aligning
a query against the entire PDB, or structurally aligning all PDB
structures against one another, is prohibitively expensive, as it re-
quires O(n) or O(n?) computationally intensive comparisons.

To search the entire PDB efficiently, researchers devised the
“filter and refine” paradigm (13). A filter method quickly sifts
through a large set of structures, and selects a small candidate
set to be structurally aligned by a more accurate, but computa-
tionally expensive, method. Filter methods gain their speed by
representing structures abstractly—typically as vectors—and
comparing these representations quickly. Such vector representa-
tions allow constructing an inverted index—a data structure that
enables fast retrieval of neighbors, even in huge datasets [e.g. (14)].
PRIDE represents a structure by the histograms of diagonals in its
internal distance matrix, and measures similarity between two
structures by the similarity between their histograms (15). Choi
et al. (16) represent a structure by a vector of frequencies of local
features in its internal distance matrix, and measure similarity be-
tween two structures by the distance between their corresponding
vectors. Inspired by knot theory, Rogen and Fain devised the
Scaled Gauss Metric (SGM) method, which represents a structure
by a vector of 30 global topological measures of its backbone (17).
Zotenko et al. (18) represent a protein structure by a vector of
the frequencies of patterns of secondary structure element
(SSE) triplets. Several methods [e.g., (19), (20)] represent a struc-
ture as an ordered string of structural fragments, and sequence-
align these strings to measure structural similarity; such represen-
tations are less suitable for constructing an inverted index.

To search in very large datasets, computer scientists often
represent objects as “bag-of-words” (BOW)—unordered collec-
tions of local features. Web search engines use an inverted index
of the BOW representation of the web. Each document and query
is represented by the number of occurrences of its words (21). In
Computer Vision, texture images are represented as BOW of
local image features for texture recognition, object classification,
and image and video retrieval [e.g., (22-23)]. In protein sequence
analysis, Leslie and coworkers described protein sequences as a
BOW of their k-mers for detecting remote homology (24).

In FragBag we represent a protein structure as a BOW of back-
bone fragments, and use this representation to identify quickly
good candidate sets of structural neighbors. Specifically, we
represent a structure by a vector whose entries count the number
of times each fragment approximates a segment in the protein
backbone (Fig. 1), and measure similarity between two structures
by the similarity between their corresponding vectors. In testing
our approach, we consider 24 libraries of various sizes and
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fragment lengths, and use three BOW similarity measures
(Euclidean, Cosine, and Histogram Intersection). We study
how well different measures identify structural neighbors, relative
to a stringent gold standard: The structural neighbors found by a
best-of-six structural alignment method (10). We also test statis-
tically whether BOW representations of structures within CATH
categories are indeed similar to each other. We then compare the
performance of our measure with that of other filter methods
SGM, Zotenko et al. (18), and PRIDE, to BLAST sequence
alignment (25), and to the structural alignment methods STRUC-
TAL, CE, and SSM.

Our best filter method outperforms other filter methods and
BLAST. More importantly, it performs on a par with the compu-
tationally expensive structural aligners STRUCTAL and CE. In
our tests, the ranking of the methods is insensitive to the thresh-
old value defining structural neighbors. Comparing FragBag vec-
tors is orders of magnitudes faster than structural alignment; it
also is well suited for using in inverted indices. Thus, our method
can be used to quickly identify good candidate sets of structural
neighbors in the entire PDB.

Results

In FragBag, the bag-of-fragments that represents a protein struc-
ture is succinctly described by a vector of length N, the size of the
fragment library. Fig. 1 illustrates how this vector is calculated
from the a-Carbon coordinates of a protein. For each contiguous
(and overlapping) k-residue segment along the protein backbone,
we identify the library fragment of length k that fits it best in
terms of rmsd after optimal superposition. Then, we count the
number of times each library fragment was used, and describe the
protein by a vector of these counts.

Comparing Filter Methods via Receiver Operating Characteristic (ROC)
Curve Analysis. We measure the accuracy of structural retrieval
methods by how well they identify candidate sets of structural
neighbors in a database, given a query structure. We consider
a database of 2,928 sequence-nonredundant structures, and query
it by each of its structures. The gold-standard answer includes
neighbors found by a best-of-six structural aligner (using SSAP
(26), STRUCTAL, DALI (27), LSQMAN (28), CE, and SSM);
this expensive computation was done previously (10). Structural
neighbors of the query are ones aligned to it with a structural
alignment score [SAS; see Methods for definition (7)] below a
threshold 7' (for T =2 A, 3.5 A, and 5 A). We use the area under
the curve (AUC) of the ROC curves to measure how well each
method identifies the structural neighbors of a query, and average
the AUCs over all 2,928 queries. A higher AUC is better: A
perfect imitator of the gold standard, which ranks the structural
neighbors before all other proteins, will have an AUC of 1,
whereas a random measure will have an AUC of 0.5.

Fig. 2 (Left) shows the average AUCs with respect to the three
gold standards defined above (corresponding to the three values
of T) for 24 libraries (with 20-600 fragments of length 5-12
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Fig. 1. FragBag representation of protein structure. (A) For illustration, we
consider a library of 6 fragments. (B) Each (overlapping) contiguous segment
in the backbone is associated with its most similar library fragment. (C) All
fragments are collected to an unordered “bag.” (D) The structure is repre-
sented by a vector v, whose entries count the number of times each library
fragment appeared in the bag. In this example, v = (4,0, 0, 5, 1, 3), implying
fragment order (a, b, ¢, d, e, f).
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residues). We consider three BOW similarity measures: Cosine,
Histogram Intersection, and Euclidean distances. For compari-
son, the right panel shows the average AUCs of other methods:
(¢) a sequence-based method using BLAST’s E-value (25), (i) the
filter methods PRIDE, SGM, and that of Zotenko et al. (18), and
(i) the structure aligners STRUCTAL, CE, and SSM. We sort
the alignments by their SAS scores, and for STRUCTAL and
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Fig. 2. The average AUC of ROC curves of identifying structural neighbors.
The AUC measures how well a ranking of structures imitates the ranking
according to a gold standard; larger values correspond to more successful
imitators, ranging from 0.5 (a random ranker) to 1 (a perfect imitator).
We consider three definitions of structural neighbors, using SAS thresholds
of 2A, 3.5 A, and 5 A. The left panels show the performance of libraries with
fragments of 6-12 residues, and different number of fragments (value along
the x-axis), and using the cosine (plus sign), Euclidean (circles), and Histogram
Intersection (diamonds) distances. On the right we compare the best FragBag
result (400(11) library and the cosine distance) to other methods: Sequence-
based similarity measure in finely dashed black, filter methods in dashed
black, and structure alignment methods in solid black. We see that the
FragBag performs similarly to CE and STRUCTAL—two computationally
expensive and well-trusted structural aligners.
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CE, also by their native scores. The average AUCs plotted in
Fig. 2 are also available as supplementary material (Table S1).
The ranking of the performance of different methods is generally
independent of T, the threshold defining structural neighbors.
Under the strictest definition, the neighbors of a protein are only
structures that were aligned with an SAS score <2 A; under the
most lax definition, the neighbors are the structures that were
aligned with an SAS score <5 A. As expected, all methods per-
form better (i.e., achieve higher average AUCs) when the defini-
tion of structural neighbors is more strict, and less well when the
definition includes more distant structures. Because structures
with a SAS score <5 A are often the most meaningful neighbors,
which are difficult to detect accurately, we are most interested
in identifying methods that excel under this stringent test (see
Discussion).

FragBag’s best result is with the 400(11) library (400 fragments
of length 11) and the cosine distance; the average AUCs are (.89
(T =2 A),0.77(T = 3.5 A),and 0.75 (T = 5 A). The cosine dis-
tance performs best. When using cosine distance or the histogram
intersection distance, larger libraries (which describe local struc-
ture variability in higher detail), typically perform better. From
comparing libraries of fixed size (100, 200, or 400 fragments),
we learn that when using cosine distance, libraries of longer
fragments perform better; when using the histogram intersection
or the Euclidean distances, the length of the fragment does not
influence the results.

The ranking of the filter methods from most to least successful
is (i) FragBag (using the 400(11) library and cosine distance), (if)
SGM, (iii) Zotenko et al.’s method (18), and (iv) PRIDE, which
performs similarly to the sequence-based method. Among the
structural aligners, the most successful is SSM, followed by
STRUCTAL and CE.

Fig. 2 and Table 1 show that the best filter method, i.e., the
FragBag representation mentioned above, performs on a par with
CE and STRUCTAL, two computationally expensive and highly
trusted structural aligners. For example, using the T =5 A
threshold, FragBag has an average AUC of (.75, which is similar
to CE’s 0.74 using the native score, and 0.75 using SAS score; it is
lower than STRUCTALSs average AUC of 0.83 using the native
score and 0.84 using SAS score. Using the T = 3.5 A threshold,
FragBag has an average AUC of 0.77, which is similar to STRUC-
TALs 0.77 using its native score and to CE’s 0.72 using SAS score.
SSM outperforms FragBag at all three thresholds.

Categories of CATH Proteins have BOW Descriptions that Are Different
from Each Other In a Statistically Significant Way. Next, we test
statistically whether FragBag agrees with the CATH classifica-
tion, at the Class Architecture (CA) and the Class, Architecture,
and Topology (CAT) levels. In broad strokes, we expect FragBag

representations of proteins in the same category to be more
similar than those of proteins in different categories, and wish
to verify that such similarity, if found, is not due to mere chance.

When running many statistical tests, as we do here (one for
each pair of categories), the chances of getting at least one
significant result is much higher than the chances of getting a
significant result in a single test, even when there is no true under-
lying difference (the “multiple comparisons problem”). We con-
trol for this problem through the Bonferroni correction (29), and
the false discovery rate (FDR) approach (30).

When using the Bonferroni correction, we adjust the required
significance level of each test, so that the probability of falsely
declaring at least one test as significant is the standard @ = 0.05.
Table 2 summarizes the results under the Bonferroni correction,
across the 24 libraries. For example, there are 12 mainly-o CATH
categories at the CAT level, and thus 12 x 11/2 = 66 category
pairs; out of the 66 corresponding tests, 61 were significant at
the adjusted significance level across all 24 libraries, hence the
fraction 61/66 at the table’s first cell in the second row. The
parenthesized figures in the table are the fraction of significant
tests for the 400(11) library. The individual test results are avail-
able in Datasets S1 and S2.

Using the FDR approach, we find which tests can be declared
significant, while controlling the average fraction of the wrongly
declared tests at some prechosen level; for details, see ref. 30.
Table 2 lists the fraction of tests declared significant, averaged
across the 24 libraries and under an FDR of 0.05; the parenthe-
sized figures are the fraction of the tests declared significant for
the 400(11) library.

The fractions reported in Table 2, all being very close to 1,
strongly support the conclusion that the FragBag representation
agrees with the CATH classification, both at the CA and the
CAT level.

Comparison of FragBag Similarity Measure to rmsd on a Dataset of
Structure Pairs Within Nuclear Magnetic Resonance (NMR) Ensembles.
Next, we study how well FragBag identifies similarity between
structures that are only locally similar, i.e., have highly similar
substructures that are connected differently. The ability to iden-
tify such local similarity may help in detecting similarity to a par-
tially characterized structure, as needed in structure prediction.
We consider pairs of structures within an NMR ensemble—a
collection of structures that are consistent with the experimental
constraints; these typically differ only at several flexible points
along the backbone, and are thus locally similar. Our similarity
criterion is defined by the threshold 0.35—the average FragBag
cosine distance between structures with the same CAT classifica-
tion (see Table 3). We use throughout this section the 400(11)
library.

Table 1. AUCs of ROC Curves Using Best-of-Six Gold Standard
SAS Similarity Threshold (A)

Method 2 3.5 5 Average value Rank  Speed *
SSM using SAS score 0.94 0.90 0.89 0.910 1 13 [12]
Structal using SAS score 0.90 0.81 0.84 0.850 2 39 [12]
Structal using native score 0.87 0.77 0.83 0.823 3 39 [12]
CE using native score 0.90 0.79 0.74 0.810 4 54 [12]
FragBag Cos distance (400,11) 0.89 0.77 0.75 0.803 5 Fast '
CE using SAS score 0.84 0.72 0.75 0.770 6 54 [12]
FragBag histogram intersection (600,11) 0.87 0.73 0.70 0.767 7 Fast '
SGM 0.86 0.71 0.68 0.750 8 Fast *
FragBag Euclidean distance (40,6) 0.86 0.71 0.64 0.737 9 Fast '
Zotenko et al. (18) 0.78 0.64 0.66 0.693 10 Fast '
Sequence matching by BLAST e-value 0.76 0.57 0.50 0.610 1 Fast '
PRIDE 0.72 0.54 0.51 0.590 12 Fast '

*Average CPU minutes per query.
"Essentially instantaneous after preprocessing (<0.1 s).
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Table 2. Statistical analysis summary

Analysis using Bonferroni correction *, '

Analysis using FDR ¥, *

Mainly o Mainly g Mixed a + f

Mainly a Mainly g Mixed a + f

CA 6/6 (6/6)
CAT  61/66 (65/66)

31/36 (35/36)
76/78 (78/78)

21/21 21/21)

206/231 (225/231)

6/6 (6/6)
65.5/66 (65/66)

36/36 (36/36)
78,78 (78/78)

21/21 21/21)
230.2/231 (231/231)

*Nonparenthesized values are the number of category pairs found different (at the Bonferroni-adjusted significant level) in all 24
libraries, divided by the total number of pairs; parenthesized values are the fraction of significant comparisons for the library of 400

fragments of length 11.
In all cases, values close to 1 are desirable.

*Nonparenthesized values are the fraction of comparisons declared significant in the FDR analysis, averaged across the 24 libraries;
parenthesized figures are the fraction of the comparisons declared significant for the library of 400 fragments of length 11.

We use the dataset of 230 NMR ensembles that was con-
structed in the PRIDE study (15). The set includes 54,465 pairs,
43,246 of which have rmsd < 4 A (1bgv, 1bmy, 1e01, and 1dIx
were replaced by their newer versions). Fig. 3 shows the FragBag
cosine distance vs. rmsd, and the marginal distributions of the two
distances. The vast majority of pairs are identified as very similar
by FragBag: 91% have cosine distance below 0.35, showing that
FragBag indeed identifies similarity between locally similar
structures. We see similar results using Histogram intersection
and Euclidean distance (Fig. S1).

For comparison, Table 3 lists the means and standard
deviations of the FragBag distances between structure pairs at
different levels of structural similarity. The most similar pairs
are those within NMR ensembles: We consider all pairs and only
those with rmsd < 4 A. We also consider pairs in the set of 2,928
CATH domains that have the same CATH, CAT, CA, and
C classification, as well as all pairs. As expected, the average dis-
tance grows as the sets become more structurally diverse, under
all three distances.

Discussion

A Fast Filter that Performs On a Par with Structural Alignment Meth-
ods. FragBag can quickly identify structural neighbor candidates
for a structure query, and performs as well as some highly trusted,
computationally expensive structural alighment methods. Our re-
sults with FragBag’s 400(11) library are as accurate as CE’s, and
almost as accurate as STRUCTAL: . This is impressive, as CE and
STRUCTAL are among the most accurate structural alignment
methods (10). As expected, structural neighbors are generally
identified best by structural aligners, less well by filters, and least
well by sequence alignment. Our results are robust—we see simi-
lar ranking of methods using different definitions for structural
neighbors of a protein. An attractive feature of abstract represen-
tations of protein structure such as FragBag (and other filter
methods) is that one can store the vectors representing all
PDB proteins in an inverted index—a data structure designed
for fast retrieval of neighbors.

Evaluation Protocol. Retrieving structural neighbors of a query
protein from the entire PDB is a challenge. We cannot deduce
the structural neighbors solely from SCOP or CATH, because
crossfold similarities—proteins that are geometrically similar, yet

classified differently—are very common (10, 31). Kihara and
Skolnick (31) noted that crossfold similarities among small pro-
teins (<100 residues), are abundant even at CATH’s C level.
Crossfold similarities are particularly important to identify, when
predicting structure and function (1, 6). Recent Critical Assess-
ment of Techniques for Protein Structure Prediction (CASP) ex-
periments show that the most successful structure prediction
methods construct their predictions from substructures that
are not, in general, from proteins classified in the same fold
[e.g. (3,32, 33)]. Friedberg and Godzik (34) showed that crossfold
similarities correlate well with the functional similarity of
proteins populating the folds, and Petrey and Honig (6) showed
examples of functional similarity among differently classified
proteins. Nevertheless, proteins classified in the same CATH ca-
tegory (at the CA or CAT levels) are truly similar, and we expect
their FragBag representations to be similar as well. Because there
are many CA and CAT categories, each populated with many
proteins, we used statistical theory to test and confirm this.
Any gold standard must meet the challenge: Because a filter
method needs to identify structural neighbors of a query, the gold
standard must be all identified neighbors. Here, we find these
neighbors using the expensive computation of a best-of-six struc-
tural aligner. Namely, we identify a structure as a neighbor if any
of the six methods finds in both a sizable substructure that can be
superimposed with a low rmsd. Such a neighbor is selected re-
gardless of its CATH classification, and could well belong to a
category other than that of the query protein. Had we relied
on a classification, similar structures would have been marked
as nonneighbors, and the ROC curve analysis would have effec-
tively penalized filter methods that correctly identify them.
Because structural similarity that is due to sequence similarity
is easy to identify, we use datasets of nonredundant sequences.
This ensures that we have eliminated trivial pairs in our evalua-
tion protocol. Note that when the structural neighbors are de-
fined with the T'=2 A, 35 A thresholds, sequence alignment
does better than random (AUC > 0.5); indeed, when there are
only few structural neighbors (e.g., only the query), even a trivial
sequence alignment method will perform well, because it ranks
the query as most similar to itself. This phenomenon will have
a greater impact on the average AUC when the number of struc-
tural neighbors is small (lower T). Thus, the average AUC of the

Table 3. Average FragBag distances in datasets of varying structural similarity

Euclidean (L, norm) distance*  Cosine distance*

Dataset Histogram intersection distance*
Within NMR ensemble (rmsd < 4 A) 0.25+0.13
Within NMR ensemble 0.29 +0.15
Same CATH classification 0.52 +0.11
Same CAT classification 0.54 +0.11
Same CA classification 0.56 +0.15
Same C classification 0.56 +0.14
Different C classification 0.68 +0.18

5.46 + 2.46 0.17 £0.13
5.96 +2.66 0.20+0.16
17.32£8.33 0.34+0.19
21.14 £8.95 0.35+0.19
23.75+15.72 0.39+0.24
26.73+16.34 0.46 +0.24
30.56 + 20.83 0.65 + 0.27

*Using the library of 400 fragments of length 11.
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Fig. 3. Cosine intersection distance vs. rmsd in structure pairs within NMR
ensembles. The dataset has 230 NMR ensembles with 43,246 pairs having
rmsd < 4 A (15). FragBag identifies the vast majority (31%) of the pairs in
this set as very similar (cosine distance below 0.35—the average distance
in pairs of the same CAT classification, marked in dashed pink).

sequence alignment method acts as a lower bound, indicating the
difficulty of the task.

Although not the main focus of this study, our results provide
another evaluation of the performance of STRUCTAL, CE, and
SSM, and show that SSM is the top performer. SSM compares
structures in two stages. (i) A fast estimation of structural
similarity by matching the SSE graphs of the structures. This step
calculates two estimates of the percent SSE match, and the user
can specify their allowed maximal values; the SSM server does
not provide a combined value of these estimates that can be used
to rank structure pairs. (ii) An expensive and accurate alignment
of the Cas of the two structures. Here, we use the SAS of the
alignments found by SSM after the second stage.

Searching with Partially Defined Queries for Protein Structure Predic-
tion. Importantly, FragBag can search the entire PDB for neigh-
bors of a query structure that is only partially characterized. Such
a search is useful for structure prediction, as prediction methods
often predict only the structure of parts of a protein, and finding a
composition of these parts in the PDB may hint at how these parts
should be combined into a complete structure. In FragBag, the
missing information has a minor impact. The union of the bags-
of-fragments of the parts differs from the true bag-of-fragments
only by the few fragments in the connecting regions. Similarly,
two structures that are flexible variants (i.e., differ only at a hinge
point) will have similar FragBag representations.

Future Directions. We hope to improve FragBag using a similarity
measure that weights the fragments differently, and possibly ig-
nores some; BOWs weighting schemes were successfully used in
other areas of Computer Science. Currently, each representation
is based on one library, and all its fragments are weighted equally.
Once we have a weighting scheme, we can combine libraries and
trust the weights to select all significant fragments.

We also plan to construct a FragBag-based inverted index
for the entire PDB; as noted above, this index will allow quickly
identifying small candidate sets of structural neighbors of a pro-
tein. The candidate sets will also include structures that are flex-
ible variants of the query, potentially revealing new connections

Budowski-Tal et al.

in protein structure space. Finally, this index may be used to
answer partially characterized queries, to the benefit of the struc-
ture prediction community.

Methods

We consider 24 libraries with 20-600 fragments of 5-12 residues, constructed
in a previous study (35). There, we clustered the fragments of the Ca traces
of 200 accurately determined structures, and formed a library by taking a
representative from each cluster.

ROC Curve Analysis with Structural Alignments Gold Standard. We use a set of
2,928 sequence-diverse CATH v.2.4 domains and their all-against-all structural
alignments; the set was constructed for a previous comparison study of
structural aligners (10). Two 7-residue long structures (1pspA1, 1pspB1) were
removed because they are shorter than some fragments. All structures were
structurally aligned to all others by six alignment methods (SSAP, STRUCTAL,
DALI, LSQMAN, CE, and SSM) and their SAS scores were recorded, where
SAS = 100 x rmsd/(alignment length). Our gold standard is based on the
best alignment found by these six methods in terms of the SAS score. The
sequences of every pair of structures in this set differ significantly (FASTA
E-value >107%).

A FragBag description of a protein is a row vector; its length, N, is the
size of the library used. The vector describing the ith protein is b; = (b;(1),
b;(2), ..., bi(N)), where b;(j) is the number of times fragment j is the best local
approximation of a segment in the ith protein.

We consider three distance metrics between two vectors, b; and by:
(i) cosine distance, 1—b,Tbk/||b,-|| [lbell, (ii) histogram intersection distance,
1- j"’:1 min{b;(j), bx(j)}/ min{s;, s, }, wheres; = I.’L b;(j), and (iii) Euclidean
(L,) distance, ||b; — b||.

Statistical Analysis. We now describe what data were used in the statistical
analysis, how these data are summarized in matrix form, and the details of
the statistical analysis.

Raw Data. We use the 8,871 domains in the S35 family level in CATH 3.2.0.
Because the classification at the C level is based on secondary structure,
we focus on the CA and CAT levels, and run the tests separately on different
C classes. To improve the statistical power of the tests, we use only categories
with at least 30 structures. When partitioning the dataset to categories at the
CA level, there are 4 categories (with at least 30 structures) in the mainly-o
class (totaling 2,077 structures out of 2,078); 9 in the mainly-p class (1,968 out
of 2,062); and 7 in the mixed a + f class (4,507 out of 4,558). There was only
one category in the few-secondary-structure class, so this class was omitted.
When partitioning at the CAT level, there are 12 categories in the mainly-a
class (totaling 1,013 structures); 13 in the mainly-p class (1,396 structures); and
22 in the mixed a + f class (2,681 structures).

Data in Matrix Form. Consider a library of N fragments, and, say, the CA-level
classification of the M = 1968 mainly-p proteins into Q = 9 categories. The
FragBag representations of these M proteins is initially summarized in an M x
N matrix B, whose (i, j)-th entry is b;(j). The matrix B is partitioned rowwise
into Q blocks corresponding to the Q categories, and we denote by M, the
number of rows of the gth block. When considering CATH's CAT level, mainly-
a proteins, or mixed a + f§ proteins, M, Q, and B, as well as the partition of B,
change accordingly.

Omnibus Test. Following the usual statistical practice, we first run a single
omnibus test (29) to check whether there is at least one pair of categories
whose proteins’ FragBag representations are different from each other in
a statistically significant way; only after such a difference is found, we com-
pare all possible pairs of categories (post hoc analysis). The data is multivari-
ate, as each FragBag vector consists of N observations, yet it certainly cannot
be assumed to be normally distributed. Thus, we use a nonparametric per-
mutation test, adapted from (36).

We now construct a statistic w that captures the overall dissimilarity be-
tween vectors belonging to different categories; large values of w support
rejecting the null hypothesis, according to which the partition into blocks
carries no information with respect to the classification. We first standardize
B's columns by dividing each column by its standard deviation (36). Let B, be
the M, x N submatrix of (the standardized) B, constituting the gth block, and
let B, be the N-vector whose entries are the means of the columns of B,. For
two distinct blocks, g and r, we define A, = max |Bg — B,|, where the max-
imum is taken over the N differences (in absolute values) between the entries
of the two vectors. The omnibus test statistic is w = maxg. Ag,-
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Being a permutation test, the omnibus test’s p-value is P(W > w), where
W is a similarly computed score under a random permutation of B’s rows.
Because the number of permutations is too large to enumerate, we resort
to estimating the p-value in a Monte Carlo fashion, by drawing 1000 random
permutations of B’s rows, and observing the proportion of the permutations
achieving a statistic higher than w. The omnibus test results were all signifi-
cant, for comparisons both at the CA and CAT levels, for all 24 libraries, and
for each of the three CATH classes (p < 0.001 in all cases).

Post Hoc Analysis, Bonferroni Correction, and FDR. Once the omnibus test
results were found significant, we test the data for a more stringent alter-
native hypothesis, according to which any two blocks are different from each
other (rather than testing for the existence of at least one pair of different
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blocks, as the omnibus test does). To do so, we run the above test separately
for each of the K = Q(Q — 1)/2 pairs of blocks. When comparing blocks q and
r, the matrix B is of dimension (M, + M,) x N, and as only two blocks are con-
sidered, this comparison’s statistic reduces to w = Ag,. The result is a collec-
tion of K p-values, corresponding to the K pairwise comparisons. When using
the Bonferroni correction, we declare as significant only the comparisons in
which the p-value is below 0.05/K. When using the FDR approach, we
follow (30).
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