
A finite-state based morphological analyzer

for Hebrew

Shlomo Yona

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE MASTER DEGREE

University of Haifa

Faculty of Social Science

Department of Computer Science

November, 2004

A finite-state based morphological analyzer

for Hebrew

By: Shlomo Yona

Supervised By: Dr. Shuly Wintner

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE MASTER DEGREE

University of Haifa

Faculty of Social Science

Department of Computer Science

November, 2004

Approved by: Date:

(supervisor)

Approved by: Date:

(Chairman of M.A Committee)

2

Acknowledgment

I would like to thank the Ministry of Science and Technology for their financial support

through the Knowledge Center for Processing Hebrew 1.

1http://mila.cs.technion.ac.il

I

II

Contents

1 Introduction 1

1.1 Morphological analysis . 1

1.2 Finite-state technology . 3

1.3 An introduction to xfst . 5

1.4 Computational approaches to Hebrew morphology 9

1.5 Research goals . 11

2 Overview of the system 13

2.1 Lexicon structure . 13

2.2 From XML to xfst . 18

2.3 The format of the rules . 20

3 The lexicon 23

3.1 Adjectives . 23

3.2 Nouns . 24

3.3 Verbs . 27

3.4 Other parts of speech . 28

3.4.1 Adverb . 28

3.4.2 Conjunction and negation . 29

3.4.3 Interjection . 29

3.4.4 Preposition . 30

3.4.5 Pronoun . 31

III

3.4.6 Proper name . 31

3.4.7 Quantifier . 32

4 The rules 35

4.1 Adjectives . 35

4.2 Nouns . 43

4.3 Verbs . 49

4.4 Other parts of speech . 52

4.5 Prefixal particles . 55

4.5.1 Prepositions: מ׳} ל׳, כ׳, {ב׳, . 57

4.5.2 Definite article: {ה׳} . 57

4.5.3 Relativizer: {ה׳} . 57

4.5.4 Conjunction: {ו׳} . 58

4.5.5 Adverb: {כ׳} . 58

4.5.6 Temporal subordinating conjunctions: מש־} לכש־, {כש־, 58

4.5.7 Subordinating conjunction: {ש׳} and the relativizer {ש׳} 58

5 Conclusion 59

IV

A finite-state based morphological analyzer

for Hebrew

Shlomo Yona

Abstract

Morphological analysis is an important component in many natural language processing

tasks. Existing morphological analyzers for Hebrew are either limited or proprietary. We

developed a morphological analyzer for undotted Hebrew words that is based on finite-state

linguistically motivated rules and a broad coverage lexicon. The lexicon contains base forms

of words and linguistic attributes that are used by the rules to allow analysis and generation of

Hebrew words. The current set of rules comprehensively covers the morphological phenomena

that are observable in contemporary Hebrew texts. Our analyzer produces output for over

90% of the tokens observed in daily newspapers.

V

VI

List of Figures

2.1 A lexicon item represented in XML . 15

2.2 A lexicon item for ,חכמה exemplifying the addition of a colloquial spelling

using an add element . 15

2.3 A lexicon item for ,בוקר which exemplifies the usage of the replace element . 16

2.4 A fragment of the lexicon item for ,יכול which exemplifies removal of non-

existing forms using remove . 17

2.5 A lexicon item in XML representations, that exemplifies the usage of inflec-

tionBase . 18

2.6 A lexicon item in xfst representation, exemplifying the usage of inflectionBase 18

2.7 The lexicon item of בלי in xfst . 19

2.8 The lexicon item of the verb שילם in XML 20

2.9 The lexicon item of the verb שילם in xfst . 20

2.10 A high level view of the analyzer . 21

3.1 A lexicon item for עילאי . 24

3.2 A lexicon item for חיפאי with additional forms 24

3.3 A lexicon item for the deverbal noun הפגנה 26

3.4 A lexicon item for the noun שולחן . 26

3.5 A lexicon item for the noun שן . 26

3.6 A lexicon item for the noun סיסמה . 26

3.7 A lexicon item for the verb הוציא . 28

3.8 The lexicon item הוציא in the verbs lexicon in xfst format 28

VII

3.9 A lexicon item for היטב . 29

3.10 Lexicon items for the coordinating conjunction ,לפיכך the subordinating con-

junction כי and the relativizing conjunction אשר 30

3.11 A lexicon item for the negation בלי . 30

3.12 Lexicon items for the interjections לעזאזל and אשרי 31

3.13 Lexicon items for the prepositions עבור and לפני 32

3.14 The lexicon item of the pronoun כזה . 32

3.15 The lexicon item of the proper name שלמה 33

3.16 The lexicon item of the quantifier כפליים . 33

4.1 Singular masculine adjectives . 36

4.2 A singular feminine adjective is either extracted from the lexicon or inflected

from the singular masculine . 37

4.3 Transforming the gender tag from masculine to feminine. 38

4.4 Converting a singular masculine adjective into a singular feminine with the

suffix ה . 39

4.5 Converting a singular masculine adjective into a singular feminine with the

suffix ת . 39

4.6 Singular feminine construct . 40

4.7 The possessive inflection for singular masculine adjectives 40

4.8 Plural inflection with ים suffix . 41

4.9 Plural masculine adjectives . 41

4.10 Singular possessive inflections undergoing priority union 42

4.11 Adjectives . 42

4.12 Nouns . 43

4.13 Singular feminine nouns . 44

4.14 Plural nouns with ים suffix . 45

4.15 Plural nouns with ות suffix . 46

4.16 Plural masculine nouns . 47

VIII

4.17 Plural feminine nouns . 48

4.18 Rule for creating the past tense, 1st person, plural inflection for ip23 50

4.19 Class 1 rule for inflecting verbs for past tense, first person, plural 50

4.20 Rule extracting the past tense base from the lexicon items 51

4.21 Class 2 rule for inflecting verbs for past tense, first person, plural 51

4.22 Adverbs with pronomial suffixes . 52

4.23 Adverbs . 52

4.24 Gematria . 53

4.25 Numbers . 54

4.26 Prefix particles and their morpho-syntactic functions 55

5.1 Analyses for כשמהראש . 60

5.2 Analyses for שבתה . 62

5.3 Analyses for תסתלק . 63

5.4 Analyses for מאחר . 63

IX

X

Chapter 1

Introduction

1.1 Morphological analysis

Morphology studies the structure of words. Morphological analysis is the computational pro-

cess which provides information about the structure of a given surface word. An analysis can

produce morphological and morpho-syntactic features such as the root, tense, person, num-

ber etc. A morphological analyzer should separate and identify the component morphemes

of the input word, labeling them with sufficient information to be useful further processing.

Morphological generation is the inverse process of generating a surface word given a mor-

phological analysis. A very simplified version of morphological analysis is called Stemming.

Stemming is a process of obtaining a stem and affixes from a lexeme, where the stem is the

objective of this operation. Its main use is as part of a term normalization process that is

usually done when setting up Information Retrieval systems. This is an easier and simpler

problem than morphological analysis, as the morphological properties of the stripped affixes

are ignored. In many languages, in particular in Semitic languages, surface words have more

than one morphological analysis. Morphological disambiguation is the process of choosing

the correct morphological analysis of a surface word, taking its context into account.

Hebrew, like other Semitic languages, has rich and complex morphology. The major

word formation machinery is root-and-pattern, where roots are sequences of three (typically)

or more consonants, called radicals, and patterns are sequences of vowels and, sometimes,

also consonants, with “slots” into which the root’s consonants are being inserted. Words

are created by interdigitating roots into patterns: the first radical is inserted into the first

consonantal slot of the pattern, the second radical fills the second slot and the third fills the

last slot. Inflectional morphology is highly productive and consists mostly of suffixes, but

sometimes of prefixes or circumfixes. In general, inflectional morphology can be assumed to

be concatenative, but derivational morphology is certainly non-concatenative.

As an example of root-and-pattern morphology, consider the Hebrew roots ג׳ד׳ל׳ and ר׳ש׳מ׳

and the patterns הCCCה and CוCיC, where the ‘C’s indicate the slots. When the roots combine

with these patterns the resulting lexemes are ,הגדלה ,גידול ,הרשמה ,רישום respectively. After

the root combines with the pattern, some morpho-phonological alternations take place, which

may be non-trivial: for example, the התCCCות pattern triggers assimilation when the first

consonant of the root is ת or :ד thus, ד׳ר׳ש׳+התCCCות yields .הדרשות The same pattern

triggers metathesis when the first radical is ס or :ש ס׳ד׳ר׳+התCCCות yields הסתדרות rather

than the expected .התסדרות Frequently, root consonants such as ו or י are altogether missing

from the resulting form. Other weak paradigms include roots whose first radical is נ and roots

whose second and third radicals are identical. Thus, the roots ,ק׳ו׳מ׳ ,ג׳נ׳נ׳ נ׳פ׳ל׳ and ,י׳צ׳ג׳

when combining with the הCCCה pattern, yield the seemingly similar lexemes ,הקמה ,הגנה

הפלה and ,הצגה respectively.

These matters are complicated further due to two sources: first, the standard Hebrew

orthography leaves most of the vowels unspecified. It does not explicate [a] and [e] vowels,

does not distinguish between [o] and [u] vowels and leaves many of the [i] vowels unspecified.

Furthermore, the single letter ו is used both for the vowels [o] and [u] and for the consonant

[v], whereas י is similarly used both for the vowel [i] and for the consonant [y]. On top of that,

the script dictates that many particles, including prepositions, conjunctions and the definite

article, attach to the words which immediately follows them. Thus, a form such as מהגר can

be read as a lexeme (“immigrant”), as מ+הגר “from Hagar”or even as מ+ה+גר “from the

foreigner”. Note that there is no deterministic way to tell whether the first מ of the form is

part of the pattern, the root or a prefixing particle (the preposition מ “from”).

2

An added complexity stems from the fact that there exist two main standards for the

Hebrew script: one in which vocalization diacritics, known as niqqud (dots), decorate the

words, and another in which the dots are missing, and other characters represent some, but

not all of the vowels. Most of the texts in Hebrew are of the latter kind; unfortunately,

different authors use different conventions for the undotted script. Thus, the same word can

be written in more than one way, sometimes even within the same document. This fact adds

significantly to the degree of ambiguity.

A lexeme can be inflected to and derived to many word forms. The lexeme שולחן (a

table), for example, is the basis of the entire possessive inflection : שולחני (my table), שולחנך

(your table, singular, masculine or feminine), שולחננו (our table), שולחנו (his table), שולחנה

(her table), שולחנם (their table, masculine), שולחנן (their table, feminine), שולחנכם (your

table, plural, masculine) and שולחנכן (your table, plural, feminine). The base form can alter

in construct state כתיבה) שולחן - a desk). The morphological richness is even greater in the

verb system.

In light of this morphological richness and the high degree of ambiguity, morphological

analysis is a challenging problem. A näıve solution would be to list all word forms, including

inflections, in the lexicon. This is not a practical task to perform manually due to the number

of possible inflections of each word (dozens). It is also not a scalable solution since words

that are missing from the lexicon obtain no analysis at all. On the other hand, formulating

the morphological processes result in smaller lexica and might provide generalizations that

allow (partial) analysis of unseen words.

1.2 Finite-state technology

Morphological rules need to be expressed, preferably in a manner which is both human and

machine readable and maintainable. Finite-state technology offers the ability to describe

natural language morphology in some calculus which can express most of the morphological

processes and simulate to a satisfactory extent the remaining few (such as interdigitation and

reduplications). Finite-state technology also offers a very compact and fast means of storing

3

and using morphological rules.

One of the fundamental results of formal language theory (Kleene, 1956) is the demon-

stration that finite-state languages are precisely the set of languages that can be described

by a regular-expression. A regular-expression denotes a set of strings (a language) or a set

of string pairs (a relation). It can be compiled into a finite-state network that compactly

encodes the corresponding language or relation that may well be infinite.

The language of regular-expressions includes the common set operators of boolean logic

and operators that are specific to strings such as concatenation. It follows from Kleene’s

theorem that for each of the regular-expression operators for finite-state languages there is

a corresponding operation that applies to finite-state networks and produces a network for

the resulting language. Any regular-expression can in principle be compiled into a single

network. A finite-state network is a term we use both for simple automata that define

regular languages and for transducers (automata with output) which define regular relations.

A finite-state network for a complex language can be built by first constructing a regular

expression that describes the language in terms of set operations and then compiling that

regular expression into a network. This is in general easier than constructing a complex

network directly, and in fact it is the only practical way for all but the most trivial languages

and relations. The advantages of using finite-state networks include time complexity that is

linear in the length of a string that is processed, and the ability to reverse the morphological

analyzer and obtain a morphological generator with no extra effort.

Several calculi provide more operators in addition to the three operators needed for for-

mulating regular expressions. There are also computer programs which translate expressions

in such calculi into networks. For example, xfst (Beesley and Karttunen, 2003) is a lan-

guage consisting of many operators, which allow easy and natural description of most of the

morphological processes of natural languages. Xfst is built on top of a software library that

provides algorithms for creating automata from regular expressions and contains both clas-

sical operations such as union or composition and also new algorithms such as replacement

or local sequentialization.

4

Closure properties of regular languages, the ability to lookup an analysis or generate a

surface word in linear time in the length of the string, the compact storage of information

and the natural way morphological rules can be expressed using regular-expressions make

finite-state technology particularly appealing for NLP applications.

1.3 An introduction to xfst

Xfst is a programming language for regular expressions, which can be compiled into finite-

state networks. The language of regular expressions is a formal language, similar to formulas

of Boolean logic. It has a simple syntax but the expressions can be arbitrarily complex. Like

formulas of Boolean logic, regular expressions denote sets.

The simplest kind of regular expression consists of a single symbol. For example, the

expression a denotes the set that contains the string “a” and nothing else. A special kind

of string, the empty string, is expressed with an empty pair of double quotes: “”. A set of

strings is called a language. The expression above, a, denotes the language consisting of just

the string “a”. As in set theory, a set consisting of pairs of strings is called a relation. The

terms regular language and regular relation refer to sets that can be described by a regular

expression.

The simplest kind of regular expression that denotes a relation is a symbol pair, such as

a:b. It denotes the set consisting of the ordered pair 〈“a”, “b”〉. A regular relation may

always be viewed as a mapping between two regular languages. In this case, the relation is

simply the crossproduct of the languages denoted by the expressions a and b.

In order to distinguish the two languages that are involved in a regular relation, we call the

first one the upper and the second one the lower language of the relation. Correspondingly,

in the pair a:b, the first symbol, a, is called the upper symbol and the second one, b, the

lower symbol.

Complex regular expressions can be built up from simpler ones by means of regular expres-

sion operators. A regular expression can be enclosed in square brackets without changing its

interpretation. For example, [a | b] and [a] | [b] describe the same language as a | b.

5

An empty pair of brackets, [], is interpreted as denoting the empty-string language. The

universal language contains all strings of any length including the empty string. 0 is a symbol

that represents the empty string “”. ? is a symbol that represents any symbol that occurs

in the same regular expression and any unknown symbol. The 0 symbol is also used as the

upper or the lower symbol of a symbol pair. The expression 0:a maps ”” to “a”, and vice

versa. The inverse relation is denoted by a:0.

The escape character, %, eliminates any special meaning of the following character. Thus

|, 0, ?, etc. can be used as ordinary symbols by prefixing them with %. For example, %0

represents the string “0” rather than the epsilon symbol; %| is the vertical bar itself, as

opposed to the the union operator |. The ordinary percent sign may be expressed as %%.

The print name of a symbol can contain more than one character. For example, %+V

represents the string “+V”. Sometimes it is easier to write characters of words together; for

notational convenience, the {text} single character brace construct will take each character,

between the braces, as a single-character symbol. Thus, {abc} is equivalent to [a b c].

Because xfst intentionally ignores the distinction between a language and its identity relation,

a pair of identical symbols may be collapsed into a single symbol. Instead of a:a we may

simply write a.

In addition to concatenation, union, and minus, xfst includes many other regular expres-

sion operators. The list given here is representative but not exhaustive (see Beesley and

Karttunen (2003), chapters 2 and 3 for more details). Some of the operators below can

be combined with all expressions regardless of whether they denote languages or relations.

Concatenation and union are of this kind. Other operators presuppose that the component

expression is of a particular type. For example, complementation, intersection, and minus

can be used only with expressions that denote a simple language because regular relations are

not closed with respect to these operations. Composition presupposes that the component

expressions denote relations. For each of the operators described below, we specify what kind

of expressions it operates on.

˜A complement. The set of all strings that are not in the language A. For example, ~a

6

contains ””, “aa”, and “aaa” but not “a”. The component expression, A, cannot denote

a relation. The complement of the null language, ~\?, is the universal language, and

vice versa.

A+ iteration (Kleene plus). The language or relation A concatenated with itself any number

of times, including zero times. A+ includes [A], [A A], [A A A], and so on ad infinitum.

?+ is the language of all nonempty strings.

A* Kleene star. The union of A+ with the empty-string language. A* is equivalent to (A+).

?* denotes the universal language.

$A containment. The set of strings or string pairs containing at least one instance of A as

a subpart. For example, “bac” is a string in the language denoted by $a, speaking

informally, “bac” is in $a. Here A can denote a relation. $A is equivalent to [?* A ?*].

$[] denotes the universal language.

A B concatenation of the languages or relations A and B.

A |B union of the languages or relations A and B. The set of strings or pairs of strings that

are in A or in B or in both.

A .P. B upper side priority union. The result of [A .P. B] is a union of A and B, except

that whenever A and B have the same string on the upper side, the path in A has

precedence over the path in B. It is interesting to note that .P. performs poorly when

executed on large networks. The effect of .P. can be obtained using other operations.

The [replace .P. overGen] expression is implemented in xfst using:

[[overGen.u & ~replace.u] .o. overGen] | replace].

Unsurprisingly, using this alternative performs as poorly as the .P. operator itself.

However, the equivalent

[[overGen.u - replace.u] .o. overGen] | replace]

7

performs efficiently. We therefore use the latter for priority union.

A & B intersection of the languages A and B. The set of strings that are both in A and in

B. A and B must be simple languages, not relations. For example [a | b] & [b | c]

consists of the string “b”.

A - B A minus B. The set of strings that are in the language A but not in the language B.

A and B must be simple languages, not relations. [A - B] is equivalent to [A & ~B].

Note also that \a could be defined as to [? - a].

A .x. B crossproduct of the languages A and B. It denotes a regular relation that maps

every string in A (upper side) to all strings in B (lower side), and vice versa. Thus

[a .x. [b | c]] is equivalent to [a:b | a:c]. A and B must be simple languages,

not relations.

A .o. B composition of the relations A and B. The intersection of the lower language of

A and the upper language of B works like a filter here. For example, the expression

[a:b | b:c] .o. [a:x | b:y] is equivalent to [a:y]. The b:c and a:x pairs do not

contribute anything to the result because neither “c” nor “a” is in the intersection of

[b | c] (the lower language of A) and [a | b] (the upper language of B).

A ->B replacement of the language A by the language B. This denotes a relation that consists

of pairs of strings that are identical except that every instance of A in the upper-side

string corresponds to an instance of B in the lower-side string. For example, [a -> b]

pairs “b” with “b” (no change) and “aba” with “bbb” (replacing both “a”s by “b”s). Re-

placement may be constrained by a specific context. For example, [A -> B || L _ R]

makes the A -> B replacement only if the A string is preceded by a string from L and

followed by a string from R.

A ->B ||L R conditional replacement of the language A by the language B. This is like

the relation [A -> B] except that any instance of A in the upper string corresponds to

an instance of B in the lower string only when it is preceded by an instance of L and

8

followed by an instance of R. Other instances of A in the upper string remain unchanged.

L is defined as left context and R as right context. A, B, L, and R must all denote simple

languages, not relations. The || indicates that both contexts refer to the upper string.

.#. boundary marker. In the conditional replacement a special boundary marker, .#. can

be used to refer to the beginning or to the end of a string. In the left context, the

boundary marker signals the beginning of the string; in the right context it means the

end of the string.

define VARIABLE regularExpression; the define command is used to assign the finite-

state network that is represented by regularExpression to the variable VARIABLE. We

use this command to separately compile finite-state networks for parts of the morpho-

logical analyzer.

1.4 Computational approaches to Hebrew morphology

While the original Two-Level formulation (Koskenniemi, 1983) of finite-state technology for

morphology was not particularly well suited to Semitic languages (Lavie et al., 1988; Lavie,

1989), modifications of the Two-Level paradigm and more advanced finite-state implemen-

tations have been applied successfully to a variety of Semitic languages, including Ancient

Akkadian (Kataja and Koskenniemi, 1988), Syriac (Kiraz, 2000) and Arabic. Beesley in a

number of works (Beesley, 1996; Beesley, 1998a; Beesley, 1998b; Beesley, 2001; Beesley and

Karttunen, 2000) describes a finite-state morphological analyzer of modern standard Arabic

that can be tested on the Internet. The morphological knowledge was assembled by lin-

guists manually over a long period of time. This Arabic system handles both inflectional and

derivational morphology, including interdigitation processes typical to Semitic languages.

Work on computational Hebrew morphology can be roughly divided into two categories:

morphological analysis and morphological disambiguation. A comprehensive and thorough

survey of computational linguistics for Hebrew was done by Wintner (2004), on which the

following discussion is based. We concentrate on morphological analysis and do not discuss

9

disambiguation below.

The first computational system for Hebrew morphological analysis was probably built by

Choueka in the early sixties (Shapira and Choueka, 1964). Naturally, this system is very

basic, yet its accomplishments are impressive: the article describes both a full morphological

analysis of the noun system and an implementation of the analysis for preparing a concordance

and a citation list. In a subsequent article Choueka (1966) describes the part handling verbs.

This work was an introduction to a large scale project dealing with various aspects of

computational linguistics, natural language processing and information retrieval. Algorithms

for morphological analysis were further developed (Attar et al., 1978) in order to support such

projects. Algorithms were developed for automatic generation of all possible inflections and

derivations of every Hebrew lexical entry, including those generated by adding morphemes

such as prepositions, conjunctions and so on. A file containing all possible Hebrew words

was built, which was used for the generation and analysis morphological systems for Hebrew

(but not modern Hebrew).

Later, Choueka developed for the third time a Hebrew morphological analysis system,

which was a part of the RAV-MILIM project (Choueka, 1990). This system was config-

ured for modern Hebrew, and was used in two main applications: a vocalization software

(which adds the missing vowels from the words and practically disambiguates the meaning)

and a practical dictionary which also contains morphological analysis. These applications

soon turned commercial, and therefore, the system, probably the most extensive and com-

prehensive system yet for Hebrew, was never made available for computational linguistics

researchers. This work was briefly surveyed in (Choueka, 1993).

A commercial system, AVGAD, was developed at IBM Haifa Research (Bentur et al.,

1992; Bentur, Angel, and Segev, 1992). It was based on a 25000 entry dictionary, from which

“hundreds of thousands” of Hebrew words can be recognized. The system was integrated into

word processors mainly used for spelling correction. AVGAD is an outdated system, with

an incomplete dictionary. The system cannot be further developed as it is commercial and

unavailable to the research community.

10

A morphological analyzer built by Segal (1997) produces all the possible analyses for a

given lexeme. Although this system is available to the research community, its dictionary

is limited (based on AVGAD with a few words added) and the morphological rules are an

inseparable part of the computer program, which makes them very hard to maintain. The

analyses are sometimes superficial or incorrect due to inability to fully handle prefix particles

and a guesser which picks the Proper Name category for all unfamiliar surface forms.

A different approach to Hebrew morphology was introduced by Ornan. Based on his

observations of the difficulties and limitations posed on computational processing by the

Hebrew orthography, Ornan suggested an alternative script for the language, based on the

Latin alphabet plus several symbols which appear on a computer keyboard: this is the

phonemic script (Ornan, 1986; Ornan, 1994). The fact that the vast majority of Hebrew

texts available in electronic format is not represented in phonemic script practically rules out

any usage of it. There are, however systems, such as Ornan and Katz (1995) which convert

Hebrew script to the phonemic script, but they require morphological disambiguation and

the degree of accuracy of this conversion is not mentioned.

Another approach which generates all possible inflections of lexicon items is used by the

HSpell project.1 The goal of this project is to offer a practical spell checker for Hebrew.

The main effort of the project is the construction and expansion of a broad coverage lexicon

of verbs, nouns and adjectives, which is then automatically inflated into a TRIE containing

all possible inflections of the lexicon items. HSpell also offers a basic morphological analyzer

which returns some basic linguistic information for a lexicon item. HSpell contains a grammar

describing many possible ways of attachment of prefix particles to verbs, nouns and adjectives.

1.5 Research goals

Many natural language processing tasks, such as machine translation, require some processing

of words in order to obtain their base forms, morphotactics, part-of-speech and other linguistic

information. Currently available systems for morphological analysis of Hebrew suffer from

1http://www.ivrix.org.il/projects/spell-checker/

11

one or more of the following problems:

1. Morphological rules are, for the most part, expressed in terms easily manipulated by

the programmers and hence become part of the system. Separation of the morpho-

logical rules (including morphotactics and morphophonology) from the morphological

processing program (analysis and generation) is important for practical and theoret-

ical reasons. First, formalization of the rules is of theoretical linguistic value as it

contributes to a better understanding of the morphological, morphophonological and

orthographical processes which occur in a natural language. Secondly, a computational

system which separates linguistic rules from the processing program based on the rules

will be more modular, and therefore easier to maintain, update, and expand.

2. Most available systems are capable of analysis only. The reversibility property of finite-

state transducers is extremely useful for implementation of a morphological system, as

it is capable of doing both morphological analysis and morphological generation.

3. As described in Wintner (2004), existing morphological analyzers for Hebrew are either

limited or proprietary.

Our goal is to develop a system that performs morphological analysis (and generation)

of undotted Modern Hebrew, with broad coverage and based on finite-state linguistically

motivated rules. Our system includes a broad coverage modular lexicon represented in XML,

which is compiled into a finite-state network. As far as we know, no morphological analyzer

for Hebrew is based on finite-state technology.

The design of the morphological analyzer is divided into two main components: a lexicon

and a set of rules. Both parts are implemented in xfst. The lexicon lists base forms (lex-

emes/stems), with some additional linguistic information. The rules implement inflectional

morphology, morphological alternations and orthographic issues. The rules and the lexicon

are compiled together into the morphological system, which is represented as a finite-state

network. An overview of the system is presented in chapter 2, whereas chapters 3 and 4 detail

the lexicon and the rules, respectively.

12

Chapter 2

Overview of the system

The system consists of two main components: a lexicon represented in XML, and a set of

finite-state rules, implemented in xfst. We discuss the structure of the lexicon in section 2.1

and its conversion to xfst in section 2.2. The structure of the rules is explained in section 2.3.

2.1 Lexicon structure

This lexicon is currently used as a tool for morphological analysis software, and can inter-

face with other natural language processing tools for Hebrew. The lexicon is represented

in Extensible Markup Language1 (XML), which is a set of language rules that have been

defined to describe and structure data. The usage of XML supports standardization, allows

a format that is both human and machine readable, and supports interoperability with other

applications.

The lexicon contains a metadata section and an items section. The metadata section

contains information about the lexicon (such as: name, version, revision, contact information

of maintainers), its sources (name of the source, and a link to it), and other administrative

information such as licenses and copyrights. In addition, it defines a transliteration that

maps every Hebrew letter to a Latin equivalent. The items section is a list of lexical entries,

each with a base form that is the form used in conventional dictionaries. The base form of

1http://www.w3.org/XML/

nouns and adjectives is the absolute singular masculine, and for verbs it is the third person

singular masculine, past tense.

All lexicon items are specified for the following attributes:

id a string which uniquely identifies the item.

undotted the undotted Hebrew script spelling of the item (according to the formal strict

recommendations of the Academy of the Hebrew Language (Cohen, 1996), unless oth-

erwise stated in the script attribute).

transliterated a Latin transliteration of the undotted form.

dotted the dotted Hebrew representation of the base form.

script formal, colloquial, typo or slang. The default is formal.

In addition, every lexicon item belongs to a part of speech category. Eleven parts of speech

are defined: adjective, adverb, conjunction, interjection, negation, noun, preposition, pronoun,

properName, quantifier and verb. The part of speech of a lexicon item determines its addi-

tional attributes (discussed in detail in chapter 3). Note that some lexicon attributes are not

used by the morphological analyzer, but are meaningful for other applications. Furthermore,

lexicon attributes are of two types:

lexical attributes attributes that represent lexical features such as gender and number

support attributes attributes that represent information used for derivation and inflection

processes such as plural (the suffix to use for the plural form of nouns and adjectives)

and dual (can the dual form be derived from the base form, in nouns).

Figure 2.1 exemplifies a lexicon item represented in XML. Note that there are no addi-

tional attributes specified for this item.

Irregular forms, slang and colloquial spellings can be specified in the lexicon using three

XML elements: add, remove and replace, which are listed along with the part of speech

elements of lexicon items.

14

<item id=״4807״ transliterated=״bli״ undotted=״בלי״>

<negation />

</item>

Figure 2.1: A lexicon item represented in XML

add allows to add a word form. For example, the noun חכמה is also commonly spelled ,חוכמה

so the additional spelling is specified in the lexicon, next to the standard spelling, using

add as demonstrated in figure 2.2.

replace allows to replace what might be an incorrect inflection of a base form with the

correct form. For example, the noun בוקר in plural is בקרים and not the default

.בוקרים This is accounted for by using replace, as shown in figure 2.3.

remove allows to remove inflections. For example, the verb יכול does not have imperative

inflections. Figure 2.4 shows a fragment of its lexicon item and how remove elements

are used to express that.

The attributes of the add, remove and replace elements differ according to the part of speech

of the lexicon item.

<item id=״12876״ transliterated=״xkmh״ undotted=״חכמה״>

<noun gender=״feminine״ number=״singular״ plural=״wt״ deverbal=״true״>

<add gender=״feminine״ number=״singular״ plural=״wt״ script=״colloquial״

transliterated=״xwkmh״ undotted=״חוכמה״/>

</noun>

</item>

Figure 2.2: A lexicon item for ,חכמה exemplifying the addition of a colloquial spelling using

an add element

Sometimes the base form which is specified in the lexicon is not the most convenient

one for generating the inflection paradigm. For example, the preposition עם is a base form,

whose entire inflection paradigm is much simpler if עימ is used as the base used for inflection

15

<item id=״5805״ transliterated=״bwqr״ undotted=״בוקר״>

<noun gender=״masculine״ number=״singular״ plural=״im״>

<replace gender=״masculine״ number=״plural״

transliterated=״bqrim״ undotted=״בקרים״

inflectConstruct=״true״ inflectPossessive=״true״ />

</noun>

</item>

Figure 2.3: A lexicon item for ,בוקר which exemplifies the usage of the replace element

(,עימי ,עימך and so on). While add, remove and replace are useful for marking a particular

inflected form, using them for specifying all the inflected forms that result from a different

inflection base is cumbersome. For such cases we use a mechanism based on an additional

attribute, inflectionBase. Items with inflectionBase attributes are not only processed

like other items, but are also included in an additional “inflectionBase” lexicon, which includes

the alternative base. During the construction of the morphological analyzer for every part

of speech category, the inflected forms that use the “ordinary” lexicon are being priority

unioned (Beesley and Karttunen (2003), pages 300-307) with the inflected forms that use the

“inflectionBase” lexicon, so that the latter override the former. Figure 2.5 lists the lexicon

item for the preposition ,עם whose inflectionBase is .עימ

Items containing add, remove and replace elements are included in the “ordinary” lexicon

without the add, remove and replace elements, which are included in additional lexicons ac-

cording to their element name. The “ordinary” lexicon is used for the “basic” morphological

analyzer (after incorporating the inflectionBase forms as explained above). Morpholog-

ical analyzers are built using the same set of rules for add, remove and replace lexicons.

The final morphological analyzer is created after the forms generated by the remove mor-

phological analyzer are subtracted from the basic morphological analyzer (by a minus op-

eration on the finite-state networks: basic − remove). Then the forms generated by the

add morphological analyzer are added (by the union operation on the finite-state networks:

(basic − remove) ∪ add), and then the forms generated by the replace morphological an-

16

<item id=״12257״ transliterated=״ikwl״ undotted=״יכול״>

<verb binyan=״Pa׳al״ inflectionPattern=״1״ root=״יכל״>

<remove pgn=2״p/M/Sg״ tense=״imperative״ transliterated=״ikwl״

undotted=״יכול״/>

<remove pgn=2״p/F/Sg״ tense=״imperative״ transliterated=״ikli״

undotted=״יכלי״/>

<remove pgn=2״p/M/Pl״ tense=״imperative״ transliterated=״iklw״

undotted=״יכלו״/>

<remove pgn=2״p/F/Pl״ tense=״imperative״ transliterated=״ikwlnh״

undotted=״יכולנה״/>

. . .

</verb>

</item>

Figure 2.4: A fragment of the lexicon item for ,יכול which exemplifies removal of

non-existing forms using remove

alyzer are being priority unioned (by applying priority union on the finite-state networks:

(replace.P.((basic − remove) ∪ add))). This final finite-state network contains only and all

the valid inflected forms.

The lexicon was initially populated with a small number of words (about 200) used for

development of the morphological analyzer. Then, about 3000 nouns and adjectives were

automatically added by adopting a subset of the HSpell lexicon. Over 3500 verbs were added

from Zdaka (1974). Remaining entries were added manually by a lexicographer using a

graphical user interface with the support of the Knowledge Center for Processing Hebrew 2.

This effort resulted in a broad-coverage lexicon: we currently have near 20,000 entries, with

a near-complete coverage of all categories except proper names.

2http://mila.cs.technion.ac.il

17

<item id=״16003״ transliterated=״ym״ undotted=״עם״>

<preposition inflectionBase=״עמי״>

<add personGenderNumber=1״p/MF/Sg״ script=״formal״ transliterated=״yimdi״

undotted=״עימדי״/>

</preposition>

</item>

Figure 2.5: A lexicon item in XML representations, that exemplifies the usage of

inflectionBase

[[nounTag idTag {13829} undottedTag {חא} transliteratedTag {ax}

genderTag %+masculine numberTag %+singular pluralTag %+im

scriptTag %+formal

] .x. {יחא}]

Figure 2.6: A lexicon item in xfst representation, exemplifying the usage of inflectionBase

2.2 From XML to xfst

The lexicon is represented in XML, while the morphological analyzer is implemented in xfst.

Therefore, the lexicon has to be converted to xfst. The xfst representation is a file containing

one xfst define statement that is a union of items. Every lexicon item is a concatenation of

strings, each with an upper side (lexical information) and a lower side (the base or bases for

the inflections). As a lexicon item is processed by the rules, the upper side is manipulated to

reflect the attributes of the inflected form that is being created on the lower side.

Programming in xfst is different from programming in high level languages. While xfst

rules are very expressive, and enable a true implementation of some linguistic phenomena, it

is frequently necessary to specify, within the rules, information that is used mainly for “book-

keeping”. Due to the limited memory of finite-state networks, such information is encoded

in tags, which are multi-character symbols attached to strings. The tags can be manipulated

by the rules and thus propagate information among rules. For example, noun lexicon items

include the number attribute, so rules which apply to plural nouns only can make use of this

18

information: $[numberTag %+plural] .o. nouns. once all linguistic processing is complete,

“book-keeping” tags are filtered out.

The upper (lexical) side of lexicon items has the following form: a tag with the part

of speech, then an id tag, followed by the id of the item, an undotted tag followed by the

undotted string of the item, then a transliterated tag, followed by the transliterated string

of the item (this information is created by the conversion process if not found in the XML

representation), then the remaining attributes of the item, that are used by the morphological

analyzer or that are required in the output.

The lower (surface) side of lexicon items consists of the base form. The base form is

usually the same as the undotted attribute, but when inflectionBase is set, it is used

instead. Figure 2.7 lists the xfst representation of the word בלי whose XML lexical entry was

listed in figure 2.1.

[[negationTag idTag {7321} undottedTag {בלי} transliteratedTag {bli}

scriptTag %+formal] .x. {בלי}]

Figure 2.7: The lexicon item of בלי in xfst

Verbs specify the base form of every tense on the lower side, as there is no single base for

all tenses. The verb bases are determined by combining a root and a pattern. Given a root,

the appropriate pattern for generating the base for every tense is determined by an inflection

pattern. Every inflection pattern is associated with a procedure that determines how the root

letters are used to form the bases. For example, inflection pattern 23 (binyan Pi’el) defines

that the past tense base is formed by inserting י between the first and second letters of the

root (the root ש׳ל׳מ׳ yields the past tense base .(שילם Figure 2.8 demonstrates the lexicon

item for the verb שילם in XML, and figure 2.9 lists its xfst representation. Notice that the

lexical side contains additional attributes (to those listed in the XML representation), which

are set to their default values. The surface side includes the inflection pattern, and the bases

for the tenses.

19

<item id=״14827״ transliterated=״eilm״ undotted=״שילם״>

<verb binyan=״Pi׳el״ inflectionPattern=״23״ root=״שלמ״ valence=״transitive״ />

</item>

Figure 2.8: The lexicon item of the verb שילם in XML

[

[

verbTag idTag {14827} undottedTag {שילם} transliteratedTag {eilm}

rootTag {שלמ} binyanTag %+Pi׳el pgnTag %+NONE inflectionPatternTag {23}

scriptTag %+formal tenseTag %+NONE valenceTag %+unspecified

] .x. [

ip23Tag originTag {שלמ} bklmTag {שלמ} pastTag {שילמ}

presentTag {שלמ} futureTag {שלמ} imperativeTag {שלמ}

]

]

Figure 2.9: The lexicon item of the verb שילם in xfst

2.3 The format of the rules

Our rules support surface forms that are made of zero or more prefix particles, followed by a

(possibly inflected) lexicon item. Figure 2.10 lists the high-level organization of the analyzer.

The variable inflectedWord is a union of all the possible inflections of all lexical items.

Similarly, prefixalParticles is the language of all the possible combinations of prefixes.

When the two are combined, they yield a language of all possible surface forms, vastly over-

generating. On the upper side of this language a prefix particles filter is composed, which

enforces linguistically motivated constraints on the possible combinations of prefixes with

inflected forms, reducing the number of possible combinations. On top of this another filter

is composed, which handles “cosmetic” changes, such as removing “book-keeping” tags. A

similar filter is applied to the the lower side. Details about rules specific to each and every

part of speech category are specified in chapter 4.

20

tagAffixesFilter

.o.

prefixalParticlesFilters

.o.

[prefixalParticles inflectedWord]

.o.

removeTagsFilter

];

Figure 2.10: A high level view of the analyzer

There are specific rules for every part of speech category, which are applied to the ap-

propriate lexicons. A variable that contains all the base forms and all the inflected forms is

defined and assigned for every part of speech. The finite-state networks that are compiled

from the regular expressions assigned to these variables make morphological analyzers for

every part of speech (these do not include idiosyncrasies nor prefix particles). These part of

speech dependent morphological analyzers are too verbose on the lexical side, as they contain

all the information that was listed in the lexicon items. As most of the uses of the morpho-

logical analyzer require only some of the information, filters are applied to the lexical side to

remove the unneeded information.

In general, rules are formed according to the following template:

optionalPrefixation [

lexicalSideAlternations

.o.

extractionRules

.o.

setOfwords

.o.

surfaceSideAlternations

] optionalSuffixation

21

The setOfwords may denote a lexicon, such as nouns lexicon, or a subset of a lexicon with

some inflections applied to it, such as masculinePluralNoun. Optional affixation is applied

to the upper side (adjust lexical information, such as the properties of a possessive suffix),

to the lower side (such as the affixes of future tense inflections in verbs), or both. Extraction

rules are used to restrict the set of words that the rule is applied to. Alternation rules are

used to correct the surface side (e.g., ם is removed from plural nouns in construct form), and

to update the lexical side (e.g., gender tag is changed from masculine to feminine when the

feminine inflection is created from the masculine form).

22

Chapter 3

The lexicon

3.1 Adjectives

Adjectives inflect regularly, with few exceptions. The base form is the absolute singular

masculine. The base form is used to generate the feminine form (using one of the ,ה ת or

ית suffixes), the masculine plural (using the ים suffix) and the feminine plural (using the ות

suffix). An additional dimension is status, which can be absolute or construct.

Adjective lexicon items have the following attributes:

gender

number

feminine feminine form suffix: ,ה ת or .ית

plural plural form suffix, ים for masculine and ות for feminine.

Figure 3.1 lists the lexicon entry of the adjective :עילאי its feminine form is obtained

by adding the ת suffix (feminine="t"). Note that most of the information is not included

as it is assumed by default (that the lexicon item is masculine, singular and so on), but

the feminine suffix is explicitly defined. This lexicon entry yields ,עילאי ,עילאית ,עילאיים

,עילאיות as well as additional forms including status inflections, using a set of rules that are

described in section 4.1.

<item id=״13852״ transliterated=״yilai״ undotted=״עילאי״>

<adjective feminine=״t״ />

</item>

Figure 3.1: A lexicon item for עילאי

Consider now the adjective ,חיפאי whose plural masculine form, ,חיפאיים occurs in an

additional form, .חיפאים Similarly, חיפני is a valid alternative form in addition to .חיפאי

These additional forms are handled via add elements, as shown in figure 3.2. The add

element for חיפאים includes the number and gender in addition to the undotted spelling,

while the add element for חיפני also includes attributes for specifying the feminine and plural

suffixes (since they are not the default values). By default, a masculine singular form that is

listed using add will be used as an additional base for inflections. Note that the additional

plural form for the extra base, ,חיפני also occurs with a single letter י instead of two in the

plural suffix, as the additional add element shows.

<item id=״10193״ transliterated=״xipai״ undotted=״חיפאי״>

<adjective feminine=״t״>

<add gender=״masculine״ number=״plural״ transliterated=״xipaim״ undotted=״חיפאים״/>

<add feminine=״h״ gender=״masculine״ number=״singular״ transliterated=״xipni״

undotted=״חיפני״/>

<add gender=״masculine״ number=״plural״ transliterated=״xipnim״ undotted=״חיפנים״/>

</adjective>

</item>

Figure 3.2: A lexicon item for חיפאי with additional forms

3.2 Nouns

The basic form of nouns is the absolute singular masculine form. Hebrew has grammatical

gender, and the gender of nouns that denote animate entities coincides with their natural

24

gender. Such nouns usually have both masculine and feminine forms: ,כלב} {כלבה and

,שוטר} .{שוטרת Where a feminine inflection of a masculine form exists, the masculine is

used as the base form. Nouns regularly inflect for number, but some nouns have only a plural

or only a singular form. Nouns can be inflected for status and can take possessive suffixes.

Nouns have the following attributes:

gender can be masculine, feminine or masculine and feminine

number can be singular, plural and dual

feminine the suffix for the feminine form: ,ה ת or .ית

plural the suffix for the plural form, this is usually ים for masculine and ות for feminine.

deverbal is this a deverbal noun?

acronym is this item an acronym?

direction does this noun contain the direction letter ה (E.g., ?(הביתה

While the gender and nuber attributes are lexical, all the rest are support attributes.

The default noun gender is masculine and the default number is singular. As a default

there is no feminine inflection and the plural suffix is set to .ים These defaults can be

overridden by assigning a different value. The acronym, direction, dual and definiteness

properties are set by default to "false".

Figure 3.3 demonstrates a deverbal noun. Figure 3.4 demonstrates a masculine noun with

a plural suffix ,ות which is usually used for feminine plurals. Another example for a feminine

noun with a masculine plural suffix is demonstrated in figure 3.5, where the replace operator

is used to correct the plural form which is idiosyncratic: שיניים instead of שנות that would

have been the default. Figure 3.6 exemplifies how an alternative plural form, ,סיסמאות is

added to the lexicon item of ,סיסמה in addition to the default plural form .סיסמות

25

<item id=״10757״ script=״formal״ transliterated=״hpgnh״ undotted=״הפגנה״>

<noun gender=״feminine״ number=״singular״ plural=״wt״ deverbal=״true״ />

</item>

Figure 3.3: A lexicon item for the deverbal noun הפגנה

<item id=״5044״ script=״formal״ transliterated=״ewlxn״ undotted=״שולחן״>

<noun gender=״masculine״ number=״singular״ plural=״wt״ />

</item>

Figure 3.4: A lexicon item for the noun שולחן

<item id=״13555״ script=״formal״ transliterated=״en״ undotted=״שן״>

<noun gender=״feminine״ number=״singular״ plural=״im״ >

<add construct=״true״ gender=״feminine״ inflectConstruct=״true״

inflectPossessive=״true״ number=״dual and plural״ transliterated=״eini״

undotted=״שיני״/>

<replace gender=״feminine״ inflectConstruct=״true״ inflectPossessive=״true״

number=״plural״ transliterated=״einiim״ undotted=״שיניים״/>

</noun>

</item>

Figure 3.5: A lexicon item for the noun שן

<item id=״10״ transliterated=״sismh״ undotted=״סיסמה״>

<noun gender=״feminine״ number=״singular״ plural=״wt״>

<add gender=״feminine״ number=״plural״

inflectConstruct=״true״ inflectPossessive=״true״

transliterated=״sismawt״ undotted=״סיסמאות״/>

</noun>

</item>

Figure 3.6: A lexicon item for the noun סיסמה

26

3.3 Verbs

The base form of verbs is the third person, singular masculine past tense form. This is the

standard form used in dictionaries and hence is what our morphological analyzer produces.

Verbs inflect for number, gender, person and tense, and “transitive” verbs can take accusative

suffixes. The attributes used for verbs are:

inflectionPattern a number that corresponds to one or more paradigms in Barkali (2000).

root

binyan the binyan is deduced from the inflection pattern.

valence setting this attribute to “transitive” enables the accusative inflections to be gener-

ated.

The inflection patterns that are used by the morphological analyzer are based on the

paradigms listed in Barkali (2000). Barkali’s paradigms are designed for dotted Hebrew,

whereas our morphological analyzer processes undotted script, and therefore many of the

paradigms collapse into a smaller set (61) of what we call inflection patterns. Inflection

patterns determine the entire inflection paradigm of a verb base (which is viewed as a com-

bination of a root and a binyan), across all the possible values of number, gender, person

and tense. For example, inflection pattern 23 groups together verbs whose inflections behave

similarly to that of the verb .שילם The inflection pattern determines the entire paradigm,

which is similar also for סיפסר or ,איתר among others. In contrast, a verb like ,דימה which

shares the same binyan with ,שילם is assigned to a different inflection pattern because its

inflection is different due to its “weak” root. Clearly, inflection patterns are more specific

than binyanim, but all the verbs in the same inflection pattern share the same binyan.

Unlike other parts of speech, the inflection bases of verbs are not listed in their lexicon

items. Instead, the bases are created during the translation of the XML lexicon into xfst

by interdigitating roots with patterns. The patterns that are used are determined by the

inflectionPattern attribute. A verb has more than one base for inflection, and the xfst

27

representation of a verb lexicon item includes on the surface side a base for every tense. The

tenses are bare-infinitive, infinitive, past, present, future and imperative. Figure 3.7 lists the

XML lexicon item of the verb .הוציא Figure 3.8 demonstrates the lexicon entry for הוציא in

xfst format.

<item id=״3374״ script=״formal״ transliterated=״hwcia״ undotted=״הוציא״>

<verb binyan=״Hif׳il״ inflectionPattern=״49״ root=״יצא״ valence=״transitive״ />

</item>

Figure 3.7: A lexicon item for the verb הוציא

[

[

verbTag idTag {16557} undottedTag {הוציא} transliteratedTag {hwcia}

rootTag {יצא} binyanTag %+Hif׳il inflectionPatternTag {49}

scriptTag %+formal valenceTag %+transitive

] .x. [

ip49Tag originTag {הוציא} bklmTag {הוציא} pastTag {הוציא}

presentTag {וציא} futureTag {וציא} imperativeTag {הוציא}

]

]

Figure 3.8: The lexicon item הוציא in the verbs lexicon in xfst format

3.4 Other parts of speech

3.4.1 Adverb

Some of the adverbs inflect for person/gender/number (for example, :לאט ,לאיטי ,לאיטך

,לאיטו ,לאיטנו and so on). Some adverbs are interrogatives. Adverbs have the following

attributes in the lexicon:

interrogative is the adverb an interrogative?

28

inflect does the adverb inflect for person/gender/number?

position position of the adverb with respect to the entity it modifies (possible values are:

pre, post, or pre and post).

modifiesVerb does the adverb modify a verb?

modifiesAdjective does the adverb modify an adjective?

modifiesAdverb does the adverb modify an adverb?

Many adverbs are derived from nouns, but as this is not systematic (derivational morphol-

ogy rather than inflectional morphology) we do not support such derivations automatically.

Figure 3.9 lists the lexicon item for the adverb .היטב

<item id=״7225״ script=״formal״ transliterated=״hivb״ undotted=״היטב״>

<adverb inflect=״false״ interrogative=״false״ modifiesVerb=״true״ position=״post״/>

</item>

Figure 3.9: A lexicon item for היטב

3.4.2 Conjunction and negation

We distinguish between three types of conjunctions: coordinating, subordinating and rela-

tivizing. Figure 3.10 exemplifies all three types.

The lexicon does not provide any special attributes for negation words: they are simply

marked as “negation”. Figure 3.11 exemplifies the negation .בלי

3.4.3 Interjection

Interjections do not usually inflect, but a few do (for person/gender/number). The default for

inflection is "false" for no inflection. Figure 3.12 exemplifies the non-inflecting interjection

לעזאזל and the inflecting interjection .אשרי Note the replace operator which is used to

replace the invalid inflection אשריי with the proper surface form .אשרי

29

<item id=״11548״ script=״formal״ transliterated=״lpikk״ undotted=״לפיכך״>

<conjunction type=״coordinating״/>

</item>

<item id=״9634״ script=״formal״ transliterated=״ki״ undotted=״כי״>

<conjunction type=״subordinating״/>

</item>

<item id=״9688״ script=״formal״ transliterated=״aer״ undotted=״אשר״>

<conjunction type=״relativizing״/>

</item>

Figure 3.10: Lexicon items for the coordinating conjunction ,לפיכך the subordinating

conjunction כי and the relativizing conjunction אשר

<item id=״4807״ script=״formal״ transliterated=״bli״ undotted=״בלי״>

<negation />

</item>

Figure 3.11: A lexicon item for the negation בלי

3.4.4 Preposition

All prepositions inflect for person/gender/number using pronomial suffixes. Idiosyncrasies

are handled by the inflectionBase attribute where the base changes or the add remove

and replace elements for less systematic exceptions. Prepositions in the lexicon may have the

following attribute:

case the case can be either accusative (only for the preposition (את or possessive (for ,(של

but normally neither, so the default is "unspecified".

We assume that prepositions cannot take the prepositional prefixes מ׳}) ל׳, כ׳, ,({ב׳, so a

preposition such as אחרי is considered a different preposition from מאחרי or ,לאחרי and so

we assign to each its own lexicon item.

Figure 3.13 demonstrates the lexicon item of עבור and .לפני The latter exemplifies usage

of replace elements that correct parts of the inflection: לפני instead of ,לפניי לפניהם instead

30

<item id=״14321״ script=״formal״ transliterated=״lyzazl״ undotted=״לעזאזל״>

<interjection inflect=״false״/>

</item>

<item id=״5423״ script=״formal״ transliterated=״aeri״ undotted=״אשרי״>

<interjection inflect=״true״>

<replace personGenderNumber=1״p/MF/Sg״ script=״formal״ transliterated=״aeri״

undotted=״אשרי״/>

</interjection>

</item>

Figure 3.12: Lexicon items for the interjections לעזאזל and אשרי

of לפנים and לפניהן instead of .לפנין

3.4.5 Pronoun

We distinguish between the following types of pronouns:

personal such as אני and .אתם

demonstrative such as אותו and .אלה

interrogative (relativizer) such as מי and .מהם

impersonal such as מישהו and .אלמוני

Pronouns have the following attributes: gender, number, person and type. Figure 3.14

demonstrates a lexicon item of a pronoun.

3.4.6 Proper name

We consider names of people, of locations, of organizations, of products etc. as types of proper

names. Proper names scarcely take the definite article. Figure 3.15 demonstrates a lexicon

item of a proper name. Proper names have the attributes gender and number as well as:

type can be person (such as ,(שלמה location (such as ,(ירושלים organization (such as

,(הטכניון product (such as (במבה and dateTime (such as .(תשרי

31

<item id=״85״ script=״formal״ transliterated=״ybwr״ undotted=״עבור״>

<preposition case=״unspecified״ inflect=״true״/>

</item>

<item id=״1467״ script=״formal״ transliterated=״lpni״ undotted=״לפני״>

<preposition case=״unspecified״ inflect=״true״>

<replace personGenderNumber=1״p/MF/Sg״ script=״formal״

transliterated=״lpni״ undotted=״לפני״/>

<replace personGenderNumber=3״p/M/Pl״ script=״formal״

transliterated=״lpnihm״ undotted=״לפניהם״/>

<replace personGenderNumber=3״p/F/Pl״ script=״formal״

transliterated=״lpnihn״ undotted=״לפניהן״/>

</preposition>

</item>

Figure 3.13: Lexicon items for the prepositions עבור and לפני

<item id=״6224״ script=״formal״ transliterated=״kzh״ undotted=״כזה״>

<pronoun gender=״masculine״ number=״singular״ person=״3״ type=״demonstrative״/>

</item>

Figure 3.14: The lexicon item of the pronoun כזה

definiteness does the proper name allow the definite article to prefix it?

direction for example ,ירושלימה which is equivalent to לירושלים (to Jerusalem).

3.4.7 Quantifier

We distinguish among the following types of quantifiers:

numeral ordinal such as שלישית... שני, .ראשון,

numeral cardinal such as שלוש... שתיים, .אחת,

numeral fractional such as שליש... .חצי,

32

<item id=״1454״ script=״formal״ transliterated=״elmh״ undotted=״שלמה״>

<properName gender=״masculine״ number=״singular״ type=״person״/>

</item>

Figure 3.15: The lexicon item of the proper name שלמה

gematria this is used mostly for representing years in Hebrew dates, e.g., ,תשס״ד but can

also be used elsewhere, e.g., ל״ו in צדיקים .ל״ו

non-numeral such as .מרבית

Quantifiers have the gender, number and type attributes. Numerals have feminine and

masculine forms and can inflect for status. The inflect attribute is used to signal whether

or not the lexical item inflects for person/gender/number. Figure 3.16 demonstrates a lexicon

item of a quantifier.

<item id=״7052״ script=״formal״ transliterated=״kpliim״ undotted=״כפליים״>

<quantifier gender=״unspecified״ number=״dual״ inflect=״false״ inflection־

Base=״״ type=״non־numeral״/>

</item>

Figure 3.16: The lexicon item of the quantifier כפליים

33

34

Chapter 4

The rules

In this chapter we present the set of rules used by the morphological analyzer, i.e., the

implementation of linguistic structures in xfst. The system includes hundreds of rules and

obviously not all of them can be listed here1. We present a small subset of the rules, that

exemplifies the principles that govern the overall organization of the system. The linguistic

information was collected from several sources (Schwarzwald, 2001; Schwarzwald, 2002; Alon,

1995; Barkali, 2000; Zdaka, 1974; Cohen, 1996; Ornan, 2003).

Many of the categories can combine with pronomial suffixes which function as possessive

in the case of nouns, accusatives in the case of verbs, prepositional objects in the case of

prepositions, etc. As the form of pronomial suffixes in Hebrew is independent of their function,

we treat them uniformly. The suffixes are defined as transducers. For example, the pronomial

suffix for first person, singular yields [pronomialSuffix]+1p/MF/Sg on the upper side and י

on the lower side.

4.1 Adjectives

The base form of adjectives is the singular masculine absolute form. Other forms are gen-

erated from this base form. Figure 4.1 demonstrates how the base forms are extracted from

the adjective lexicon. The adjective lexicon is a union of all lexicon items whose part of

1The source code is available at http://cl.haifa.ac.il/projects/hebmorph/index.html

speech is adjective. The variable adjective is the union of all adjective lexicon items,

as generated by the process that translates the XML lexicon into xfst. A filter allows only

lexicon items containing the string numberTag +singular (i.e., items in singular form) in

their upper side to be extracted. On top of the number filter there is a gender filter that

allows only items containing a masculine gender tag to be extracted. The result is a vari-

able masculineSingularAdjective that denotes all the masculine singular adjectives in the

lexicon.

define masculineSingularAdjective [

$[genderTag [%+masculine| %+masculine% and% feminine]]

.o.

$[numberTag %+singular]

.o.

adjective

];

Figure 4.1: Singular masculine adjectives

The feminine singular form is generated from the masculine singular by adding a suffix.

This suffix can be either ,ה or ת or .ית Of course, there might be idiosyncratic forms that

have no masculine singular form, and do have a feminine singular form, for example הרה

(pregnant). Therefore, as figure 4.2 shows, a singular feminine adjective is either extracted

as is from the lexicon or generated from a singular masculine with the appropriate suffix.

The rule [%+feminine <- ? || genderTag _], as figure 4.3 exemplifies, updates the

gender attribute to feminine for the inflected feminine forms.

Figure 4.4 shows how the suffix ה is used in the inflection. Notice that the default is not

to add an additional ה if the masculine adjective already terminates with it, as in מורה →

מורה (teacher). This means that exceptions to this default, such as גבוה → גבוהה (tall), are

being improperly treated. All the over-generated forms are being handled and corrected at a

later stage, as explained in section 2.1. Figure 4.5 shows how the inflection using the suffix

ת (handling of the ית suffix is similar).

36

define feminineSingularAdjective [

[

$[genderTag [%+feminine| %+masculine% and% feminine]]

.o.

adjective

]|

masculineSingularAdjective2feminineSingularAdjective

];

Figure 4.2: A singular feminine adjective is either extracted from the lexicon or inflected

from the singular masculine

The construct form for masculine singulars is the same as the absolute form, so only the

lexical side is being updated by setting the construct tag to be constructTag +true. For

singular feminine forms the same applies, except that final ה changes to ת as figure 4.6 shows.

Notice that lexicon items that are marked with inflectConstruct="false" are excluded.

All adjectives can also be nouns, and adjectives with possessive suffixes are implicitly

nouns. Therefore, we allow adjectives to take the possessive suffixes, but the part of speech

category is changed from adjective to noun. The possessive inflections are created by

adding the appropriate suffix (according to person, number and gender) to the construct

form. Lexicon items whose inflectPossessive attribute is "false" are not being processed,

and the same holds for lexicon items that already have a possessive suffix (this happens when

listing exceptions using the add, remove or replace operators), as figure 4.7 demonstrates.

Note how the rule template mentioned in section 2.3 is applied here. The possessive inflection

for singular feminine is similar.

The plural forms are based on the singular masculine form. Plural masculine forms take

the ים suffix, whereas the plural feminine suffix is .ות Figure 4.8 shows how the plural form

with the ים suffix is obtained. Figure 4.9 shows that plural masculine adjectives are either

generated from the base or extracted directly from the lexicon (exceptions that have the

plural form specified). For the plural feminine forms a similar set of rules is used, except that

37

define masculineSingularAdjective2feminineSingularAdjective [

[%+feminine ־> ? || genderTag _]

.o.

[

masculineSingularAdjective2feminineHSingularAdjective |

masculineSingularAdjective2feminineTSingularAdjective |

masculineSingularAdjective2feminineITSingularAdjective

]

];

Figure 4.3: Transforming the gender tag from masculine to feminine.

the suffix is ות and a final ה in singular form is elided before adding the ות suffix.

The construct form of feminine plurals is identical to the absolute form, but the construct

form of masculine plurals differs from the absolute masculine plural as a result of reducing

the plural suffix from ים to .י The possessive inflections for the plural forms are based on the

construct plural forms, adding the plural possessive suffixes. The possessive suffixes for plural

are similar to those of the singular, with an additional letter .י So, the possessive suffix for

the second person, masculine, plural will be ,יכם and not כם (the singular possessive suffix).

Lexicon items that specify the inflectionBase attribute should be inflected using that

base and not using the default base. As the rules apply to all the items, there is some over-

generation. Lexicon items that have an inflectionBase specified are inflected properly using

special rules. Figure 4.10 shows the usage of priority union for handling the inflectionBase.

Figure 4.11 shows the combination of all types of adjectives. Note that possessive inflec-

tions convert the adjectives into nouns.

38

define masculineSingularAdjective2feminineHSingularAdjective [

[

[

$[feminineTag %+h]

.o.

masculineSingularAdjective

]

[0 .x. addedHE]

]

.o.

[addedHE <־ 0 || HE _ .#.]

.o.

[addedHE <־ HE]

];

Figure 4.4: Converting a singular masculine adjective into a singular feminine with the

suffix ה

define masculineSingularAdjective2feminineTSingularAdjective [

[

$[feminineTag %+t]

.o.

masculineSingularAdjective

]

[0 .x. TAV]

];

Figure 4.5: Converting a singular masculine adjective into a singular feminine with the

suffix ת

39

define constructFeminineSingularAdjective [

~$[inflectConstructTag %+false]

.o.

[

feminineSingularAdjective

[[constructTag %+true] .x. 0]

]

.o.

[HE <־ TAV || _ .#.]

];

Figure 4.6: Singular feminine construct

define possessiveSuffixMasculineSingularAdjective [

[

[0 ־> possessiveSuffixTag %+unspecified]

.o.

[%+false ־> %+true || constructTag _]

.o.

~$[possessiveSuffixTag]

.o.

~$[inflectPossessiveTag %+false]

.o.

constructMasculineSingularAdjective

]

singulaPossessiveSuffixes

];

Figure 4.7: The possessive inflection for singular masculine adjectives

40

define pluralIMAdjective [

[

[%+plural ־> %+singular || numberTag _]

.o.

$[pluralTag %+im]

.o.

masculineSingularAdjective

.o.

[HE <־ 0 || _ .#.]

]

[

0 .x. [YOD FINALMEM]

]

];

Figure 4.8: Plural inflection with ים suffix

define masculinePluralAdjective [

pluralIMAdjective |

[

$[genderTag [%+masculine| %+masculine% and% feminine]]

.o.

$[numberTag [%+plural|singular% and% plural]]

.o.

adjective

]

];

Figure 4.9: Plural masculine adjectives

41

define possessiveSuffixSingularAdjectivePriorirtyUnioned [

[

[

possessiveSuffixSingularAdjective.u ־

possessiveSuffixSingularAdjectiveByinflectionBase.u

]

.o. possessiveSuffixSingularAdjective

] |

possessiveSuffixSingularAdjectiveByinflectionBase

];

Figure 4.10: Singular possessive inflections undergoing priority union

define Adjective [

masculineSingularAdjective |

feminineSingularAdjective |

constructMasculineSingularAdjective |

constructFeminineSingularAdjective |

masculinePluralAdjective |

femininePluralAdjective |

constructMasculinePluralAdjective |

constructFemininePluralAdjective |

[

[nounTag ־> adjectiveTag] !! possessives are nouns

.o.

[

possessiveSuffixSingularAdjectivePriorirtyUnioned |

possessiveSuffixPluralAdjectivePriorirtyUnioned

]

]

];

Figure 4.11: Adjectives

42

4.2 Nouns

Nouns inflect for gender, number and status and take possessive suffixes. The base form is

the singular absolute. The rules we implement support masculine and feminine, singular,

dual and plural, construct and absolute forms, with or without possessive suffixes as figure

4.12 shows.

define Noun [

[

masculineSingularNoun |

feminineSingularNoun |

masculineDualNoun |

feminineDualNoun |

constructMasculineSingularNoun |

constructFeminineSingularNoun |

masculinePluralNoun |

femininePluralNoun |

constructMasculinePluralNoun |

constructFemininePluralNoun |

[

possessiveSuffixSingularNounPriorirtyUnioned |

possessiveSuffixPluralNounPriorirtyUnioned

]

]

];

Figure 4.12: Nouns

The handling of nouns is very similar to that of adjectives, but includes more special

cases, as nouns do not inflect as regularly as adjectives. For example, masculine plurals by

default take the ים suffix, while feminine plurals take the ות suffix, but there are several

exceptions to both defaults.

Singular feminine nouns are either specified in the lexicon or are inflected from the singular

43

masculine. When the singular feminine is inflected from the singular masculine the suffix ה

or ת or ית is added. Figure 4.13 shows how feminine singular nouns are processed. Notice

that the appropriate feminine suffix is marked in the lexicon and this hint is used when the

feminine form is generated.

define feminineSingularNoun [

[0 <- constructTag [%+false|%+unspecified]]

.o.

~$[constructTag %+true]

.o.

[[

$[genderTag [%+feminine|%+masculine% and% feminine]]

.o.

$[numberTag %+singular]

.o.

noun

] | [

[%+feminine <- %+masculine || genderTag _]

.o.

[

[[$[feminineTag %+h] .o. masculineSingularNoun] [0 .x. HE]] |

[[$[feminineTag %+t] .o. masculineSingularNoun] [0 .x. TAV]] |

[[$[feminineTag %+it] .o. masculineSingularNoun] [0 .x. [YOD TAV]]]

]]]];

Figure 4.13: Singular feminine nouns

Dual nouns are listed in the lexicon and therefore are directly extracted. Construct and

possessive inflections of nouns are similar to the case of adjectives. The handling of plurals

is more complicated in nouns than in adjectives, as there are more possible suffixes and as

the ים and the ות suffixes cannot be predicted by gender. Figure 4.14 shows how plurals

(regardless of gender) with ים suffix are processed. Only singular nouns with the appropriate

44

suffix are extracted from the nouns lexicon. On the lower side, final letter ,ה if it exists, is

removed, and the ים suffix is concatenated. On the upper side the number tag is updated

from singular to plural.

define pluralIMNoun [[

[%+plural <- %+singular || numberTag _]

.o.

$[numberTag %+singular]

.o.

$[pluralTag %+im]

.o.

noun

.o.

[HE -> 0 || _ .#.]

]

[0 .x. [YOD FINALMEM]]

];

Figure 4.14: Plural nouns with ים suffix

Figure 4.15 shows how the plural nouns with the ות suffix are processed. On the lower

side some conditional alternations are performed before the ות suffix is added. Alternation

rule #1 ensures that nouns such as שנייה (a second) are properly inflected to שניות (seconds)

and not to .*שנייות Notice that final letter ה is removed as rule #4 suggests. Alternation rule

#2 is used for ensuring that a singular noun such as משאית (a truck) is properly inflected

to its plural form .משאיות Alternation rule #3 ensures that singular nouns such as סמכות

(authority) are properly inflected into their plural form .סמכויות Of course, exceptional cases

such as חנית (a spear) that should be properly inflected as חניתות and not as ,*חניות are

handled separately (see section 2.1). The יות and the אות suffixes are less frequent and more

regular than the previously mentioned plural suffixes, and are handled by concatenating the

suffix to the singular form. Figure 4.16 describes plural nouns: they are either extracted from

45

define pluralWTNoun [

[

[%+plural <- %+singular || numberTag _]

.o.

$[numberTag %+singular]

.o.

$[pluralTag %+wt]

.o.

noun

.o.

[YOD YOD HE -> YOD HE || _ .#.] !! [1]

.o.

[ALEF YOD TAV -> ALEF YOD || _ .#.] !! [2]

.o.

[VAV TAV -> VAV YOD || _ .#.] !! [3]

.o.

[[HE|TAV] -> 0 || _ .#.] !! [4]

]

[0 .x. [VAV TAV]]

];

Figure 4.15: Plural nouns with ות suffix

the lexicon or inflected using the rules listed above. Figure 4.17 describes plural feminine

nouns, either extracted from the lexicon, or inflected using the rules above, or inflected from

the singular masculine forms (in cases where they can inflect as feminine).

46

define masculinePluralNoun [

[0 <- constructTag [%+false|%+unspecified]]

.o.

~$[constructTag %+true]

.o.

$[genderTag [%+masculine| %+masculine% and% feminine]]

.o.

[

pluralIMNoun |

pluralWTNoun |

pluralIWTNoun |

pluralAWTNoun ! just in case...

[

$[numberTag %+plural]

.o.

noun

]

]

];

Figure 4.16: Plural masculine nouns

47

define femininePluralNoun [

[0 <- constructTag [%+false|%+unspecified]]

.o.

~$[constructTag %+true]

.o.

$[genderTag [%+feminine| %+masculine% and% feminine]]

.o.

[

[! handles the forms generated from the singular masculine lexicon item

[

[%+feminine <- %+masculine || genderTag _]

.o.

[%+plural<- %+singular || numberTag _]

.o.

$[[feminineTag %+it]|[feminineTag %+t]|[feminineTag %+h]]

.o.

$[numberTag %+singular]

.o.

$[genderTag %+masculine]

.o.

noun

.o.

[HE -> 0 || _ .#.]

]

[0 .x. [VAV TAV]]

] |

[$[numberTag %+plural] .o. noun ! extract plural nouns from the lexicon] |

pluralIMNoun | pluralWTNoun | pluralIWTNoun | pluralAWTNoun

]

];

Figure 4.17: Plural feminine nouns

48

4.3 Verbs

Inflected verb forms are obtained by adding affixes to a base form. As explained in section

3.3, the surface side of the xfst representation of verb lexicon items includes an inflection base

for every tense which is third person masculine singular. The rules for verbs only handle the

affixation and do not have to handle interdigitation. Rules are applied to verbs according to

their inflection pattern.

Verbs inflect in the bare-infinitive (one form + 10 inflections for accusative suffixes), the

infinitive (4 forms), past tense (10 forms), present (4 forms), future (10 forms) and imperative

(4 forms). So for every combination of root and inflection pattern 11+4+10+4+10+4 = 43

inflected forms are created (more, when alternative script rules are involved). We do not

support accusative suffixes for tenses other than the bare-infinitive due to their rareness, but

such support can be easily added when required.

Initially, all verb inflections are generated according to all the verb paradigms, regardless

of their inflection pattern. This stage is performed by sets of rules, each called a class.

Different classes handle different variations of inflection. For example, different rules are

applied to verbs with נ as their first root letter, depending on the paradigm: הנשמתי (נ׳ש׳מ׳)

vs. הפלתי .(נ׳פ׳ל׳) Every inflection pattern has its own configuration of class rules. For

example, inflection pattern 1 uses only rules from class 1, but inflection pattern 40 uses rules

from class 1, class 3, class 4 and class 5. Inflection pattern rules just pick the appropriate

class rules for every inflection in every tense, so they behave as a “menu” of class rules. We

demonstrate rules used for generating some of the inflected forms of the verb שילם whose

lexicon item was listed in figure 2.8, in XML, and in figure 2.9 in xfst.

Figure 4.18 shows how past tense first person plural forms are obtained for verbs with in-

flection pattern 23, e.g., .שילם The variable class1Past1pMFPl represents all verbs inflected

for past tense first person plural using class1 rules. The $[inflectionPatternTag {23}]

filter extracts only verbs that are tagged with the required inflection pattern.

Figure 4.19 lists the class 1 rule for inflecting verbs for past tense first person plural

form. The variable pastBase represents past tense bases of all verbs in the lexicon, as shown

49

define ip23Past1pMFPl [

$[inflectionPatternTag {23}]

.o.

class1Past1pMFPl

];

Figure 4.18: Rule for creating the past tense, 1st person, plural inflection for ip23

by figure 4.20. The filters composed on top of the variable set the tense to past and the

inflection to +1p/MF/Pl, on the lexical side. On the surface side the appropriate suffix נו is

concatenated, thus generating the string שילמנו on the surface side.

define class1Past1pMFPl [

[

[%+1p%/MF%/Pl <- ? || pgnTag _] .o. [%+past <- ? || tenseTag _]

.o.

pastBase

]

[0 .x. [NUN VAV]]

];

Figure 4.19: Class 1 rule for inflecting verbs for past tense, first person, plural

As another example, figure 4.21 lists the class 2 rules used for the weak inflections where

the last root letter נ is assimilated into the suffix ,נו as in ,שמנו for the root .{ש׳מ׳נ׳} Other

inflections for the various tenses and classes are performed in a similar way. The 61 inflection

patterns use rule sets from 11 classes, where each class has distinct rules for every combination

of tense, gender, number and person. The entire set of rules for verb inflections constitutes a

substantial part of the morphological analyzer, but the organization delineated above allows

for a modular way of specifying the rules which facilitates relatively easy development and

maintenance.

50

define pastBase [

Verbs

.o.

~$[pastTag %+NONE]

.o.

[?+ pastTag -> 0 || .#. _]

.o.

[presentTag ?+ -> 0 || _ .#.]

];

Figure 4.20: Rule extracting the past tense base from the lexicon items

define class2Past1pMFPl [

[

[%+1p%/MF%/Pl <- ? || pgnTag _] .o. [%+past <- ? || tenseTag _]

.o.

pastBase .o. [NUN -> 0 || _ .#.]

]

[0 .x. [NUN VAV]]

];

Figure 4.21: Class 2 rule for inflecting verbs for past tense, first person, plural

51

4.4 Other parts of speech

Conjunctions, negations, proper names and pronouns do not inflect, and are therefore ex-

tracted directly from the lexicon with no rules applying to them.

Adverbs, interjections and prepositions may or may not take pronomial suffixes, depending

on the value of the inflectTag attribute. Figure 4.22 shows the rule that adds the pronomial

suffixes to adverbs whose inflectTag is set to true. Interjections and prepositions are treated

similarly.

define adverbInflections [

[

$[inflectTag %+true]

.o.

adverb

] singularPronomialSuffixes

];

Figure 4.22: Adverbs with pronomial suffixes

Figure 4.23 shows the variable Adverb that contains adverbs extracted from the lexicon

plus those that were generated by adding pronomial suffixes to their base forms.

define Adverb [

[adverb | adverbInflections]

];

Figure 4.23: Adverbs

Quantifiers that combine with pronomial suffixes are handled similarly to nouns and

adjectives (and are not further elaborated here). Other types of non-lexical quantifiers include

gematria, numbers and inflected numerals. Gematria assigns a numeric value to each letter,

which is used in practice in Jewish dates and in some cases for numbering. Figure 4.24 shows

the regular expression for handling gematria. The finalLetter filters (upper and lower)

52

are used for allowing final and ordinary version of letters appear as the last letter in the

expression (for example, to allow תש״ן and .(תש״נ A gematria expression can be made of

one letter followed by a single quote symbol, or by an expression with two, three, four or

five letters. Expressions with more than one letter contain a double quote symbol in the

penultimate position, and this is handled by the two doubleQuote filters (upper and lower).

define gematriaNumbers [

finalLetterUpper

.o.

[

[oneLetterGematria ’] |

[

doubleQuoteUpper

.o.

[twoLetterGematria | threeLetterGematria |

fourLetterGematria | fiveLetterGematria]

.o.

doubleQuoteLower

]

]

.o.

finalLetterLower

];

Figure 4.24: Gematria

Supported numbers follow the expressions in figure 4.25. They describe integers, numbers

with a decimal point, and integers that have a comma that delimits every three digits.

53

define ordinaryNumbers [

[(%+|%-) DIGIT+] |

[((%+|%-) DIGIT+) %. DIGIT+]

];

define numbers [

[quantifierTag undottedTag]:0

[

ordinaryNumbers |

[(%+|%-) DIGIT^{1,2} [%, DIGIT^3]+]

]

[typeTag %+literal% number]:0

];

Figure 4.25: Numbers

54

4.5 Prefixal particles

Several particles which are free morphemes in other languages are expressed in Hebrew as pre-

fixes, which orthographically combine with the words that immediately follow them. Figure

4.26 lists the various prefix particles, specifying their surface form and their morpho-syntactic

function.

morpho-syntactic function surface form

1 preposition ב

2 preposition + definite article ב

3 relativizer ה

4 interrogative ה

5 definite article ה

6 tense inversion ו

7 conjunction ו

8 preposition כ

9 preposition + definite article כ

10 adverb כ

11 temporal subordinating conjunction כש

12 preposition ל

13 preposition + definite article ל

14 temporal subordinating conjunction לכש

15 preposition מ

16 temporal subordinating conjunction מש

17 subordinating conjunction מש

18 relativizer ש

19 subordinating conjunction ש

Figure 4.26: Prefix particles and their morpho-syntactic functions

Some of the prefix particles are rarely used in Modern Hebrew: The tense inversion ו

is obsolete and the interrogative ה is gradually disappearing. The temporal subordinating

conjunction מש is less frequent than the other two temporal subordinating conjunctions.

55

Several prefix particles can combine with a single word. For example, ו+ל+בנה (and to

her son). This leads to ambiguity as the prefixes can, sometimes, be part of the stem, for

example ולבנה can also be read as “and a brick”. In this section we discuss the possible

combinations of prefixal particles.

Shapira and Choueka (1964) dealt with the problem of removing prefixes by manually

building a list of 45 possible combinations of prefixes, found in a test text. The method of

building the list is not mentioned except for a constraint that a combination of prefixes cannot

be longer than four letters. Alon (1995) mentions in general a few possible combinations

of prefixes, but does not attempt to describe the phenomena in full. Schwarzwald (2001)

generally states that certain constrains hold between the prefixes and the category they

combine with. For verbs, nouns and adjectives she provides a grammar. Schwarzwald (2002),

pages 139-144, describes several possible combinations of the prefixes in a discussion about

morphotactics, including constraints that restrict certain combinations with nouns, verbs

and particles, and determines that the length of the longest combination of prefixes is 4

letters (similar to the result of Shapira and Choueka). The most comprehensive treatment

of prefixes and their valid combinations was implemented in HSpell2. The system includes a

list of possible combinations of prefix particles and uses some syntactically motivated rules in

order to decide when a combination can be prefixed to a word according to the word’s part of

speech and some attributes such as status and tense. The list produced by HSpell probably

covers well the performance in Modern Hebrew written texts although it does not attempt to

cover the competence. Moreover, the production of the list and the rules that constrain the

possible combinations are encoded in a computer program and thus are not easily accessible

for linguists.

We maintain a list of several dozens of prefix sequences that were observed in a corpus

of over ten million words (a few additional combinations are commonly heard in speech, but

did not appear in the corpus). Our morphological analyzer incorporates this list. A sequence

of prefixes may or may not combine with a given word, based on syntactically motivated

2http://www.ivrix.org.il/projects/spell-checker/

56

constraints which refer to the part of speech of the word and to the function of the last prefix

in the sequence. The following constraints therefore examine the last prefix only. They are

implemented by applying a set of rules on the upper side of the morphological analyzer’s

finite-state network. For example, the rule ~$[prepositionTag ?+ verbTag] prevents

prepositions from combining with verbs.

4.5.1 Prepositions: מ׳} ל׳, כ׳, {ב׳,

• Prepositional prefixes can prefix nouns, adjectives, numerals, proper names, quantifiers

and some of the pronouns.

• Prepositional prefixes do not combine with verbs unless the verb is in infinitive form.

Note that all present tense verbs in Hebrew are ambiguous and can be considered

also nouns or adjectives. If such an ambiguous word is prefixes by a preposition, the

ambiguity is reduced and the word is marked as being either a noun or an adjective,

but not a present tense verb.

4.5.2 Definite article: {ה׳}

• The definite article can prefix nouns, adjectives and numerals unless they are in con-

struct form or have a possessive suffix.

• The definite article does not prefix proper names in general. Some exceptions exist

(mostly locations and sometimes names of organizations).

• The definite article does not prefix nouns, adjectives and numerals that already have

the definiteness property, or the direction property המגמה) .(ה׳

• The definite article, when combined with a personal pronoun, causes the pronoun to

become a demonstrative pronoun.

4.5.3 Relativizer: {ה׳}

• The relativizer ה׳ occurs only before a verb in the present tense.

57

4.5.4 Conjunction: {ו׳}

• The conjunction ו׳ can prefix any Hebrew word, excluding the conjunction ו׳ itself and

a few others ,אבל) ,או ,שכן ,אפוא ,דהיינו ,כלומר .(ברם

4.5.5 Adverb: {כ׳}

• The adverb כ׳ can prefix numerals and time related terms, such as ,שעה שבועיים and

so on.

4.5.6 Temporal subordinating conjunctions: מש־} לכש־, {כש־,

• The subordinating conjunctions do not prefix conjunctions, interjections and interrog-

atives.

4.5.7 Subordinating conjunction: {ש׳} and the relativizer {ש׳}

• ש׳ do not prefix verbs in imperative form, interrogatives and conjunctions.

58

Chapter 5

Conclusion

We described a broad-coverage finite-state morphological analyzer for undotted Hebrew texts.

The analyzer consists of two main components: a lexicon and a set of rules. The current

underlying lexicon includes over 19,000 items. The average number of inflected forms for

a lexicon item is 30. Counting also forms that include prefix particles, the morphological

analyzer supports over 45 million surface forms. Due to the usage of finite-state technology

the morphological analyzer can also be used for generation and the time complexity of mor-

phological analysis and generation is linear in the length of the string. In practice, we can

analyze about one hundred words per second using a contemporary workstation.

Evaluation of the analyzer requires a measure of:

• the precentage of tokens that receive the correct analysis in context (vs. the number of

tokens that are not analyzed at all or lack the correct analysis in context)

• the precentage of wrong analyses (linguistically wrong, relardless of context)

• how many correct analyses have not been output for tokens

These measures can be performed using a reliable broad-coverage morphological analyzer, or

by having a human informant annotate a text manually. The former option was not possible

as we have no access to such a tool. The latter option is very hard and demanding and can be

done on relatively small texts. We have manually annotated 1024 tokens (from a total of 2312

tokens) from a newspaper article 1. 925 of the tokens (90.332%) received the correct analysis

in context, leaving 99 tokens (9.668%) with either no analysis at all or without the correct

analysis in context. 7 tokens (0.6836%) had an incorrect analysis among the analyses. There

was no attempt at measuring how many of the tokens received all possible correct analyses.

The vast majority of unanalyzed tokens were proper names that were not listed in the lexicon.

Then there were collocations, such as, מבית־מדרשם, חיים, ובעלי המאוחד, הקיבוץ אביב, תל

הקדוש־ברוך־הוא ,לבני־אדם, and several Aramic expressions, such as, .בתולא־שפירתא Some

of the collocations were proper names. Then there were words that have a different spelling

than the one listed in the lexicon, such as, לראיין vs. .לראין Then there were a few nouns

and adjectives that were missing from the lexicon. Then there were mis-spelling, such as

י״ם as an abbreviation for ,ירושלים or בניי instead of .בני There were also a few cases of

unrecognized punctuation or words that contained vowels, which were not recognized by the

analyzer.

We have also extracted the most frequent tokens that have not been assigned any analysis

by the morphological analyzer using large corpora 2 and realized that almost all of these cases

result in proper names missing from the lexicon or alternative spellings (that do not conform

to a standard) of words that are covered by the lexicon. Applying Named Entity Recognition

techniques can help dealing with the peoper names coverage, whereas alternative spellings

remain a problem at this point.

Following are some output examples that demonstrate the morphological analyzer. Fig-

ures 5.1, 5.2, 5.3 and 5.4 demonstrate the output of the words ,כשמהראש ,שבתה תסתלק

and ,מאחר respectively.

[+temporalSubConj]כש[+preposition]מ[+definiteArticle]ה

[+noun][+id]12328[+undotted]ראש[+transliterated]rae

[+gender]+masculine[+number]+singular[+script]+formal[+construct]+false

Figure 5.1: Analyses for כשמהראש

1see: http://www.ynet.co.il/articles/0,7340,L-3023878,00.html taken from the books section of YNET
2over twenty three million tokens in total; see: http://mila.cs.technion.ac.il/website/english/resources/corpora/index.html

60

The morphological analyzer is wrapped by a script that allows it to receive tokenized

text in XML and output a morphologically annotated representation (also in XML). The

XML representation facilitates different views of the data, for example, a user friendly

representation of the output. A demonstration of these capabilities is available on-line at

http://cl.haifa.ac.il/projects/hebmorph/fsma.html.

The analyzer is now used for a number of projects, including as a front end for a Hebrew

to English machine translation system (Lavie et al., 2004). It is routinely tested on a variety

of texts, and tokens with zero analyses are being inspected manually. Other than that,

maintenance consists only of fixing bug reports. We are able to automate only the process of

determining which tokens in a given text did not get any analysis, whereas ensuring that all

and only correct analyses are generated can only be performed manually, and therefore the

ability to apply these tests on large amounts of text is limited.

This work can be extended in a number of directions. While the set of rules is relatively

stable, the lexicon must be constantly expanded (mostly with proper names). Automatic

expansion of the lexicon using machine learning methods is an attractive direction due to the

time intensive and costly process of manually performing lexicographic work. The lexicon

can also be further augmented to include definitions and/or translations. Work is currently

underway for incorporating Hebrew-English word translations into the lexicon.

The morphological analyzer produces all the possible analyses of each word independently

of its context. A natural continuation of our work would be a module for disambiguation.

Existing works on part-of-speech tagging and morphological disambiguation in Hebrew (Segal,

2000; Adler, 2001; Bar-Haim, 2005) leave much room for further research. Incorporating

state-of-the-art machine learning techniques for morphological disambiguation to the output

produced by the analyzer will generate an optimal system which is broad-coverage, effective

and accurate. Such work is expected to begin in the near future.

61

[+noun][+id]13251[+undotted]שבת[+transliterated]ebt

[+gender]+feminine[+number]+singular[+script]+formal[+construct]+false

[+possessiveSuffix]+3p/F/Sg

[+verb][+id]7446[+undotted]שבה[+transliterated]ebh

[+root]שבה[+binyan]+Pa׳al[+person/gender/number]+3p/F/Sg[+script]+formal

[+tense]+past

[+verb][+id]17274[+undotted]שבת[+transliterated]ebt

[+root]שבת[+binyan]+Pa׳al[+person/gender/number]+3p/F/Sg[+script]+formal

[+tense]+past

[+relativizer/subordinatingConjunction]ש[+preposition]ב

[+noun][+id]18422[+undotted]תה[+transliterated]th

[+gender]+masculine[+number]+singular[+script]+formal[+construct]+true

[+relativizer/subordinatingConjunction]ש[+preposition]ב

[+noun][+id]18422[+undotted]תה[+transliterated]th

[+gender]+masculine[+number]+singular[+script]+formal[+construct]+false

[+relativizer/subordinatingConjunction]ש[+preposition]ב[+definiteArticle]

[+noun][+id]18422[+undotted]תה[+transliterated]th

[+gender]+masculine[+number]+singular[+script]+formal[+construct]+false

[+relativizer/subordinatingConjunction]ש

[+noun][+id]3320[+undotted]בתה[+transliterated]bth

[+gender]+feminine[+number]+singular[+script]+formal[+construct]+false

[+relativizer/subordinatingConjunction]ש

[+noun][+id]17868[+undotted]בת[+transliterated]bt

[+gender]+feminine[+number]+singular[+script]+formal[+construct]+false

[+possessiveSuffix]+3p/F/Sg

Figure 5.2: Analyses for שבתה

62

[+verb][+id]4355[+undotted]הסתלק[+transliterated]hstlq

[+root]סלק[+binyan]+Hitpa׳el[+person/gender/number]+2p/M/Sg[+script]+formal

[+tense]+future

[+verb][+id]4355[+undotted]הסתלק[+transliterated]hstlq

[+root]סלק[+binyan]+Hitpa׳el[+person/gender/number]+3p/F/Sg[+script]+formal

[+tense]+future

Figure 5.3: Analyses for תסתלק

[+verb][+id]5147[+undotted]איחר[+transliterated]aixr

[+root]ארח[+binyan]+Pi׳el[+person/gender/number]+123p/M/Sg[+script]+formal

[+tense]+beinoni

[+preposition][+id]826[+undotted]מאחר[+transliterated]maxr[+script]+formal

[+conjunction][+id]15745[+undotted]מאחר[+transliterated]maxr

[+type]+coordinating[+script]+formal

[+preposition]מ[+adjective][+id]4407[+undotted]אחר[+transliterated]axr

[+gender]+masculine[+number]+singular[+script]+formal[+construct]+false

[+preposition]מ[+adjective][+id]4407[+undotted]אחר[+transliterated]axr

[+gender]+masculine[+number]+singular[+script]+formal[+construct]+true

Figure 5.4: Analyses for מאחר

63

References

Adler, Meni. 2001. Hidden markov model for hebrew part-of-speech tagging. Master’s thesis,

Ben Gurion University, Israel.

Alon, Emmanuel. 1995. Unvocalized Hebrew Writing: The Structure of Hebrew Words in

Syntactic Context. Ben-Gurion University of the Negev Press. In Hebrew.

Attar, R., Y. Choueka, N. Dershowitz, and A. S. Fraenkel. 1978. KEDMA - linguistic tools

for retrieval systems. Journal of the Association for Computing Machinery, 25(1):52–66,

January.

Bar-Haim, Roy. 2005. Part-of-speech tagging for hebrew and other semitic languages. Mas-

ter’s thesis, Computer Science Department, Technion, Haifa, Israel.

Barkali, Shaul. 2000. luax ha-pe&lim ha-shalem. Rubin Mass Ltd., Jerusalem, 51 edition. In

Hebrew.

Beesley, Kenneth R. 1996. Arabic finite-state morphological analysis and generation. In Pro-

ceedings of COLING-96, the 16th International Conference on Computational Linguistics,

Copenhagen.

Beesley, Kenneth R. 1998a. Arabic morphological analysis on the internet. In Proceedings of

the 6th International Conference and Exhibition on Multi-lingual Computing, Cambridge,

April.

Beesley, Kenneth R. 1998b. Arabic morphology using only finite-state operations. In Michael

Rosner, editor, Proceedings of the Workshop on Computational Approaches to Semitic

languages, pages 50–57, Montreal, Quebec, August. COLING-ACL’98.

Beesley, Kenneth R. 2001. Finite-state morphological analysis and generation of Arabic

at Xerox Research: Status and plans in 2001. In ACL Workshop on Arabic Language

Processing: Status and Perspective., pages 1–8, Toulouse, France, July.

64

Beesley, Kenneth R. and Lauri Karttunen. 2000. Finite-state non-concatenative morphotac-

tics. In Proceedings of the fifth workshop of the ACL special interest group in computa-

tional phonology, SIGPHON-2000, Luxembourg, August.

Beesley, Kenneth R. and Lauri Karttunen. 2003. Finite-State Morphology. CSLI.

Bentur, Esther, Aviella Angel, and Danit Segev. 1992. Computerized analysis of Hebrew

words. Hebrew Linguistics, 36:33–38, December. In Hebrew.

Bentur, Esther, Aviella Angel, Danit Segev, and Alon Lavie. 1992. Analysis and generation

of the nouns inflection in Hebrew. In Uzzi Ornan, Gideon Arieli, and Edit Doron, editors,

Hebrew Computational Linguistics. Ministry of Science and Technology, chapter 3, pages

36–38. In Hebrew.

Choueka, Yaacov. 1966. Computers and grammar: mechnical analysis of Hebrew verbs. In

Proceedings of the annual conference of the Israeli Association for Information Processing,

pages 49–66, Rehovot. In Hebrew.

Choueka, Yaacov. 1990. MLIM - a system for full, exact, on-line grammatical analysis of

Modern Hebrew. In Yehuda Eizenberg, editor, Proceedings of the Annual Conference on

Computers in Education, page 63, Tel Aviv, April. In Hebrew.

Choueka, Yaacov. 1993. Response to “Computerized analysis of Hebrew words”. Hebrew

Linguistics, 37:87, December. in Hebrew.

Cohen, Haim A. 1996. klalei ha-ktiv xasar ha-niqqud. leshonenu la&am, special edition,

May. In Hebrew.

Kataja, Laura and Kimmo Koskenniemi. 1988. Finite-state description of Semitic morphol-

ogy: A case study of Ancient Akkadian. In COLING, pages 313–315.

Kiraz, George Anton. 2000. Multitiered nonlinear morphology using multitape finite au-

tomata: a case study on Syriac and Arabic. Computational Linguistics, 26(1):77–105,

March.

65

Kleene, S. C. 1956. Representation of events in nerve nets and finite automata. In C. E.

Shannon and J. McCarthy, editors, Automata Studies. Princeton University Press.

Koskenniemi, Kimmo. 1983. Two-Level Morphology: a general computational model for

word-form recognition and production. The department of general linguistics, University

of Helsinki.

Lavie, Alon. 1989. Two-level morphology for Hebrew. Master’s thesis, Technion, Haifa,

Israel. In Hebrew.

Lavie, Alon, Alon Itai, Uzzi Ornan, and Mori Rimon. 1988. On the applicability of two-

level morphology to the inflection of Hebrew verbs. In Proceedings of the International

Conference of the ALLC, Jerusalem, Israel.

Lavie, Alon, Shuly Wintner, Yaniv Eytani, Erik Peterson, and Katharina Probst. 2004.

Rapid prototyping of a transfer-based Hebrew-to-English machine translation system. In

Proceedings of TMI-2004: The 10th International Conference on Theoretical and Method-

ological Issues in Machine Translation, Baltimore, MD, October.

Ornan, Uzzi. 1986. Phonemic script: A central vehicle for processing natural language – the

case of Hebrew. Technical Report 88.181, IBM Research Center, Haifa, Israel.

Ornan, Uzzi. 1994. Basic concepts in “Romanization” of scripts. Technical Report LCL

94-5, Laboratory for Computational Linguistics, Technion, Haifa, Israel, March.

Ornan, Uzzi. 2003. ha-mila ha-axarona. Haifa university. In Hebrew.

Ornan, Uzzi and Michael Katz. 1995. A new program for Hebrew index based on the

Phonemic Script. Technical Report LCL 94-7, Laboratory for Computational Linguistics,

Technion, Haifa, Israel, July.

Schwarzwald, Ora. 2001. Moden Hebrew, volume 127 of Languages of the World/Materials.

LINCOM EUROPA.

66

Schwarzwald, Ora (Rodrigu). 2002. Studies in Hebrew Morphology. The Open University of

Israel.

Segal, Erel. 1997. Morphological analyzer for undotted Hebrew words. Unpublished

manuscript.

Segal, Erel. 2000. Hebrew morphological analyzer for hebrew undotted texts. Master’s thesis,

Computer Science Department, Technion, Haifa, Israel.

Shapira, Meir and Yaacov Choueka. 1964. Mechanographic analysis of Hebrew morphology:

possibilities and achievements. Leshonenu, 28(4):354–372. In Hebrew.

Wintner, Shuly. 2004. Hebrew computational linguistics: past and future. Artificial Intelli-

gence Review, 21:113–138.

Zdaka, Itzhak. 1974. luxot ha-po&al. Kiryath Sepher Ltd., Jerusalem. In Hebrew.

67

