
Unification Grammars

and Off-Line Parsability

Efrat Jaeger

October 1, 2002

Unification Grammars

and Off-Line Parsability

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

Efrat Jaeger

Submitted to the Senate of

the Technion — Israel Institute of Technology

Tishrei 5763 Haifa October 2002

Contents

Abstract 1

1 Introduction 3

1.1 Background and Literature Survey . 3

1.2 Motivation . 4

2 Unification Grammars 7

2.1 Preliminaries . 7

2.2 General Unification Grammars . 8

2.3 Skeletal grammars . 12

2.4 Comparison between General and Skeletal Unification Grammars 14

2.5 Some grammar examples: . 14

3 Off-line-parsability constraints 25

3.1 Off-Line-Parsability Variants . 25

3.2 Off-line-parsability analysis . 31

4 OLP Definitions Correlation 37

4.1 The grammar examples and OLP . 37

4.2 The relationships between the OLP variants 42

5 Undecidability Proofs 55

5.1 Undecidability of finite ambiguity . 59

5.2 Undecidability of depth-boundedness . 60

5.3 Undecidability of OLPS . 62

6 A Novel OLP Constraint - OLPJA 63

6.1 A decidable definition of OLP (version 1) 63

6.1.1 An algorithm for deciding OLPJA1
. 65

6.1.2 Correctness of the algorithm . 65

6.2 Evaluation . 67

6.2.1 Limitations of OLPJA1
. 70

6.3 Improvements . 70

6.3.1 A decidable definition of OLP (version 2) 70

6.3.2 A decidable definition of OLP, OLPJA−l 75

6.3.3 A decidable definition of OLP, OLPJA−rot 76

7 Conclusions 87

List of Figures

2.1 An example unification grammar, Gww . 10

2.2 An example parse tree for baabaa ∈ Gww . 11

2.3 An example skeletal grammar, Gabc . 13

2.4 A unification grammar, GFA. 16

2.5 An example parse tree for the grammar GFA of figure 2.4 and the string bbb. 16

2.6 A derivation tree admitted by the grammar GFA for the string b. 17

2.7 A unification grammar, Ginf . 18

2.8 The derivation tree form of the grammar Ginf of figure 2.7. 19

2.9 An example derivation tree for the grammar of figure 2.7 and the string b. . 20

2.10 A unification grammar, GDB. 21

2.11 An example derivation tree for the grammar GDB of figure 2.10 and the

string bbb. The tree’s depth is 23. 22

2.12 A derivation tree admitted by the grammar GDB for the string b. 23

2.13 A unification grammar, Gb2
n . 24

3.1 An example X-bar theory c-structure and f-structure of a German sentence. 29

3.2 An example of derivation trees such that A is the root category of a sub-tree

which derives another sub-tree of root A with the same yield. 32

4.1 The context-free backbone of the grammar GFA of figure 2.4 38

4.2 An OLPJO derivation tree for the grammar of figure 2.7 and the string b. . 39

4.3 The context-free backbone of the grammar of figure 2.7 39

4.4 The context-free backbone of the grammar GDB of figure 2.10 41

4.5 An OLPJO grammar GJ\PW , L(GJ\PW) = {a, b} 42

4.6 The context-free backbone of the grammar of figure 4.5 43

4.7 An example OLPK grammar, Gε. 43

4.8 An example OLPS grammar, GS1
. 45

4.9 An example OLPS grammar, GS2
. 49

4.10 An example OLPS grammar, GS3
. 51

6.1 An example grammar rules . 64

6.2 An algorithm for deciding OLPJA1
. 79

6.3 An example OLPS grammar, GS and its derivation form. 80

6.4 Revised hierarchy diagram, OLPJA1
. 81

6.5 Motivation for UR rules . 81

6.6 An example of derivation tree such that A dominates B, and they are both

sharing the same yield and unifiable with ρ’s head. 82

6.7 An algorithm for deciding OLPJA2
. 83

6.8 Revised hierarchy diagram, OLPJA2
. 84

6.9 An algorithm for deciding OLPJA−l. 85

6.10 An algorithm for deciding OLPJA−rot. 85

List of Tables

Abstract

Context-free grammars are considered to lack the expressive power needed for modelling

natural languages. Unification grammars have originated as an expansion of context-free

grammars, the basic idea being to augment the context-free rules with feature structures

in order to express additional information. Unification grammars are known to be Turing-

equivalent; given a grammar G and a word w, it is undecidable whether there exists a

derivation tree for w admitted by G.

In order to ensure decidability of the membership problem, several constraints on

grammars, commonly known as the off-line parsability constraint (OLP) were suggested.

The membership problem is decidable for grammars which satisfy the OLP constraint. An

open question is whether it is decidable if a given grammar satisfies OLP.

In this thesis we research the several different definitions of OLP and discuss their

inter-relations. Some variants of OLP were suggested without recognizing the existence of

all other variants, we make a comparative analysis of the different OLP variants for the

first time. Some researchers conjecture that some of the OLP variants are undecidable

(it is undecidable whether a grammar satisfies the constraint), although none of them

provides any proof of it. There exist some variants of OLP for which decidability holds,

but these conditions are too restrictive; there is a large class of non-OLP grammars for

which parsing termination is guaranteed, and they are also limited only to a specific

unification grammars formalism.

Our main contribution is to show proofs of undecidability for three of the undecidable

OLP variants and give a novel OLP constraint as well as an algorithm for deciding whether

a grammar satisfies it. Our constraint is applicable to all unification grammar formalisms.

It is more liberal than the existing decidable constraints, yet, it can be tested efficiently.

2

Chapter 1

Introduction

1.1 Background and Literature Survey

Many modern linguistic theories use feature structures to describe linguistic objects rep-

resenting phonological, morphological, syntactic, and semantic properties. These feature

structures are specified in terms of constraints which they must satisfy. Unification is

the primary operation for determining the satisfiability of conjunctions of constraints.

Unification is based on subsumption of feature structures, where subsumption is a par-

tial pre-order on feature structures which expresses whether two feature structures are

consistent and whether one structure contains more specific information than the other.

Context-free grammars are considered to lack the expressive power for modelling nat-

ural languages. Unification grammars have originated as an expansion to context-free

grammars, the basic idea being to augment the context-free rules with non context-free

notations (feature structures) in order to express some additional information, such that

the constraints of the grammar will be sensitive to these features. Today, several for-

malisms of unification grammars exist, some of which do not necessarily assume an explicit

context-free backbone.

Unification grammar formalisms are based on unification of feature structures. The

unification operation takes two feature structures and combines the information contained

in them to produce a feature structure that includes all the shared information of both.

If they contain incompatible information the unification operation fails. Non-failing unifi-

cation returns the least upper bound (lub) of its arguments (in terms of the subsumption

3

ordering).

A detailed description of unification grammars is given by Shieber (1986; 1992) and

Carpenter (1992). The grammar formalisms used here are based on the description of

Francez and Wintner (In preperation).

The recognition problem (also known as the membership problem), for a grammar

G and a string w, is whether w ∈ L(G). The parsing problem, for a grammar G and

a string w, is to deliver all parse trees that G induces on w, determining what structural

descriptions are assigned by G to w.

The recognition problem for unification grammars is undecidable. Johnson (1988)

shows that the problem is undecidable by using a reduction from the halting problem

of Turing machines; a given string is generated by a given grammar if and only if a

Turing machine halts on an empty input. Since determining whether an arbitrary Turing

machine halts on an empty input is undecidable it follows that the recognition problem is

also undecidable.

In order to to ensure decidability of the recognition problem, a constraint called the off-

line parsability constraint (OLP) was suggested. The recognition problem is decidable for

off-line parsable grammars. There exist several variants of OLP in the literature (Pereira

and Warren, 1983; Johnson, 1988; Haas, 1989; Torenvliet and Trautwein, 1995; Shieber,

1992; Wintner and Francez, 1999; Kuhn, 1999). Some variants are applicable only to

skeletal grammars formalisms others are applicable to all unification grammar formalisms.

The main open question of this research is, whether it can be determined if a grammar

satisfies the OLP constraint. Some researchers (Haas, 1989; Torenvliet and Trautwein,

1995) conjecture that some of the OLP variants are undecidable, although none of them

gives any proof of it. There exist some variants of OLP for which decidability holds, but

these conditions are too restrictive; there is a large class of non-OLP grammars for which

parsing termination is guaranteed.

1.2 Motivation

Unification grammars are linguistically plausible for modelling natural languages. The

recognition problem is decidable for off-line parsable grammars. Several variants of the

OLP constraint were suggested, some of which do not assume the existence of other vari-

4

ants. No one ever made a comparison of these variants. We explore all of the conditions

and discuss their properties in order to search for the relationships between these con-

straints and find some hierarchy among them for the first time.

It is well known that for OLP grammars decidability of the membership problem is

guaranteed, but can it be determined whether a grammar satisfies the OLP constraint?

Some researchers (Haas, 1989; Torenvliet and Trautwein, 1995) conjecture that some of

the OLP variants are undecidable (it is undecidable whether a grammar satisfies the con-

straint), but there exists no proof of it. There exist some variants of OLP for which

decidability holds, but these conditions are limited only to a certain formalism of unifica-

tion grammars. Our main contribution is to show proofs of undecidability for three of the

undecidable OLP definitions and provide a novel OLP constraint, a decidable constraint,

which is more liberal than the existing decidable constraints and applies to all unification

grammar formalisms.

5

6

Chapter 2

Unification Grammars

2.1 Preliminaries

The following definitions are based on Carpenter (1992) and Wintner and Francez (1999)

and will be used later for defining general and skeletal unification grammars. Both gram-

mar formalisms are defined over a finite set Feats of features and a finite set Atoms

of atom values. Skeletal grammars are defined over an additional parameter, a finite set

Cats of categories.

Definition 2.1. A feature structure (FS) fs = 〈Q, q̄, δ, θ〉 is a directed, connected,

labelled, rooted graph consisting of a finite, nonempty set of nodes Q, a root q̄ ∈ Q, a partial

function, δ : Q×Feats→ Q specifying the arcs, such that every node q ∈ Q is accessible

from q̄, and a partial function, marking some of the sinks, θ : Qs → Atoms, where

Qs = {q ∈ Q | δ(q, f)↑ for every f ∈ Feats} (the nodes for which δ is undefined for all

features). Meta-variables A,B (with or without subscripts) range over feature structures.

Definition 2.2. A multi-rooted feature structure (MRS) is a pair 〈Q̄,G〉 where:

• G = 〈Q, δ, θ〉 is a finite directed, labelled graph consisting of a set, Q ⊆ Nodes,

of nodes, a partial function, δ : Q × Feats → Q, specifying the arcs and a partial

function, θ : Q→ Atom, labelling the sinks.

• Q̄ is an ordered set of distinguished nodes in Q called roots.

G is not necessarily connected, but the union of all the nodes reachable from all the roots

7

in Q̄ is required to yield exactly Q. The length of an MRS is the number of its roots, |Q̄|.

λ denotes the empty MRS, where Q = ∅.

Meta-variables σ, ρ range over MRSs. If σ = 〈Q̄,G〉 is an MRS, and q̄i is a root in

Q̄ then q̄i naturally induces a feature structure Ai = 〈Qi, q̄i, δi, θi〉, where Qi is the set of

nodes reachable from q̄i, δi = δ|Qi
and θi = θ|Qi

. Thus, σ can be viewed as an ordered

sequence 〈A1, . . . , An〉 of (not necessarily disjoint) feature structures.

The sub-structure of σ = 〈A1, . . . , An〉, induced by the pair 〈i, j〉 and denoted σi...j ,

is 〈Ai, . . . , Aj〉. If i > j, σi...j = λ. If i = j, σi is used for σi...i.

Definition 2.3. A path is a finite sequence of features; ε is the empty path, and we use π

(with or without subscripts) to range over paths. The definition of δ is extended to paths in

the natural way: δ(q, ε) = q and δ(q, fπ) = δ(δ(q, f), π). The value of a path π ∈ Feats∗

leaving the i-th root in an MRS σ, denoted by val(σi, π), is δ(q̄i, π).

Definition 2.4. An MRS is reentrant, denoted by i (where i is some natural number),

iff either of the below conditions hold:

• there exist two different paths π1, π2 ∈ Feats∗, and a root q̄i ∈ Q̄ such that δ(q̄i, π1) =

δ(q̄i, π2), implying val(σ
i, π1) = val(σi, π2).

• there exist two paths π1, π2 ∈ Feats∗ (not necessarily disjoint) and two different

roots q̄i, q̄j ∈ Q̄ such that δ(q̄i, π1) = δ(q̄j , π2), implying val(σ
i, π1) = val(σj , π2).

Definition 2.5. An MRS σ = 〈Q̄,G〉 subsumes an MRS σ′ = 〈Q̄′, G′〉 (denoted by

σ v σ′) if |Q̄| = |Q̄′| and there exists a total function h : Q→ Q′ such that:

• for every root q̄i ∈ Q̄, h(q̄i) = q̄′i

• for every q ∈ Q and f ∈ Feats, if δ(q, f)↓ then h(δ(q, f)) = δ ′(h(q), f)

• for every q ∈ Q if θ(q)↓ then θ(q) = θ′(h(q))

2.2 General Unification Grammars

Unification grammars have originated as an expansion to context-free grammars, although

not all unification grammars formalisms assume the existence of a context-free backbone.

8

General unification grammar formalisms do not necessarily assume the existence of a

context-free backbone.

Definition 2.6. A general unification grammar (over Feats and Atoms) is a tuple

G = 〈R,L, As〉 where:

• R is a finite set of rules, where each rule is an MRS of length n ≥ 1. The first

element (a feature structure) in each rule is the head of the rule, the rest, is the body

of the rule, the head is separated from the body by a right arrow (→).

• L is a lexicon, which associates with every terminal a (over a fixed finite set Σ of

terminal words) a finite set of feature structures, L(a).

• As is the start symbol (a feature structure).

Definition 2.7 (Derivation). An MRS σA = 〈A1, . . . , Ak〉 immediately derives an

MRS σB = 〈B1, . . . , Bm〉 (denoted σA → σB) iff there exist a rule ρ′ ∈ R of length n and

an MRS ρ, ρ′ v ρ, such that:

• m = k + n− 2;

• ρ’s head is some element i of σA: ρ
1 = σi

A;

• ρ’s body is a sub-structure of σB: ρ
2...n = σi...i+n−2

B ;

• The first i− 1 elements of σA and σB are identical: σ1...i−1
A = σ1...i−1

B ;

• The last k − i elements of σA and σB are identical: σi+1...k
A = σ

m−(k−i+1)...m
B .

The reflexive transitive closure of ‘→’ is denoted ‘
∗
→’.

An MRS σ derives an MRS ρ (denoted σ
∗
⇒ ρ) iff there exist MRSs σ′, ρ′ such that

σ v σ′, ρ v ρ′ and σ′
∗
→ ρ′.

Definition 2.8 (Pre-terminals). Let w = a1 · · · an ∈ Σ∗. PTw(j, k) is defined if 1 ≤

j, k ≤ n, in which case it is the MRS 〈Aj , Aj+1, . . . , Ak〉 where Ai ∈ L(ai) for j ≤ i ≤ k.

If j > k then PTw(j, k) = λ.

Definition 2.9 (Language). The language of a unification grammar G is L(G) = {w ∈

Σ∗ | w = a1 · · · an and 〈As〉
∗
⇒ 〈A1, . . . , An〉 }, where Ai ∈ L(ai) for 1 ≤ i ≤ n.

9

Figure 2.1 lists an example unification grammar, Gww, where L(Gww) = {ww | w ∈

{a|b}∗}. The reentrancy in the first rule should guarantee that both branching nodes are

mapped by δ to the same node using the feature word. The second rule removes items

from a word list. Therefore, in order to apply the second rule, applying the first rule

should result in a feature structure containing a non-empty word list.

As =

[

word :

[

hd : s
tl : elist

]]

R =



























[

word :

[

hd : s
tl : elist

]]

−→
[

word : 1

] [

word : 1

]

[

word :

[

hd : 1

tl : 2

]]

−→
[

word : 2

]

[

word :

[

hd : 1

tl : elist

]]



























L(a) =

{[

word :

[

hd : ta
tl : elist

]]}

L(b) =

{[

word :

[

hd : tb
tl : elist

]]}

Figure 2.1: An example unification grammar, Gww

Definition 2.10 (Derivation trees). Let G = 〈R,L, As〉 be a unification grammar. A

tree is a derivation (or parse) tree admitted by G iff:

• The root of the tree is the start symbol As;

• The internal vertices are feature structures (over the same features and atoms as the

grammar G);

• The leaves are pre-terminals of length 1;

• If a vertex A has k descendants, B1, B2, . . . , Bk, then 〈A〉 immediately derives 〈B1, . . . , Bk〉

with respect to some rule ρ ∈ R.

Figure 2.2 lists an example derivation tree for the string baabaa generated by the

unification grammar, Gww, of figure 2.1: at the first derivation depth, the initial symbol

is unifiable with the first rule’s head resulting in,

〈

[

word :

[

hd : s

tl : elist

]]

[

word : 1

] [

word : 1

]

〉 v

10

[

word :

[

hd : s

tl : elist

]]



word :





hd : ta

tl :

[

hd : ta

tl :

[

hd : tb

tl : elist

]

]











word :





hd : ta

tl :

[

hd : ta

tl :

[

hd : tb

tl : elist

]

]









[

word :

[

hd : ta

tl :

[

hd : tb

tl : elist

]

]]

[

word :

[

hd : ta

tl : elist

]]

[

word :

[

hd : ta

tl :

[

hd : tb

tl : elist

]

]]

[

word :

[

hd : ta

tl : elist

]]

[

word :

[

hd : tb

tl : elist

]] [

word :

[

hd : ta

tl : elist

]] [

word :

[

hd : tb

tl : elist

]] [

word :

[

hd : ta

tl : elist

]]

b a a b a a

Figure 2.2: An example parse tree for baabaa ∈ Gww

〈

[

word :

[

hd : s

tl : elist

]]













word :













hd : ta

tl :







hd : ta

tl :

[

hd : tb

tl : elist

]











































word :













hd : ta

tl :







hd : ta

tl :

[

hd : tb

tl : elist

]































〉

then, each of the two non-empty lists feature structures are unifiable with the second

rule’s head until all lexical symbols are generated.

The expressive power of unification grammars: unification grammars are equiv-

alent to Turing machines in their generative capacity. Determining whether a given string

w is generated by a given grammar G is equivalent to deciding whether a Turing machine

M halts on an empty input. Since the latter is undecidable, so is the recognition problem

(Johnson, 1988).

General unification grammars are pure feature structure grammars. A variety of gram-

mar formalisms which are based on feature structure unification exist, such as PATR-II

(Shieber, 1986), Functional Unification Grammar, FUG (Kay,) , Definite Clause Gram-

mar, DCG (Pereira and Warren, 1980), Lexical Functional Grammar, LFG (Kaplan and

Bresnan, 1982), Generalized Phrase Structure Grammar, GPSG (Gazdar et al., 1985) and

11

Head-Driven Phrase Structure Grammar, HPSG (Pollard and Sag, 1986).

2.3 Skeletal grammars

Skeletal grammars are a variant of unification grammars which have an explicit context-

free backbone/skeleton. These grammars can be viewed as an expansion of context-free

grammars, where every category is associated with an informative feature structure. The

context-free backbone of a skeletal grammar is obtained by ignoring all feature struc-

tures of the grammar rules and considering only the categories.

An extended category is a pair 〈A, c〉 where A is a feature structure and c ∈ Cats

is a category. An extended category 〈A, c〉 can be rewritten as a pure feature structure

by internalizing the category into the feature structure, which is done by adding a new

atom value c to Atoms and a new feature cat 6∈ Feats to the set of features Feats, such

that for every feature structure A, δ(A,cat) is a sink and θ(δ(A,cat)) = c

For example, 〈
[

word :W
]

, c〉 is internalized into





cat : c

word :W





Definition 2.11. A skeletal grammar (over Feats, Atoms and Cats) is a tuple G =

〈R,L, As〉 where:

• R is a finite set of rules, where each rule consists of an MRS of length n ≥ 1 (the

first element is the head of the rule), and a sequence of length n of categories over

the parameter Cats (The first category represents the head’s category).

• L is a lexicon, which associates with every terminal a (over a fixed finite set Σ of

terminal words) a finite set L(a) of extended categories 〈A,C〉, where A is a feature

structure and C ∈ Cats is a category.

• As = 〈A,S〉, is the start symbol (an extended initial category).

A skeletal form is a pair 〈σ,~c〉, where σ is an MRS of length n and ~c is a sequence of

n categories (ci ∈ Cats for 1 ≤ i ≤ n).

Definition 2.12 (Derivation). Let 〈σA, ~cA〉 and 〈σB, ~cB〉 be forms such that σA =

〈A1, . . . , Ak〉 and σB = 〈B1, . . . , Bm〉. 〈σA, ~cA〉 immediately derives 〈σB, ~cB〉 iff there

exist a skeletal rule 〈ρ′, ~cR〉 ∈ R of length n, an MRS ρ, ρ′ v ρ, such that:

12

• m = k + n− 2;

• ρ’s head is some element i of σA: ρ
1 = σi

A;

• ρ’s body is a sub-structure of σB: ρ
2...n = σi...i+n−2

B ;

• The first i− 1 elements of σA and σB are identical: σ1...i−1
A = σ1...i−1

B ;

• The last k − i elements of σA and σB are identical: σi+1...k
A = σ

m−(k−i+1)...m
B ;

• ~cB is obtained by replacing the i-th element of ~cA by the body of ~cR.

The reflexive transitive closure of ‘→’ is denoted ‘
∗
→’.

A form 〈σA, ~cA〉 derives 〈σB, ~cB〉 (denoted 〈σA, ~cA〉
∗
⇒ 〈σB, ~cB〉) iff there exist MRSs

σ′A, σ
′
B such that σA v σ′A, σB v σ′B and 〈σ′A, ~cA〉

∗
→ 〈σ′B, ~cB〉.

Definition 2.13 (Pre-terminals). Let w = a1 · · · an ∈ Σ∗. PTw(j, k) is defined if

1 ≤ j ≤ k ≤ n, in which case it is the skeletal form,

〈〈Aj , Aj+1, . . . , Ak〉, 〈Cj , Cj+1, . . . , Ck〉〉 where 〈Ai, Ci〉 ∈ L(ai) for j ≤ i ≤ k.

Definition 2.14 (Language). The language of a skeletal grammar G is L(G) = {w ∈

Σ∗ | w = a1 · · · an and 〈As〉
∗
⇒ 〈〈A1, . . . , An〉, 〈C1, . . . , Cn〉〉 }, where 〈Ai, Ci〉 ∈ L(ai) for

1 ≤ i ≤ n.

Figure 2.3 lists an example skeletal grammar, Gabc, where L(Gabc) = {a
nbncn | n > 0}.

Cats = {S,A,B,C}

As = 〈
[

len : s
]

, S〉

R =











































[

len : s
]

−→
[

len : 1
] [

len : 1
] [

len : 1
]

S −→ A B C

[

len :
[

len : 1
]]

−→
[

len : 1
] [

len : elist
]

A −→ A A

[

len :
[

len : 1
]]

−→
[

len : 1
] [

len : elist
]

B −→ B B

[

len :
[

len : 1
]]

−→
[

len : 1
] [

len : elist
]

C −→ C C











































L(a) =
{

〈
[

len : elist
]

, A〉
}

L(b) =
{

〈
[

len : elist
]

, B〉
}

L(c) =
{

〈
[

len : elist
]

, C〉
}

Figure 2.3: An example skeletal grammar, Gabc

13

A derivation tree for skeletal grammar (also called a constituent-structure) is defined

similarly to definition 2.10 of derivation trees for general unification grammars, except

that every vertex consists of an extended category instead of a feature structure.

Definition 2.15 (Constituent structures (c-structures)). Let G = 〈R,L, As〉 be a

skeletal grammar. A tree is a derivation tree admitted by G if:

• The root of the tree is the start symbol As = 〈A,S〉;

• The internal vertices are extended categories (over the same features, atoms and

categories as the Grammar G);

• The leaves are pre-terminals of length 1;;

• If a vertex 〈A, c〉 has k descendants, 〈B1, c1〉, 〈B2, c2〉, . . . , 〈Bk, ck〉, then 〈〈A〉, 〈c〉〉

immediately derives 〈〈B1, . . . , Bk〉, 〈c1, . . . , ck〉〉 with respect to some rule 〈ρ, ~cR〉 ∈ R.

2.4 Comparison between General and Skeletal Unification

Grammars

Any skeletal unification grammar can be represented as a general unification grammar by

internalizing the categories into the feature structures as described in section 2.3.

General unification grammars do not necessarily assume an explicit context-free back-

bone. There exist no algorithm for obtaining a context-free backbone from any general

unification grammar.

Constituent coordination cannot be represented by skeletal grammars; a conjunction

/* CONTINUE */

2.5 Some grammar examples:

In this section we give some grammar examples which will be used in the rest of the thesis

In order to simplify the examples and avoid the usage of complicated long lists’ feature

structure, the examples use a straightforward encoding of lists as features structures, where

a list is represented by brackets, the list items are separated by a comma, an empty list is

denoted by 〈 〉 and 〈head | tail 〉 represents a list whose first item is head followed by tail.

E.g., (a transformation from a list feature structure to the brackets notation):

14

















word :

















hd : tb

tl :











hd : tb

tl :





hd : tb

tl : elist















































⇒
[

word : 〈tb , tb , tb 〉
]

Figure 2.4: A unification grammar generating the language {b+}. The feature cat

stands for category, and word is a list of lexical symbols. The string b is the only

terminal item at the lexicon, therefore every string generated by the grammar consists of

b’s only. The grammar is unambiguous; a string of N occurrences of b has just one parse

tree. The second rule adds items to a list at each derivation step. The fourth rule removes

items from the list. With each removal derivation step a b is generated until a list of one

item is reached. Once the third rule has been applied, the second rule may no longer be

applied, thus no more items may be added to the list. A derivation tree for a string of N

occurrences of b has a linear depth of 2N .

Lemma 2.1. There exist a derivation tree for the string bl, (l > 0) of depth 2l, in which

the first rule is applied once, then the second rule is applied l−1 times resulting in a word

list of l items, then an application of the third rule and then l− 1 application of the fourth

rule, each application of the fourth rule removes an item from the word list and a b is

generated until a list of one item is reached.

Proof. The proof is by induction on l the size of the derived string.

For l = 1, figure 2.6 lists an example derivation tree for the string b satisfying the

conditions.

Assuming that the induction hypothesis holds for l ≤ l − 1.

The induction step, l = l (l > 1): by the induction hypothesis there exists a derivation

tree for the string bl−1 in which the second rule is applied l− 2 times, resulting in a list of

l − 1 items, applying the second rule once more would result in a list of l items. By the

induction hypothesis at each application of the fourth rule an item is removed from the

list and a b is generated. Thus applying the fourth rule l−2 times would result in l−2 b’s

and a list of two items. Since a b is mapped at the lexicon to the category Q ([cat : q])

and a list of one item, one more application of the fourth rule would result in two more

b’s. Hence, in order to generate the string bl, the first rule is applied once, the second rule

15

As =

[

cat : s
word : 〈s 〉

]

R =































































(1)

[

cat : s
word : 〈s 〉

]

−→

[

cat : p
word : 〈tb 〉

]

(2)

[

cat : p

word : 1

]

−→

[

cat : p

word : 〈tb | 1 〉

]

(3)

[

cat : p

word : 1

]

−→

[

cat : q

word : 1

]

(4)

[

cat : q

word : 〈tb | 1 〉

]

−→

[

cat : q

word : 1

] [

cat : q
word : 〈tb 〉

]































































L(b) =

{[

cat : q
word : 〈tb 〉

]}

Figure 2.4: A unification grammar, GFA.
[

cat : s
word : 〈s 〉

]

[

cat : p
word : 〈tb 〉

]

[

cat : p
word : 〈tb , tb 〉

]

[

cat : p
word : 〈tb , tb , tb 〉

]

[

cat : q
word : 〈tb , tb , tb 〉

]

[

cat : q
word : 〈tb , tb 〉

] [

cat : q

word : 〈tb 〉

]

[

cat : q

word : 〈tb 〉

] [

cat : q

word : 〈tb 〉

]

b b b

Figure 2.5: An example parse tree for the grammar GFA of figure 2.4 and the string bbb.

16

[

cat : s

word : 〈s 〉

]

[

cat : p

word : 〈tb 〉

]

[

cat : q

word : 〈tb 〉

]

b

Figure 2.6: A derivation tree admitted by the grammar GFA for the string b.

is applied l − 1 times, resulting in a list of l items, the third rule is a applied once and

then the fourth rule is applied l − 1 times.

Corollary 2.2. The grammar GFA generates the language L = {bl | l > 0}

Proof. Since the string b is the only terminal item at the lexicon, and the grammar contains

no ε-rules, any derived string consists of b’s only. By lemma 2.1, there exist a derivation

tree for the string bl for any l > 0.

By the value of the feature cat, the grammar rules must be applied according to their

order. The first rule is applied at most once (in fact, exactly once, since the initial symbol’s

category is S), then since the current category is P , either the second or third rule may

be applied. The second rule may be applied any number of times, adding an item to the

list at each derivation step, but once the third rule has been applied, the second rule is

no longer applicable since the current category is Q. The third rule is applied exactly

once, and then the only applicable rule is the fourth rule. The fourth rule is applied

repeatedly until a list of one item is reached, generating a lexical item at each derivation

step. Therefore, the only possible derivation for the string bl is by one application of the

first rule, followed by l − 1 consecutive applications of the second rule, followed by one

application of the third rule and then l− 1 applications of the fourth rule. Thus, a string

of l occurrences of b has just one parse tree.

Figures 2.7: A unification grammar generating the language {b}. The feature cat

stands for category, and word is a list of lexical symbols. The second rule adds items to a

17

list at each derivation step. The fourth rule removes items from the list at each derivation

step. There exist infinitely many derivation trees, of arbitrary depths, for the string b of

the form listed in figure 2.8.

As =

[

cat : s

word : 〈s 〉

]

R =































































(1)

[

cat : s

word : 〈s 〉

]

−→

[

cat : p

word : 〈tb 〉

]

(2)

[

cat : p

word : 1

]

−→

[

cat : p

word : 〈tb | 1 〉

]

(3)

[

cat : p

word : 1

]

−→

[

cat : q

word : 1

]

(4)

[

cat : q

word : 〈tb | 1 〉

]

−→

[

cat : q

word : 1

]































































L(b) =

{[

cat : q

word : 〈tb 〉

]}

Figure 2.7: A unification grammar, Ginf .

Lemma 2.3. The grammar Ginf generates the language L = {b}.

Proof. The grammar consists of unit-rules only, therefore it can only generate non-branching

derivation trees whose frontier consists of one symbol. Since the string b is the only termi-

nal item at the lexicon, and the grammar contains no ε-rules, any derived string consists

of b’s only.

Figure 2.9 lists a derivation tree for the string b, therefore L(Ginf) = {b}.

The grammar rules must be applied according to their order as defined by the values

of the feature cat. The second rule adds items to word list, the fourth rule removes

items from the list, a b is generated once the list consists of one item. Therefore there

exist infinitely derivation trees for the string b for any natural number of applications of

the second rule.

Figure 2.10: A unification grammar generating the language {b+}. The string b is

the only terminal item at the lexicon and there exist no ε-rules, therefore every string

generated by the grammar consists of b’s only. A string of N occurrences of b has exactly

18

[

cat : s

word : 〈s 〉

]

[

cat : p

word : 〈tb 〉

]

[

cat : p

word : 〈tb , tb 〉

]

[

cat : p

word : 〈tb , tb , tb 〉

]

...

[

cat : q

word : 〈tb , tb , tb 〉

]

[

cat : q

word : 〈tb , tb 〉

]

[

cat : q

word : 〈tb 〉

]

b

Figure 2.8: The derivation tree form of the grammar Ginf of figure 2.7.

19

[

cat : s

word : 〈s 〉

]

[

cat : p

word : 〈tb 〉

]

[

cat : p

word : 〈tb 〉

]

b

Figure 2.9: An example derivation tree for the grammar of figure 2.7 and the string b.

one parse tree. The depth of the derivation tree is 2N . The feature depthCount is a list

that represents the current depth of the derivation tree; the number of derivation steps

from the root. At each derivation step an item is added to the depthCount list, but no

items may ever be removed from it. The feature innerCount is a list that represents the

number of derivation steps before generating the next b symbol. Every application of the

second rule doubles the depth of the innerCount list (with respect to its length after the

previous application of the rule). Thus the number of derivation steps for generating each

b is always twice the number of steps for generating its predecessor. The third rule removes

items from the innerCount list until an empty list is reached. Then another b is generated

by either applying the fourth rule and terminate, or applying the second rule and refill

the innerCount list. Figure 2.11 lists a derivation trees example.

Lemma 2.4. There exists a derivation tree for the string bl, l > 1 of depth 2l.

Proof. The proof is by induction on l, the number of b lexical symbols:

For l = 1, figure 2.12 lists an example derivation tree for the string b satisfying the

conditions.

Assuming that the induction hypothesis holds for l ≤ l − 1.

The induction step, l = l, by the induction hypothesis, a string of l− 1 occurrences of

b has a derivation tree of depth 2l−1.

By the lexicon, a b is generated once the innerCount list is empty. Thus the only

possibilities for generating a b is by applying either the second or fourth (terminating)

rules. Therefore, it can be deduced that the (l − 1)th b was generated by the second rule.

20

As =

[

cat : s

depthCount : 〈 〉
innerCount : 〈 〉

]

R =















































































(1)

[

cat : s

depthCount : 〈 〉
innerCount : 〈 〉

]

→

[

cat : p

depthCount : 〈tb 〉
innerCount : 〈 〉

]

(2)





cat : p

depthCount : 1
innerCount : 〈 〉



→





cat : p

depthCount : 〈tb | 1 〉

innerCount : 1





[

cat : l

lex : tb

]

(3)





cat : p

depthCount : 1

innerCount : 〈tb | 2 〉



→





cat : p

depthCount : 〈tb | 1 〉

innerCount : 2





(4)





cat : p

depthCount : 〈tb | 1 〉
innerCount : 〈 〉



→

[

cat : l

lex : tb

]















































































L(b) =

{[

cat : l

lex : tb

]}

Figure 2.10: A unification grammar, GDB.

By the induction hypothesis, before the immediate derivation of the (l − 1)th symbol,

the depthCount list contained 2l−1 − 1 items (since depthCount list represents a counter

of the derivation’s depth). While generating the (l − 1)th symbol by an application of

the second rule, the depthCount list was assigned into the innerCount list, therefore the

innerCount list contains 2l−1 − 1 items.

After an application of the second rule (generating the (l − 1)th symbol), since inner-

Count list is non-empty, the only applicable rule is the third rule. Then, |innerCount|

(= 2l−1 − 1) applications of the third rule must be applied until the innerCount list is

empty.

Then one application of the fourth rule in order to generate the lth terminating symbol.

There exist 2l−1 derivation steps for generating the first l−1 symbols, and 2l−1 deriva-

tion steps for generating the lth symbol. Therefore, there exist a derivation tree for the

string bl of depth 2l.

Corollary 2.5. The grammar GDB generates the language L = {bl | l > 0}

The grammar derivation steps are as follows:

1. The first derivation step (and the only possible one) is by the first rule, adding one

item to depthCount list, leaving the innerCount list empty.

21

[

cat : s

depthCount : 〈 〉
innerCount : 〈 〉

]

[

cat : p

depthCount : 〈tb 〉
innerCount : 〈 〉

]

[

cat : l
lex : tb

]

[

cat : p

depthCount : 〈tb , tb 〉
innerCount : 〈tb 〉

]

b

[

cat : p

depthCount : 〈tb , tb , tb 〉
innerCount : 〈 〉

]

[

cat : l
lex : tb

]

[

cat : p

depthCount : 〈tb , tb , tb , tb 〉
innerCount : 〈tb , tb , tb 〉

]

b

[

cat : p

depthCount : 〈tb , tb , tb , tb , tb 〉
innerCount : 〈tb , tb 〉

]

[

cat : p

depthCount : 〈tb , tb , tb , tb , tb , tb 〉
innerCount : 〈tb 〉

]

[

cat : p

depthCount : 〈tb , tb , tb , tb , tb , tb , tb 〉
innerCount : 〈 〉

]

[

cat : l
lex : tb

]

b

Figure 2.11: An example derivation tree for the grammar GDB of figure 2.10 and the
string bbb. The tree’s depth is 23.

2. Since the innerCount list is empty, either the second or fourth rules may be applied:

by applying the second rule, the depthCount list is assigned into the innerCount

list, an item is added to depthCount list and a b is generated. Once the second rule

has been applied, the third rule is the only applicable rule, since innerCount is non-

empty. By applying the fourth rule, a b is generated and the parsing is terminated.

3. Then, the third rule is applied (assuming that the second rule has been previously

applied), removing items from the innerCount list, until an empty list is reached,

then go back to 2.

22







cat : s

depthCount : 〈 〉
innerCount : 〈 〉













cat : p

depthCount : 〈tb 〉
innerCount : 〈 〉







[

cat : q
lex : tb

]

Figure 2.12: A derivation tree admitted by the grammar GDB for the string b.

4. By applying the fourth rule the last b is generated.

The only possible derivation tree for a string of l occurrences of b consists of exactly l−1

applications of the second rule, each followed by |innerCount| applications of the third

rule (until innerCount list is empty) and then one application of the fourth (terminating)

rule. Thus a string of l occurrences of b has just one parse tree.

Figure 2.13: A unification grammar generating the language {b2
l
| l > 0}. It is a

variation of GDB with an addition that in every derivation step a lexical item is generated

thus the grammar generates each string of bl symbols in bl derivation steps.

23

As =

[

cat : s

depthCount : 〈 〉
innerCount : 〈 〉

]

R =















































































[

cat : s

depthCount : 〈 〉
innerCount : 〈 〉

]

→

[

cat : p

depthCount : 〈tb 〉
innerCount : 〈 〉

]

[

cat : l

lex : tb

]





cat : p

depthCount : 1
innerCount : 〈 〉



→





cat : p

depthCount : 〈tb | 1 〉

innerCount : 1





[

cat : l

lex : tb

]





cat : p

depthCount : 1

innerCount : 〈tb | 2 〉



→





cat : p

depthCount : 〈tb | 1 〉

innerCount : 2





[

cat : l

lex : tb

]





cat : p

depthCount : 〈tb | 1 〉
innerCount : 〈 〉



→

[

cat : l

lex : tb

]















































































L(b) =

{[

cat : l

lex : tb

]}

Figure 2.13: A unification grammar, Gb2
n .

24

Chapter 3

Off-line-parsability constraints

It is well known that unification based grammar formalisms are Turing-equivalent in

their generative capacity (Pereira and Warren, 1983; Johnson, 1988, 87-93); determin-

ing whether a given string w is generated by a given grammar G is equivalent to deciding

whether a Turing machine M halts on an empty input, which is known to be undecid-

able. Therefore, the recognition problem is undecidable in the general case. However for

grammars that satisfy a certain restriction, called off-line parsability constraint (OLP),

decidability of the recognition problem is guaranteed. In this section we present some dif-

ferent variants of the off-line parsability constraint suggested in the literature. Some of the

constraints (Pereira and Warren, 1983; Kaplan and Bresnan, 1982; Johnson, 1988; Kuhn,

1999) apply only to skeletal grammars since the term category is not well defined for gen-

eral unification grammars. Others (Haas, 1989; Shieber, 1992; Torenvliet and Trautwein,

1995; Wintner and Francez, 1999) are applicable to both skeletal and general unification

grammars.

3.1 Off-Line-Parsability Variants

We begin the discussion with off-line parsability constraints for skeletal grammars. One

of the first definitions was suggested by Pereira and Warren (1983). Their constraint was

designed for DCGs (a skeletal unification grammar formalism which assumes an explicit

context-free backbone) for guaranteeing termination of general proof procedures of definite

clause sets. Rephrased in terms of skeletal grammars, the definition is as follows:

25

Definition 3.1 (Pereira and Warren’s OLP constraint for skeletal grammars

(OLPPW)). A grammar is off-line parsable iff its context-free skeleton is not infinitely

ambiguous.

The context-free skeleton is obtained by ignoring all feature structures of the grammar

rules and considering only the categories. In the next section we prove that the depth

of every derivation tree generated by a grammar whose context-free skeleton is finitely

ambiguous is bounded by the number of syntactic categories times the size of its yield,

therefore the recognition problem is decidable.

Kaplan and Bresnan (1982) suggested a linguistically motivated off-line parsability con-

straint which refers to valid derivations for the Lexical-Functional Grammar formalism

(LFG), a skeletal grammar formalism. During the research we have consulted Ron Ka-

plan in order to get a better view on OLP for LFG and realized that the notion of an

OLP grammar is not available in LFG; OLP is in fact a property of derivation trees; for

a given string w, a derivation tree is not OLP if it has two nodes, u and v, where u domi-

nates v and u and v span exactly the same substring of w. Of course, there can be other

derivations of w which are OLP.

LFG is intended for the special properties of natural languages. In LFG, the definition

of L(G) is not the standard one. Rather, w is in L(G) if there exists an OLP derivation

tree for w; the structures associated with w by G are the structures induced by the OLP

derivations only.

In our analysis we are concerned with OLP grammars. The question of whether a

grammar is OLP is completely irrelevant to LFG. Our motivation is not LFG only; in

fact, we are trying to address what we refer to as ”general unification grammars”.

The next two OLP variants, are based on Kaplan and Bresnan’s OLP for LFG and

thus they impose a restriction on allowable c-structures, rather than on the grammar itself.

There exist no explicit definition of an OLP grammar. Such a definition can be understood

in (at least) two manners:

Definition 3.2 (OLP grammar).

1. A grammar G is off-line parsable iff for every w ∈ L(G) every derivation tree for w

satisfies the off-line parsability constraint.

26

2. A grammar G is off-line parsable iff for every w ∈ L(G) there exists a derivation

tree which satisfies the off-line parsability constraint.

The first definition is very strict, it allows grammars which can generate only OLP

derivation trees. The second definitions is more liberal, it allows non-OLP derivation trees

as long as there exists at least one OLP derivation tree for every word of the grammar’s

language.

LFG introduces two kinds of ε’s, controlled and optionality ε’s, which are used in de-

scriptions of natural languages. General unification grammars are not necessarily designed

for natural languages and thus the distinction between the ε kinds does not necessarily

exist. Hence, we use a variant of their constraint, suggested by Johnson (1988, 95-97),

eliminating all ε’s of any kind.

Definition 3.3 (Johnson’s OLP constraint (OLPJO)).

A constituent structure satisfies the OFF-LINE PARSABILITY CONSTRAINT iff:

• It does not include a non-branching dominance chain in which the same category

appears twice.

• The empty string ε does not appear as a lexical form annotation of any (terminal)

node.

The first condition rules out any unbounded unary branching structures, whereas the

second condition rules out any applications of ε-rules. In the next section we prove that

the constraint bounds the depth of any off-line parsable derivation tree by a linear function

of the size of its yield, thus ensuring decidability of the recognition problem.

Johnson’s definition of off-line parsable constituent structures applies only to skeletal

grammars, for general unification grammars the term category is not well defined since

there may be infinitely many feature structures (there exists no mapping of the feature

structures to a finite set of categories). In order to redefine the constraint for general

unification grammars, the term category should be defined first in terms of untyped feature

structures.

His definition is a restriction on allowable c-structures, rather than on the grammar

itself, this is a restriction on the possible derivation trees generated by the grammar rules,

27

limiting the number of OLP derivation trees that have a given string as their yield to be

finite. There exist no formal definition of OLPJO grammars, thus we use definition 3.2 for

OLPJO grammars.

The next constraint is also based on Kaplan and Bresnan’s constraint and is also dealing

only with off-line parsable derivations, OLP grammar definitions are according to defini-

tion 3.2. The constraint uses the notion of categories and thus is applicable only to skeletal

grammars.

X-bar theory grammars (Chomsky, 1975) have a strong linguistic justification in de-

scribing natural languages. Unfortunately neither Kaplan and Bresnan’s nor Johnson’s

constraints allow such derivations, since they do not allow derivation trees in which the

same category appears twice in a non-branching dominance chain. Kuhn (1999) refers to

the problem from a linguist’s point of view. The purpose of his constraint was to expand

the class of grammars which satisfy Kaplan and Bresnan’s constraint in order to allow

X-bar derivations. The definition is not dealing with ε-rules, therefore we assume that ε

does not represent a lexical item, as in Johnson’s constraint.

Definition 3.4 (Kuhn’s OLP constraint).

A c-structures derivation is valid iff no category appears twice in a non-branching domi-

nance chain with the same f-annotation.

The c-structure in LFG represents the external structure of a sentence. It consists

of a context-free derivation tree with an additional functional information about the

constituents within a sentence. The functional information is represented by two meta-

variables ↑ (up arrow) and ↓ (down arrow):

• Up arrow, ↑, represents the feature structure attached to the mother’s node.

• Down arrow, ↓, represents the feature structure attached to the daughter node (the

node itself).

• (↑ feat) = ↓, represents that the value of the feature feat at the feature structure

attached to the mother’s node is the feature structure attached to the daughter

node; δ(M, feat) = D, where M , D represent the feature structures attached to the

mother and daughter nodes correspondingly.

28

• ↑=↓, represents that the mother and daughter nodes share the same feature struc-

ture.

The c-structures are then mapped into f-structures. The f-structure is an acyclic feature

structure which represents the internal structure of a sentence, it includes a representation

of the higher syntactic and functional information of a sentence. A detailed description of

LFG’s c-structures, f-structures and the transformation between them is given in (Kaplan

and Bresnan, 1982).

Figure 3.1 lists an example of an X-bar derivation tree (c-structure) taken from Kuhn’s

paper (Kuhn, 1999) and its corresponding f-structure. The derivation tree contains a non-

branching dominance chain in which the category V P appears twice. Therefore it is an

invalid OLP derivation (by both Kaplan and Bresnan’s and Johnson’s constraints). Since

the functional constraint attached to the daughter node is (↑ xcomp) =↓, the mother and

daughter nodes do not share the same f-annotation. Therefore, the derivation satisfies

Kuhn’s OLP constraint.

NP

AP N

↑=↓ ↑=↓
VP A

(↑ xcomp) =↓
VP

AP V

undurchsichtig bleiben wollenden Kunden
devious stay wanting customers

f-structure:











subj : customers

comp :

[

verb : stay
adv : devious

]

adj : wanting











Figure 3.1: An example X-bar theory c-structure and f-structure of a German sentence.

Our analysis deals with OLP grammars, Kuhn’s definition is an improvement to John-

son’s OLP allowing X-bar derivation trees. Since there exist no formal definition of Kuhn’s

29

OLP grammars and his definition is very similar to Johnson’s constraint, we exclude

Kuhn’s OLP constraint from further analysis.

The following definitions are applicable to both skeletal and general unification gram-

mars. The first constraint was suggested by Haas (1989). Based on the fact that not

every natural unification grammar has an obvious context-free backbone, Haas suggested

a constraint for guaranteeing solvability of the parsing problem which is applicable to all

unification grammar formalisms.

Haas’ definition of a derivation tree is slightly different from the definition given in

chapter 1 for unification grammars’ derivation trees (definition 2.10). He allows derivation

trees with nonterminals at their leaves, therefore a tree may represent a partial derivation.

Definition 3.5 (Haas’ Depth-boundedness (DB)). A unification grammar is depth-

bounded iff for every L > 0 there is a D > 0 such that every parse tree for a sentential

form of L symbols has depth less than D.

Haas’ definition of a depth-bounded grammar requires that there exists a function f

such that every derivation tree’s depth for a sentential form of l symbols is bounded by

f(l). Since he allows partial derivation trees, a sentential form of length l may contain

some non-terminal symbols.

According to Haas (1989), “a depth-bounded grammar cannot build an unbounded

amount of tree structure from a bounded number of symbols”, therefore, for every senten-

tial form of length l there exist a finite number of partial derivation trees, thus guaranteeing

parsing termination.

Haas shows an algorithm that should verify whether a given grammar is depth-bounded.

But the algorithm’s termination is not guaranteed; if depth-boundedness does not hold

the algorithm will enter an infinite loop. Haas states explicitly that depth-boundedness is

undecidable, but provides no proof of it.

The OLPPW definition applies only to skeletal grammars, general unification grammars

do not necessarily yield an explicit context-free skeleton. The natural expansion of Pereira

and Warren’s definition in order to apply to all unification grammar formalisms is finite

ambiguity for unification grammars:

30

Definition 3.6 (Finite ambiguity for unification grammars (FA)). A unification

grammar G is OLP iff for every sting w there exist a finite number of derivation trees.

Shieber’s OLP definition (Shieber, 1992, 79–82) is defined in terms of logical constraint

based grammar formalisms. His constraint is defined in logical terms, such as models and

operations on models. We reformulate the definition in terms of feature structures.

Definition 3.7 (Shieber’s OLP (OLPS)). A grammar G is off-line parsable iff there

exists a finite-ranged function F on feature structures such that F (A) v A for all A and

there are no derivation trees admitted by G in which a node A dominates a node B, both

are roots of sub-trees with an identical yield and F (A) = F (B).

The constraint is intended to bound the depth of every derivation tree by the range of

F times the size of its yield. Thus the recognition problem is decidable.

Johnson’s OLP constraint is too restrictive, since it excludes all repetitive unary branch-

ing chains and ε- rules, furthermore, it is applicable only to skeletal grammars, therefore,

Torenvliet and Trautwein (1995) have suggested a more liberal constraint, which is appli-

cable to all unification grammar formalisms.

Definition 3.8 (Honest parsability constraint (HP)). A grammar G satisfies the

Honest Parsability Constraint (HPC) iff there exists a polynomial p s.t. for each w ∈ L(G)

there exists a derivation with at most p(|w|) steps.

The definition guarantees that for every string of the grammar’s language there exists at

least one polynomial depth (in the size of the derived string) derivation tree and therefore

the recognition problem can be solved in polynomial time. Furthermore, the definition

allows X-bar theory derivation trees, since a category may appear twice in a non-branching

dominance chain as long as the depth of the tree is bounded by a polynomial function of

its yield.

3.2 Off-line-parsability analysis

In the following section we analyze the above given OLP definitions, define their properties

and determine whether each of them guarantees decidability of the recognition problem.

31

Pereira and Warren’s definition guarantees that the depth of every derivation tree ad-

mitted by an OLPPW grammar is bounded by the number of syntactic categories times

its yield. Thus guaranteeing decidability of both the recognition and parsing problems.

Lemma 3.1. Let G be an OLPPW grammar. Let G′ be the context-free backbone of G

(by definition G′ is finitely ambiguous). G′ cannot generate a derivation tree in which

a sub-tree contains another sub-tree with the same root category and both have the same

yield.

Proof. Assume towards a contradiction that G′, a finitely ambiguous context-free gram-

mar, can generate such a derivation tree. Therefore, a sub-tree of some category A (over

Cats) may be generated repeatedly many times (by applying the same grammar rules),

as shown in figure 3.2, resulting in infinite ambiguity.

�������
�

��� ���

�

� � 	
�
 � � ��
 �

�

�

� � � �

�

� � 	
�
 � � �
 �

��� � �

�

�

� � 	
�
 � � �
 �

�

�

Figure 3.2: An example of derivation trees such that A is the root category of a sub-tree
which derives another sub-tree of root A with the same yield.

A skeletal derivation tree is a context-free derivation tree extended by feature struc-

tures. Therefore, G itself cannot generate a derivation in which a sub-tree contains another

sub-tree and both have the same root category and generate the same yield (otherwise by

ignoring the feature structures, leaving just the categories, the context-free backbone is

infinitely ambiguous).

It follows from lemma 3.1 that an OLPPW grammarG satisfies the following properties:

32

• It cannot generate a derivation tree in which the same category appears twice in a

non-branching dominance chain (since they both share the same yield).

• The depth of any sub-tree generating the empty string ε (a sub-tree whose yield

is ε’s only) admitted by G is bounded by the number of syntactic categories |Cat|

(otherwise, some descendant must have the same category as its root mother).

Corollary 3.2. The depth of any OLPPW derivation tree for a string of l symbols is

bounded by a linear function of l.

Proof. By lemma 3.1 and its following properties, every sub derivation tree of depth |Cat|

must generate at least one lexical item, otherwise a sub-tree of length greater than |Cat|

would generate the same yield, which is impossible since the context-free backbone is

finitely ambiguous. In the worst case, every lexical symbol adds |Cat| derivation steps to

the derivation’s depth, and after generating all symbols, there exist |Cat| − 1 derivation

steps generating the empty string. Therefore, for generating a string of l lexical symbols,

the depth of every derivation tree is at most (|Cat|+ 1)× l (O(l)).

Johnson’s definition of off-line parsable derivation trees, guarantees that if there are

no unary branching chains nor ε-rules, the number of rule applications in a derivation is

linear in the length of the derived string and the size of the structure corresponding to

the partial productions is polynomial. Thus guaranteeing decidability of the recognition

problem.

Lemma 3.3. The depth of any OLPJO derivation tree for a string of l symbols is bounded

by a linear function of l.

Proof. Let d be an OLPJO derivation tree for a string of length l:

• Due to the first condition of OLPJO, d cannot contain a non-branching dominance

chain in which the same category appears twice, therefore the size of any non-

branching dominance chain is bounded by the number of different syntactic cate-

gories |Cat|.

• Due to the second condition of OLPJO, an OLPJO derivation tree’s yield may not

contain any ε’s, therefore for a string of l symbols, the yield of any derivation tree

is exactly of length l.

33

In order to reach a bound on the derivation tree’s depth, the worst case, which generates

the deepest tree, should be taken into considerations: suppose that, in the worst case,

between any two binary branching nodes there exists a unary chain of length equal to

|Cat|. Therefore the depth of d is at most l × |Cat|. Therefore the depth of d is bounded

by a linear function of l.

Corollary 3.4. For a given string there exist a finite number of OLPJO derivation trees.

Proof. By lemma 3.3 the depth of any derivation tree for a given string is bounded by

a linear function of the length of the string. There exists a finite set of categories and

a finite set of rules, therefore, there exist a finite number of all possible combinations of

categories up to some linear depth.

Corollary 3.5. By the second definition of OLPJO, if G is OLPJO then for every string

w there exists a derivation tree whose depth is at most |w| × |Cat| (where |cat| is the

number of syntactic categories).

Proof. By lemma 3.3 the depth of any OLPJO derivation tree for a given string of length

l is bounded by a l × |Cat|. By the second definition of OLPJO grammars, for every

w ∈ L(G) there exists an OLPJO derivation tree, thus for every string w there exists a

derivation tree whose depth is at most |w| × |Cat|.

Haas’s definition of depth-boundedness, guarantees that there exists a function bounding

the depth of every derivation tree admitted by G by the size of its yield. Given such a

function f , for every string w of length l it is enough to check the finite set of derivation

trees up to depth f(w), thus guaranteeing decidability of both the parsing and recognition

problem.

Finite ambiguity may play a role as the natural expansion of the class of OLPPW gram-

mars for applying to general unification grammars, but it does not necessarily guarantee

decidability of the recognition problem; the fact that a grammar induces a finite number

of derivation trees on every string provides us with no upper bound of the size of each

derivation tree nor any information about the actual number of derivation trees that the

grammar induces on every string. Therefore, for every string w and a given grammar G,

34

it is possible to verify whether w ∈ L(G) by generating a derivation tree for w, but since

there exist no explicit number representing the finite number of derivation trees admitted

by G for every string w, it is impossible to tell when a parsing algorithm may terminate

while generating all derivation trees that G induces on w.

In order to verify whether w 6∈ L(G), since there is no upper bound on the depth of

the derivation trees, the parsing algorithm may never terminate; we cannot claim that

w 6∈ L(G) since there exist no derivation tree for w up to a certain (very high) depth d,

there may be a derivation tree for w of depth d+ 1 for every natural number d. Thus the

definition does not guarantee decidability of the parsing nor the recognition problems.

According to Shieber a grammar is OLPS iff there exists a finite-ranged function map-

ping each two nodes sharing the same yield on every derivation tree to a different yield,

thus imposing a restriction on the depth of every derivation tree admitted by an OLPS

grammar limiting the number of derivation trees that have a given string as their yield to

be finite, hence guaranteeing decidability of both the recognition and parsing problems

Lemma 3.6. The depth of any OLPS derivation tree for a string of l symbols is bounded

by a linear function of l.

Proof. Let G be an OLPS grammar, therefore there exists a finite-ranged function F

satisfying the OLPS conditions. In each derivation tree in order to generate each lexical

item at most |range(F)| derivation steps may be applied (otherwise at least two nodes are

mapped to the same feature structure). Thus in order to generate a string of l symbols,

the depth of every derivation tree is at most |range(F)| × l.

According to Torenvliet and Trautwein an HP grammar permits derivations, in which

there exists a non-branching dominance chain where the same category appears more

than once, as long as the depth of the tree is bounded polynomially by the size of the

derived string. Furthermore, an HP grammar allows the X-bar theory derivation tree

of figure 3.1 and other X-bar derivation trees presented by Kuhn (1999). Therefore, we

exclude Kuhn’s OLP constraint from further analysis.

HPC guarantees that there exists a polynomial function p such that for every w ∈ L(G)

there exists at least one derivation tree whose depth is bounded by p(|w|). Thus the

recognition problem is decidable.

35

The condition does not impose any bounds on the depth of every generated derivation

tree, therefore it does not guarantee decidability of the parsing problem.

36

Chapter 4

OLP Definitions Correlation

There exist several variants of OLP in the literature, some of which do not recognize the

existence of all other definitions. In the following section we make a comparison of the

different definitions using the given grammar examples and lemmas. Such relationships

were not investigated in the past. We first define for each of the given grammar examples

their OLP properties. We then make comparative analysis of the OLP variants in terms

OLP grammars. At the last section we compare the OLP variants to Johnson’s OLP for

the Lexical-Functional Grammar.

4.1 The grammar examples and OLP

Following we prove some lemmas regarding the given grammar examples and their OLP

properties. In these specific general unification grammar examples it is possible to obtain

a context free skeleton, therefore they are also used while investigating the definitions

which are applicable only to skeletal grammars viewing the value of the feature cat as

the category.

The grammar GFA of figure 2.4.

Lemma 4.1. GFA is not OLPPW .

Proof. Figure 4.1 lists the extracted context-free backbone of GFA. The context-free

backbone contains the rule P −→ P , therefore, it can generate a unary branching chain

37

of P ’s which immediately leads to infinite ambiguity. Therefore, GFA is not an OLPPW

grammar.

R =































S −→ P

P −→ P

P −→ Q

Q −→ Q Q































Figure 4.1: The context-free backbone of the grammar GFA of figure 2.4

Lemma 4.2. GFA is not OLPJO.

Proof. By lemma 2.1, in order to generate the string bl for l > 1, exactly l− 1 application

of the second rule must be applied thus resulting in a non-branching dominance chain in

which the category appears more than once.

Lemma 4.3. GFA is HP and FA.

Proof. Since the grammar rules must be applied according to their order, a string of l

occurrence of b has just one parse tree and its depth is 2l. Therefore, for every string w

there exists a finite number of derivation trees and there exists a polynomial depth (of

|w|) derivation tree for every word of the grammar’s language. Therefore the grammar is

both HP and FA.

Lemma 4.4. GFA is not DB.

Proof. Haas’ definition of a derivation tree allows derivations with non-terminals at their

leaves. The grammar’s second rule can be applied repeatedly many times, adding items to

the list, generating arbitrarily deep derivation trees whose frontier has only one symbol.

Therefore GFA is not a DB grammar.

Lemma 4.5. GFA is not OLPS.

Proof. In order to generate the string bn, exactly n−1 applications of the second rule must

be applied, and then one application of the third rule, thus resulting in a non-branching

dominance chain of length n. Suppose there exists an finite-ranged function, whose range is

38

of size n, mapping each two nodes sharing the same yield to a different range (e.g. mapping

each feature structure to itself). In order to generate the string bn+1 the function must

map at least 2 nodes to the same feature structure, therefore there exists no finite-ranged

function satisfying the constraint and the grammar is not an OLPS grammar.

The grammar Ginf of figure 2.7.

Lemma 4.6. Ginf is OLPJO (by the second definition), but it is not OLPPW .

Proof. The grammar’s language is {b}, figure 4.2 lists an example valid OLPJO derivation

for the string b, thus Ginf is OLPJO. Figure 4.3 lists the extracted context-free backbone

of Ginf . The context-free backbone contains the rule P −→ P , therefore, it can generate

a unary branching chain of P ’s which immediately leads to infinite ambiguity. Therefore,

Ginf is not an OLPPW grammar.

[

cat : s

word : 〈s 〉

]

[

cat : p

word : 〈tb 〉

]

[

cat : q

word : 〈tb 〉

]

b

Figure 4.2: An OLPJO derivation tree for the grammar of figure 2.7 and the string b.

R =































S −→ P

P −→ P

P −→ Q

Q −→ Q































Figure 4.3: The context-free backbone of the grammar of figure 2.7

Lemma 4.7. Ginf is HP .

39

Proof. The grammar’s language is {b}, figure 4.2 lists a derivation tree for b of depth

3 generated by Ginf , therefore there exist a polynomial depth derivation tree for every

w ∈ L(Ginf), thus the grammar is honest parsable.

Lemma 4.8. Ginf is not FA.

Proof. The grammar generates infinitely many derivation trees for the string b for any

natural number of applications of the second rule, therefore the grammar is infinitely

ambiguous.

Lemma 4.9. Ginf is not DB.

Proof. The grammar generates infinitely many non-branching derivation trees for the

string b, thus generating arbitrarily deep derivation trees whose frontier has only one

symbol.

Lemma 4.10. Ginf is not OLPS.

Proof. The grammar’s language is {b} there exist infinitely many derivation trees for

the string b of arbitrary depths, each consisting of a non-branching dominance chain in

which all nodes are sharing the same yield, therefore there exists no finite-ranged function

mapping each two nodes sharing the same yield on every derivation tree to a different

range.

The grammar GDB of figure 2.10.

Lemma 4.11. GDB is not OLPPW .

Proof. Figure 4.4 lists the extracted context-free backbone of GDB. A context-free back-

bone containing the rule P −→ P can generate a unary branching chain of P ’s which

immediately leads to infinite ambiguity. Therefore GDB is not an OLPPW grammar.

Lemma 4.12. GDB is not OLPJO.

Proof. The grammar’s language is {b+}, by lemma ??,in order to generate the string bl for

l > 1 at least one application of the third rule must be applied, resulting in a non-branching

dominance chain of P ’s. Thus the grammar is not OLPJO.

40

R =































S −→ P

P −→ P Q

P −→ P

P −→ Q































Figure 4.4: The context-free backbone of the grammar GDB of figure 2.10

Lemma 4.13. GDB is DB and FA.

Proof. A string of l occurrences of b has just one parse tree, and its depth is 2l, the depth

of a tree generating a string of n+1 occurrence of b is 2l+1, between the generation of the

lth and (l+1)th b’s there exist 2n derivation steps of sentential forms of length l, therefore

any derivation tree for a sentential form of length l is bounded by an exponential function

of l, and the grammar is depth-bounded and finitely ambiguous.

Lemma 4.14. GDB is not OLPS.

Proof. By lemma 2.4, in order to generate the string bl exactly 2l derivation steps must

be applied (the last b is generated on the 2lth derivation step), in order to generate the

bl+1 exactly 2l+1 derivation steps must be applied. Since the grammar contains no ε-rules,

between the generation of the lth and (l + 1)th symbols there exist 2l derivation steps of

nodes all sharing the same yield. Assume towards a contradiction that there exist a finite-

ranged function of range 2l mapping each two nodes on the non-branching dominance

chain to a different yield, thus in order to generate the string bl+2 the function must map

at least two such nodes to the same yield for every natural number l. Therefore, there exist

no finite-ranged function satisfying the conditions and the grammar is not OLPS .

Lemma 4.15. GDB is not HP .

Proof. The grammar’s language is {b+}, for every string of l occurrences of b there exists

exactly one derivation tree and its depth is 2l, therefore not every w ∈ L(GDB) has a

polynomial depth (of l) derivation tree.

41

4.2 The relationships between the OLP variants

OLPPW V S. OLPJO .

Proposition 4.16. According to the first definition of OLPJO grammars, an OLPJO

grammar G is not necessarily an OLPPW grammar.

Proof. The grammar GJ\PW of figure 4.5 is an OLPJO grammar. It’s easy to verify that

the grammar can only generate two derivation trees (the two derivations shown by the

figure) and both derivations are OLPJO derivations. Figure 4.6 lists the extracted context-

free backbone of the grammar. The context-free backbone can generate a unary branching

chain of P Q P and therefore it is infinitely ambiguous. Therefore GJ\PW is not

an OLPPW grammar.

Cats = {S, P, Q}

As = 〈

[

str : s

word : 〈 〉

]

, S〉

R =



































































[

str : s

word : 〈 〉

]

−→

[

str : ta

word : 〈 〉

]

S −→ P

[

str : s

word : 〈 〉

]

−→

[

str : tb

word : 〈 〉

]

S −→ Q

[

str : ta

word : 〈 〉

]

−→

[

str : tb

word : 〈tb 〉

]

P −→ Q

[

str : tb

word : 〈 〉

]

−→

[

str : ta

word : 〈ta 〉

]

Q −→ P



































































L(a) =

{

〈

[

str : ta

word : 〈ta 〉

]

, P 〉

}

L(b) =

{

〈

[

str : tb

word : 〈tb 〉

]

, Q〉

}

〈

[

str : s

word : 〈 〉

]

, S〉

〈

[

str : ta

word : 〈 〉

]

, P 〉

〈

[

str : tb

word : 〈tb 〉

]

,Q〉

b

〈

[

str : s

word : 〈 〉

]

, S〉

〈

[

str : tb

word : 〈 〉

]

, Q〉

〈

[

str : ta

word : 〈ta 〉

]

,P〉

a

Figure 4.5: An OLPJO grammar GJ\PW , L(GJ\PW) = {a, b}

Proposition 4.17. According to the second definition of OLPJO grammars, an OLPJO

grammar G is not necessarily an OLPPW grammar.

Proof. Let G be an OLPJO grammar, therefore for every w ∈ L(G) there exists an OLPJO

derivation tree. There is no guarantee that for every w every derivation tree is an OLPJO

42

R =































S −→ P

S −→ Q

P −→ Q

Q −→ P































Figure 4.6: The context-free backbone of the grammar of figure 4.5

derivation tree. Therefore, a string that has an OLPJO derivation tree may still have an

infinite number of non-OLPJO derivation trees.

By lemma 4.6, the grammar Ginf of figure 2.7 is an OLPJO grammar (by the second

definition) but since its context-free backbone is infinitely ambiguous, it is not an OLPPW

grammar.

The proof can also be deduced from the proof of the above proposition (4.16), since

an OLPJO grammar by the first definition immediately satisfies the second definition of

OLPJO grammars.

Proposition 4.18. an OLPPW grammar G is not necessarily an OLPJO grammar.

Proof. The OLPPW definition does not impose any explicit conditions on ε’s. Figure 4.7

lists a counter example, an OLPPW grammar Gε which is not an OLPJO grammar, and

an example derivation tree (note that a context-free grammar can be viewed as a skeletal

grammar with empty feature structures). Gε is an OLPPW grammar, its context-free

backbone is P → Q R. It is easy to verify that the derivation example given by the figure

is the only possible derivation tree admitted by Gε. Since every derivation tree’s yield

contains an ε, Gε is not an OLPJO grammar.

P → Q R

Q→ b

R→ ε

L(Gε) = {b}

P

Q R

b ε

Figure 4.7: An example OLPK grammar, Gε.

• According to the first definition of OLPJO grammars, the grammar is not OLPJO

since it may generate non-OLPJO derivation trees.

43

• According to the second definition of OLPJO grammars, there exists no OLPJO

derivation tree for the string b, therefore not every w ∈ L(GPW1
) has an OLPJO

derivation.

OLPPW V S. Depth−Boundedness .

Proposition 4.19. A DB grammar G is not necessarily an OLPPW grammar.

Proof. By lemma 4.13, the grammar GDB of figure 2.10 is depth-bounded. Figure 4.4

lists the extracted context-free backbone of figure 2.10. The context-free backbone can

generate a unary branching chain of P ’s which immediately leads to infinite ambiguity.

Therefore GDB is not an OLPPW grammar.

Proposition 4.20. If G is OLPPW then G is DB.

Proof. Let G be an OLPPW grammar, by corollary 3.2, the depth of any derivation tree

generated by G is bounded by a linear function of the size of the derived string. Therefore,

for every sentential form of length l every derivation tree’s depth is bounded by a function

of l.

OLPPW V S. F initeAmbiguity .

Proposition 4.21. An FA grammar G is not necessarily an OLPPW grammar.

Proof. By lemma 4.13, the grammar GDB of figure 2.10 is finitely ambiguous. Figure 4.4

lists the extracted context-free backbone of figure 2.10. The context-free backbone can

generate a unary branching chain of P ’s which immediately leads to infinite ambiguity.

Therefore GDB is not an OLPPW grammar.

Proposition 4.22. If G is OLPPW then G is FA.

Proof. Let G be an OLPPW grammar, by corollary 3.2, the depth of any derivation tree

generated by G is bounded by a linear function of the size of the derived string ((|Cat|+

1) × |yield|). There exist only a finite number of derivation trees up to a certain depth,

therefore G is finitely ambiguous.

44

OLPPW V S. OLPS .

Proposition 4.23. An OLPS grammar G is not necessarily an OLPPW grammar.

Proof. Figure 4.8 lists an example OLPS grammar and a derivation tree. It is easy to

verify that the given derivation is the only possible derivation admitted by GS1
. The

derivation is of depth 2, therefore there exists a mapping function satisfying the OLPS

conditions. The grammar is not OLPPW , its context-free backbone can generate a unary

branching chain of P ’s which immediately leads to infinite ambiguity. Therefore GS1
is an

OLPS grammar but not OLPPW .

Cats = {S, P}

As = 〈
[

f : s
]

, S〉

R =











[

f : s
]

−→
[

f : p
]

S −→ P
[

f : 1

]

−→
[

f :
[

f : 1

]]

P −→ P











L(b) =
{

〈
[

f : p
]

, P 〉
}

〈
[

f : s
]

, S〉

〈
[

f : p
]

, P 〉

b

Figure 4.8: An example OLPS grammar, GS1

Proposition 4.24. If G is OLPPW then G is OLPS

Proof. By lemma 3.1, if G is OLPPW then it can generate only derivation trees in which

every two nodes sharing the same yield are of a different category, therefore there exists a

finite ranged function F , whose range is of size |Cat|, mapping each feature structure on

the derivation tree to its category value,

∀X ∈ Cats : F









cat : X
...







 =
[

cat : X
]

.

Thus for every A, F (A) v A and it is guaranteed that, on every derivation tree, every two

nodes sharing the same yield are mapped by F to a different range.

45

OLPPW V S. HonestParsability .

Proposition 4.25. An HP grammar G is not necessarily an OLPPW grammar.

Proof. By lemma 4.7, the grammar Ginf of figure 2.7 is an HP grammar, the grammar’s

language is {b} and there exists a polynomial depth derivation tree for the string b. The

grammar’s context-free backbone is listed in figure 4.3. The context-free backbone contains

the rules P → P and Q→ Q, and therefore it is infinitely ambiguous.

Proposition 4.26. If G is OLPPW then G is HP .

Proof. Let G be an OLPPW grammar, by corollary 3.2, the depth of any derivation tree

generated by G is bounded by a linear function of the size of the derived string. Therefore,

for every w ∈ L(G) there exists a derivation tree of less than a polynomial depth.

OLPJO V S. Depth−Boundedness .

Proposition 4.27. According to the first definition of OLPJO grammars, if G is OLPJO

then G is DB.

Proof. An OLPJO grammar G can only generate OLPJO derivation trees. By lemma 3.3,

any OLPJO derivation tree is of a linear depth by the size of its yield, therefore, for every

sentential form of length n, every derivation tree’s depth is bounded by a function of n,

thus G is a DB grammar.

Proposition 4.28. According to the second definition of OLPJO grammars, an OLPJO

grammar G is not necessarily a DB grammar.

Proof. An OLPJO grammar requires that for every w ∈ L(G) there exists an OLPJO

derivation tree. In contrast, a DB grammar requires that for every w ∈ L(G) every

derivation is bounded by a function of |w|.

Having an OLPJO derivation tree does not necessarily imply that every derivation tree

generating a given string is of a bounded depth by a function of the size of its yield. As

a counter example, consider the grammar Ginf of figure 2.7, the grammar’s language is

{b}, there exists an OLPJO derivation for the string b (as shown in figure 4.2), but by

lemma 4.9 the grammar Ginf is not a DB grammar; there exists no function of the size

of the yield bounding each derivation tree’s depth.

46

Proposition 4.29. A DB grammar G is not necessarily an OLPJO grammar.

Proof. A DB grammar G may generate non-OLPJO derivation trees. Furthermore, there

may exist some w ∈ L(G) for which there exists no OLPJO derivation. By lemma 4.13,

the grammar GDB of figure 2.10 is a depth-bounded grammar, generating the language

{b+}.

• According to the first definition of OLPJO grammars, the grammar is not OLPJO

since it may generate non-OLPJO derivation trees (such as the derivation of fig-

ure 2.11).

• According to the second definition of OLPJO grammars, the only string that has an

OLPJO derivation is the string b, therefore not every w ∈ L(GDB) has an OLPJO

derivation tree.

OLPJO V S. F initeAmbiguity .

Proposition 4.30. According to the first definition of OLPJO grammars, if G is OLPJO

then G is FA.

Proof. By lemma 3.3, the depth of any OLPJO derivation tree is bounded by a linear

function of the size of its yield. For a given string, there exist only a finite number of

derivation trees up to some bounded depth (by the size of the string). Therefore for every

string w there exist a finite number of derivation trees.

Proposition 4.31. According to the second definition of OLPJO grammars, an OLPJO

grammar G is not necessarily an FA grammar.

Proof. A string that has an OLPJO derivation tree may still have an infinite number

of non-OLPJO derivations. Figure 4.2 lists an example OLPJO derivation tree for the

grammar Ginf of figure 2.7. By lemma 4.8, the grammar is infinitely ambiguous; there

exist infinitely many derivation trees for the string b.

Proposition 4.32. An FA grammar G is not necessarily an OLPJO grammar.

47

Proof. By lemma 4.3, the grammar GFA of figure 2.4 is FA. Any string has a unique

derivation tree.

• The grammar can generate non-OLPJO derivation trees, therefore it is not anOLPJO

grammar by the first definition.

• Not every w ∈ L(G) that has a finite number of derivation trees, has an OLPJO

derivation tree. Therefore the grammar is not an OLPJO grammar by the second

definition.

OLPJO V S. OLPS.

Proposition 4.33. According to the first definition of OLPJO grammars, an OLPJO

grammar G is OLPS.

Proof. Since G is OLPJO it cannot generate derivation trees in which the same category

appears twice in a non-branching dominance chain. Therefore, there exists a finite ranged

function F , whose range is of size |Cat|, mapping each feature structure on the derivation

tree to its category value,

∀X ∈ Cats : F









cat : X
...







 =
[

cat : X
]

.

Thus for every A, F (A) v A and it is guaranteed that, on every derivation tree, every two

nodes sharing the same yield are mapped by F to a different range.

Proposition 4.34. According to the second definition of OLPJO grammars, an OLPJO

grammar G is not necessarily an OLPS grammar.

Proof. By lemma 4.6, the grammar Ginf of figure 2.7 is OLPJO, there exist an OLPJO

derivation tree for every w ∈ L(Ginf). By lemma 4.10, the grammar is not OLPS since

there exists no finite-ranged function satisfying the OLPS conditions.

Proposition 4.35. An OLPS grammar G is not necessarily an OLPJO grammar.

48

Proof. Figure 4.9 lists an example OLPS grammar and a derivation tree. It is easy to verify

that the given derivation is the only possible derivation admitted by GS2
. The derivation

is of depth 2, therefore there exists a mapping function satisfying the OLPS conditions.

The grammar is not OLPJO since its only derivation tree consists of a non-branching

dominance chain in which the category S appears twice.

Cats = {S}

As = 〈
[

f : s
]

, S〉

R =
{ [

f : s
]

−→
[

f : p
]

S −→ S
}

L(b) =
{

〈
[

f : p
]

, S〉
}

〈
[

f : s
]

, S〉

〈
[

f : p
]

, S〉

b

Figure 4.9: An example OLPS grammar, GS2

OLPJO V S. HonestParsability .

Proposition 4.36. If G is OLPJO then G is HP .

Proof. The proof of the proposition will be separated for each of the OLPJO grammar

definitions:

• According to the first definition: an OLPJO grammar G can only generate OLPJO

derivations. By lemma 3.3, any OLPJO derivation’s depth, for a string of l symbols,

is bounded by a linear function of l, therefore, for every w ∈ L(G) there exists a

polynomial function of |w| bounding the derivation’s depth.

• According to the second definition: for every w ∈ L(G) there exists at least one

OLPJO derivation. By lemma 3.3, the derivation’s depth is bounded by a linear

function of the length of w, therefore, for every w ∈ L(G) there exists a polynomial

function of |w| bounding the derivation’s depth.

Therefore, every OLPJO grammar is also an HP grammar.

Proposition 4.37. An HP grammar G is not necessarily an OLPJO grammar.

49

Proof. Since the honest parsability constraint is not a syntactic property of grammars,

the other direction is not necessarily true. Given an HP grammar G, for every w ∈ L(G)

there exists a derivation of a polynomial depth, but, not every w has an OLPJO derivation.

Figure 4.7 lists a counter example, an HP grammar, Gε, which is not an OLPJO grammar,

and an example of Gε’s only possible derivation tree. Each of Gε’s derivations’ yield

consists of an ε. Therefore it does not satisfy OLPJO’s constraint.

• According to the first definition of OLPJO grammars, the grammar is not OLPJO

since it may generate non-OLPJO derivation trees.

• According to the second definition of OLPJO grammars, the grammar cannot gener-

ate any OLPJO derivations, therefore not every w ∈ L(G) has an OLPJO derivation

tree.

Furthermore, the grammar GFA of figure 2.4 is an HP grammar (as proven by lemma 4.3)

generating the regular language {b+}. The grammar may generate non-OLPJO derivations

and not every w ∈ L(G) can be generated by an OLPJO derivation (There exists an OLPJO

derivation only for the string b). Therefore, GFA is not an OLPJO grammar.

Depth−Boundedness V S. F initeAmbiguity .

Proposition 4.38. If G is DB then G is FA.

Proof. According to Haas (1989), ”a depth-bounded grammar cannot build an unbounded

amount of tree structure from a bounded number of symbols”, therefore, any depth-

bounded grammar is also finitely ambiguous. G is DB, therefore there exists a function

bounding each derivation tree’s depth by the size of its yield. Since there is only a finite

set of rules, only a finite number of derivation trees may be generated up to some bounded

depth. Therefore every w has a finite number of derivation trees and G is an FA grammar.

Proposition 4.39. An FA grammar G is not necessarily a DB grammar.

Proof. As a counter example we show an FA grammar which is not a DB grammar. Haas

gives in his article (Haas, 1989) an example grammar which satisfies finite ambiguity but

is not depth-bounded. The grammar GFA of figure 2.4 is a general unification grammar

50

variation of his grammar example. By lemma 4.3, the grammar is finitely ambiguous. The

grammar is not depth-bounded; Haas allows partial derivation trees with nonterminals at

their leaves, therefore the second rule may be applied repeatedly many times, generating

arbitrarily deep parse trees whose frontier is a nonterminal of length 1.

Depth−Boundedness V S. OLPS .

Proposition 4.40. An OLPS grammar G is not necessarily a DB grammar.

Proof. The grammar of figure 4.10 is OLPS , the grammar’s language is {b}, there exists

only one derivation for the string b (the one shown in the figure), the derivation is of depth

2, by applying the second rule no lexical items may be generated, therefore no complete

derivation tree contains any application of this rule. Therefore, there exists a finite-ranged

function mapping each two feature structures sharing the same yield to a different range.

The grammar is not depth-bounded, by applying the second rule repeatedly many times

the grammar can generate arbitrarily deep parse trees whose frontier has only one symbol.







[

cat : S
]

−→
[

cat : P
]

[

cat : 1

]

−→
[

cat :
[

cat : 1

]]







L(b) =
{[

cat : P
]}

[

cat : S
]

[

cat : P
]

b

Figure 4.10: An example OLPS grammar, GS3

Proposition 4.41. A DB grammar G is not necessarily a OLPS grammar.

Proof. By lemma 4.13, the grammarGDB of figure 2.10 is depth-boundedness, by lemma 4.14,

the grammar is not OLPS , there exist no finite range function mapping each two nodes

sharing the same yield on each derivation tree to a different range.

Depth−Boundedness V S. HonestParsability .

There exist two main differences between the two definitions. HP requires that for every

w ∈ L(G) there exists a polynomial depth derivation, whereas DB requires that every

51

derivation for a sentential form of |w| symbols is of a bounded depth by a function of |w|

(not necessarily polynomial).

Proposition 4.42. A DB grammar G is not necessarily an HP grammar.

Proof. An HP grammar requires that for every w ∈ L(G) there exist at least one deriva-

tion of a polynomial depth in the size of w. Therefore, a grammar for which every

derivation tree is of an exponential depth is not an HP grammar.

By lemma 4.13, the grammar GDB of figure 2.10 is depth-bounded; every string of

length n has a unique parse tree of depth 2n and there exist no arbitrarily deep partial

trees with nonterminals at their leaves.

By lemma 4.15, the grammar is not an HP grammar; for a given string every parse

tree is of an exponential depth. Not every string may be generated by a polynomial depth

derivation tree.

Proposition 4.43. An HP grammar G is not necessarily a DB grammar.

Proof. The definition of a DB grammar requires that for every w ∈ L(G) every derivation

tree be of a bounded depth in the size of w. Therefore, a grammar for which there exists

a polynomial depth derivation for every string, but may also generate arbitrarily deep

partial derivation trees whose frontier consists of non-terminals, is not a depth-bounded

grammar.

By lemma 4.3, the grammar GFA of figure 2.4 is an HP grammar; for every string

there exists a derivation tree of a polynomial depth in the size of the string.

By lemma 4.4, the grammar is not a DB grammar; the grammar can generate arbi-

trarily deep parse trees whose frontier has only one symbol.

FiniteAmbiguity V S. OLPS.

Proposition 4.44. If G is OLPS then G is FA

Proof. By lemma 3.6, if G is OLPS then the depth of every derivation tree for a string of

length l is bounded by |range(F)| × l (where F is the finite-ranged function satisfying the

constraint). There exist only a finite number of derivations up to a certain depth (using

a finite set of rules), therefore, for every w there exist a finite number of derivation trees

and G is FA.

52

Proposition 4.45. An FA grammar G is not necessarily an OLPS grammar.

Proof. By lemma 4.3, the grammar GFA of figure 2.4 is an FA grammar, for every w ∈

L(GFA) there exists exactly one derivation tree. By lemma 4.5, GFA is not an OLPS

grammar; there exists no finite-ranged function mapping each two feature structure sharing

the same yield to a different range.

FiniteAmbiguity V S. HonestParsability .

Proposition 4.46. An HP grammar G is not necessarily an FA grammar.

Proof. An HP grammar G requires that for every w ∈ L(G) there exist at least one

derivation of a polynomial depth in the size of w. But, a string may still have infinitely

many derivation trees.

The grammar Ginf of figure 2.7 is an HP grammar; there exists a polynomial depth

derivation tree for the string b (as shown in figure 4.2), therefore there exists a polynomial

depth derivation tree for every word of the grammar’s language. By lemma 4.8, the

grammar is infinitely ambiguous; there exist infinitely many derivation trees for the string

b.

Proposition 4.47. An FA grammar G is not necessarily an HP grammar.

Proof. According to Haas, A depth-bounded grammar is also finitely ambiguous. There-

fore the depth-bounded grammar GDB of figure 2.10 is finitely ambiguous, but as proven

by lemma 4.15 the grammar is not HP ; each derivation tree is of an exponential depth by

the size of the derived string.

OLPS V S. HonestParsability.

Proposition 4.48. If G is OLPS then G is HP .

Proof. By lemma 3.6, the depth of any OLPS derivation tree for a string of l symbols is

bounded by a linear function of l, therefore, for every w ∈ L(G) there exists a polynomial

function of |w| bounding the derivation’s depth.

Proposition 4.49. An HP grammar G is not necessarily an OLPS grammar.

53

Proof. By lemma 4.3, the grammar GFA of figure 2.4 is an HP grammar, for every w ∈

L(GFA) there exists a polynomial depth derivation by size of w. By lemma 4.5, GFA is

not an OLPS grammar; there exists no finite-ranged function mapping each nodes on a

derivation tree sharing the same yield to a different range.

The definitions correlation hierarchy graph.

Hierarchy for skeletal grammars:

First definition of OLPJO .

DB FA HP

OLPS

OLPPW OLPJO

Second definition of OLPJO .

DB FA HP

OLPS

OLPPW OLPJO

Hierarchy for general unification grammars:

DB FA HP

OLPS

54

Chapter 5

Undecidability Proofs

Many researchers conjecture that some of the OLP variants are undecidable; it is undecid-

able whether a grammar satisfies the constraint, although none of them provides any proof

of it. In this chapter we present one of our main contribution of this thesis. We provide

proofs of undecidability to three of the undecidable OLP definitions: Finite Ambiguity

(FA), Depth-Boundedness (DB) and Shieber’s OLP (OLPS).

In order to prove that depth-boundedness and OLPS are undecidable we use a reduction

from the Turing machines halting problem on the empty input to unification grammars:

we show that an algorithm that decides depth-boundedness or OLPS can also solve the

halting problem. We first define (a variant of) Turing machines below: it is a machine

with a single head, a two-way infinite tape and three operations: rewriting a symbol on

the tape (without moving the head), a left head move and a right head move (without

changing the contents of the tape). The machine accepts an input by a single finite state.

Definition 5.1 (Turing machines). A (deterministic) Turing machine (Q,Σ, [, δ, s, h)

is a tuple such that:

• Q is a finite set of states

• Σ is an alphabet, not containing the symbols L, R and elist

• [∈ Σ is the blank symbol

• s ∈ Q is the initial state

55

• h ∈ Q is the final state

• δ : (Q \ {h})× Σ→ Q× (Σ ∪ {L,R}) is a total function specifying transitions.

Johnson (1988) had proven that the recognition problem is undecidable by showing

that every Turing machine can be translated into an attribute-value grammar and then

by solving the recognition problem, the Turing machines halting problem may also be

solved. Francez and Wintner (In preperation) had rephrased his proof in terms of feature

structures. They show how grammars can simulate the operation of a Turing machine.

They define a unification grammar, GM , for every Turing machine, M , such that the

grammar generates the word halt if and only if the machine accepts the empty input

string.

L(GM) =







{halt} if M terminates for the empty input

∅ if M does not terminate on the empty input

Below is a short description of their transformation from a Turing machine to a unification

grammar, a detailed description can be found in (Francez and Wintner, In preperation)

Let M = (Q,Σ, [, δ, s, h) be a Turing machine. Define a unification (skeletal) grammar

GM as follows: let Feats be {left, right, curr, first, rest}, Atoms = Σ ∪ {elist} and

Cats = Q ∪ S such that S 6∈ Q. There is one terminal symbol, halt. The grammar rules

can be divided to four groups. First, two rules are defined for every Turing machine:

S −→

s










curr : [

right : elist

left : elist











h −→ halt

The first rule simulates the initial configuration of a Turing machine that operates on an

empty input string: its state is s, the initial state; its tape is empty; and the head points to

a blank symbol. The second rule simulates termination: when the machine is in the final,

accepting state h, the grammar generates its only word, halt; equivalent to L(halt) = {h}.

The second group of rules are defined for rewriting transitions. For every q, σ such

56

that δ(q, σ) = (p, σ′) and σ′ ∈ Σ, the following rule is defined:

q










curr : σ

right : X

left : Y











−→

p










curr : σ′

right : X

left : Y











That is, if the current state is q and the head points to σ, the next state is p and the head

points to σ′, while the left and the right portions of the tape are not changed.

A third group of rules is defined for right movement of the head. This case is slightly

more complicated, as the situation in which the right portion of the tape is empty must

be carefully taken care of. For every q, σ such that δ(q, σ) = (p,R) we define two rules,

the first for this extreme case and the second for the default case:

q










curr : σ

right : elist

left : X











−→

p
















curr : [

right : elist

left :





first : σ

rest : X





















q
















curr : σ

right :





first : X

rest : Y





left : W

















−→

p
















curr : X

right : Y

left :





first : σ

rest : W





















The first rule is only triggered in case the right feature of the head, q, has the value

elist (any other value it can have is bound to be a complex feature structure, and hence

incompatible with the atom elist). Since the head moves to the right, the contents of the

left portion of the tape are shifted left in the next state, p: its first character is the current

σ, and its rest is the current states’ left portion. Since the right portion of the current

tape is empty, in the next configuration the head points to a blank symbol and the right

portion of the tape remains empty.

The second rule is only triggered when the right feature of q is not empty: it must

be a list, as the equations in the rule refer to its first and rest features. The last two

57

equations of this rule shift the right portion of the tape leftwards: the next configuration’s

curr feature is the first element in the current configuration’s right tape; and the rest of

the current configuration’s right tape becomes the next configuration’s right.

The last group of rules handle left movements in a symmetric fashion. For every q, σ

such that δ(q, σ) = (p, L) we define two rules:

q










curr : σ

right : X

left : elist











−→

p
















curr : [

right :





first : σ

rest : X





left : elist

















q
















curr : σ

right : X

left :





first : Y

rest : W





















−→

p
















curr : Y

right :





first : σ

rest : X





left : W

















GM has the following properties:

GM can only generate unary branching derivation trees. By the above construction, GM

contains only unit-rules, therefore, it can only generate non-branching derivation trees.

Lemma 5.1. GM can generate at most one complete derivation tree.

Proof. The Turing machine transitions function, δ, is a total, deterministic function; δ is

defined uniquely for every state and symbol (except the final state h).

While transforming a Turing machine operation into a unification grammar, every state

becomes a category and every alphabet symbol becomes an atomic value for the feature

curr (representing the current tape content the Turing machine’s head points to). Since

each of GM ’s rules (except the first and terminating rules) represents an entry in the

transitions function, each rule’s head consists of a category and feature structure containing

a value for the feature curr. Given a category and a curr value, they can only unify with

a single rule’s head, therefore at each derivation step only one rule may be applied, until

the category h is reached, resulting in a unique possible complete derivation tree.

58

Lemma 5.2. GM generates a complete derivation tree iff M terminates on the empty

input.

Proof. By Francez and Wintner (In preperation), halt ∈ L(G) iff M terminates on the

empty input. Therefore, ifM terminates on the empty input, then there exists a derivation

tree for halt admitted by GM . If M does not terminate on the empty input then there

exists no derivation tree for halt admitted by GM .

Furthermore, ifM does not terminate on the empty input thenM never reaches the state h,

therefore no derivation tree generated by GM may ever reach category h. Since δ is a total

function and GM simulates δ, at any derivation step there is always a next applicable rule

(given a state, other than h, and a symbol there is always a next configuration, therefore

a category and a curr symbol may always unify with some rule’s head), therefore GM

generates infinitely many partial derivation trees, but non of them ends with a terminal.

5.1 Undecidability of finite ambiguity

Theorem 5.3. Given a grammar G and a string w, it is undecidable whether w has a

finite number of derivation trees admitted by G.

Proof idea. The proof is by contradiction. We assume that it is decidable whether G

generates a finite number of derivation trees for a string w and use that assumption to

show that the membership problem is decidable, contradicting Johnson’s theorem (Johnson,

1988).

Proof. Assume towards a contradiction that there exists an algorithm, A, deciding whether

w has a finite number of derivation trees admitted by G. Construct an algorithm, B, to

decide the membership problem, with B operating as follows.

On input G,w where G = 〈R,L, As〉 is a unification grammar and w is a string:

1. Construct G′ = 〈R′,L′, A′s〉 such that L′ = L, A′s = As and R′ = R∪As → As.

2. Run algorithm A on G′, w.

3. If G′ can generate only a finite number of derivation trees for w then w 6∈ L(G);

Otherwise, w ∈ L(G).

59

By the construction of G′, since R ⊂ R′ and they share the same lexicon and start symbol,

any derivation tree generated by G can also be generated by G′.

We show below that G′ generates an infinite number of derivation trees for w if and

only if w ∈ L(G).

If G′ can only generate a finite number of derivation trees for a string w, then there

exist no derivation tree for w admitted by G. Suppose that there exists at least one

derivation tree for w admitted by G and thus there exist a derivation tree for w admitted

by G′, therefore, by applying the rule As → As, G′ can generate an infinite number of

tree structures for w, contradicting the algorithm’s outcome. Since G cannot generate any

derivation tree for w, w 6∈ L(G).

If G′ can generate infinitely many derivation trees for a string w, then there exist at

least one derivation tree for w admitted by G′ which does not contain any applications of

the rule As → As and therefore there exists a derivation tree for w in G. Suppose that

there exist no derivation tree for w in G′ without any applications of the rule As → As

(which immediately implies that there exist no derivation tree for w in G), since the rule

As → As only loops over the start symbol, applying it would not result in generating a

derivation tree for w. Therefore G′ can generate no derivation tree for w, contradicting

the algorithm’s outcome. Since there exists a derivation tree for w in G, w ∈ L(G).

Corollary 5.4. Finite Ambiguity is undecidable.

Proof. By theorem 5.3, it is undecidable whether G can generate a finite number of deriva-

tion trees on a string w. Therefore it is undecidable whether for every w (over Σ, the

grammar’s terminal symbols) there exist a finite number of derivation trees.

5.2 Undecidability of depth-boundedness

A grammar, G, is depth-bounded if there exists a function, f , such that for every sentential

form of length n, the depth of every derivation tree is bounded by f(n). A grammar G

is not depth-bounded if for every function f there exists a derivation tree for a sentential

form of length n whose depth is greater then f(n).

Haas allows partial derivation trees with non-terminals at their leaves as legal deriva-

tion trees. A depth-bounded grammar cannot build an unbounded number of tree struc-

60

ture from a bounded number of symbols (terminals/non-terminals). A grammar generating

an infinite number of tree structures for a sentential form of length n is not depth-bounded.

Theorem 5.5. depth-boundedness is undecidable.

Proof. Assume towards a contradiction that there exists an algorithm, A, for deciding

depth-boundedness, that is, deciding whether there exists a function f bounding each

derivation tree’s depth for a sentential form of length n by f(n). Construct an algorithm

,B, to decide the universal halting problem, which is known to be undecidable, with B

operating as follows.

On input M = (Q,Σ, [, δ, s, h), a Turing machine:

1. Construct GM , simulating the operation of M on the empty input, as described

above.

2. Run algorithm A on GM .

3. If GM is depth-bounded then M terminates on the empty input;

Otherwise, M does not terminate on the empty input.

If the algorithm claims that GM is depth-bounded then GM can only generate a finite

number of partial (non-branching) derivation trees. One of these derivation trees must

end with a terminal, otherwise, since δ is a total function and each of the grammar rules

simulate δ, each partial derivation tree’s leaf (of the finite set of possible partial derivation

trees) may unify with some rule’s head infinitely many times resulting in an infinite number

of partial derivation trees. Therefore, GM generates a complete derivation tree and by

lemma 5.2, M terminates on the empty input.

If the algorithm claims that GM is not depth-bounded, then GM generates infinitely

many non-branching partial derivation trees, while non of them ends with a terminal.

Assume towards a contradiction that GM can generate a complete derivation tree, there-

fore, since δ is deterministic and no rule’s head may unify with category h, GM may only

generate a finite set of partial derivation trees (where each is a sub-tree of the complete

derivation tree), in contradiction to the claim that GM is not depth-bounded. There-

fore, GM may not generate any complete derivation trees and by lemma 5.2, M does not

terminate on the empty input.

61

5.3 Undecidability of OLPS

Theorem 5.6. OLPS is undecidable.

Proof. Assume towards a contradiction that there exists an algorithm, A, for deciding

whether a grammar satisfies OLPS , that is, deciding whether there exists a finite-ranged

function F such that F (A) v A for all A and there are no derivation trees admitted by G in

which a node 〈A〉 dominates a node 〈B〉, both are roots of sub-trees with an identical yield

and F (A) = F (B). Construct an algorithm ,B, to decide the universal halting problem,

which is known to be undecidable, with B operating as follows.

On input M = (Q,Σ, [, δ, s, h), a Turing machine:

1. Construct GM , simulating the operation of M on the empty input, as described

above.

2. Construct G′
M , by adding the rule As → As to GM ’s set of rules, R′

M = RM ∪A
s →

As.

3. Run algorithm A on G′
M .

4. If G′
M is OLPS then M terminates on the empty input;

Otherwise, M does not terminate on the empty input.

If the algorithm claims that G′
M is OLPS then there exists a finite-ranged function

mapping each two descendant nodes to a different range, therefore there exist no derivation

tree for ε admitted by G′
M . Suppose that there exists a derivation tree for ε admitted by

G′
M therefore, by applying the rule As → As, G′

M can generate infinitely many derivation

trees for the string ε, thus there exist no finite-ranged function mapping each two nodes

on a derivation with the same yield to a different range, contradicting the algorithm’s

outcome. Therefore, there exist no derivation tree for ε admitted by GM , ε 6∈ L(GM).

If the algorithm claims that G′
M is not OLPS , then G′

M can generate a derivation tree

for ε in which every finite-ranged function maps at least two nodes with the same yield

to the same range. Therefore there exist a derivation tree for ε admitted by G′
M . By the

construction of G′
M , there exist a derivation tree for ε admitted by GM , ε ∈ L(GM).

62

Chapter 6

A Novel OLP Constraint - OLPJA

In this chapter we present our main contribution, a decidable OLP constraint. Our con-

straint is more liberal than the existing decidable constraints. Furthermore, unlike the

existing decidable constraints, the constraint is applicable to all unification grammar for-

malisms, yet there exists an algorithm for deciding whether a grammar satisfies it.

6.1 A decidable definition of OLP (version 1)

In the following section we present the first version of our OLP constraint and prove that it

guarantees decidability of the recognition problem. In this version we assume that ε does

not appear as a lexical form annotation of any (terminal) node; the grammars contain no ε-

rules, in the improvements section we provide a more liberal constraint allowing grammars

which contain ε-rules.

Definition 6.1. A sequence of unit-rules R1, . . . , Rk (k ≥ 1) is cyclicly unifiable iff

there exists a sequence of MRSs σ1, . . . , σk+2 of length 1 (feature structures) such that for

1 ≤ i ≤ k, σi → σi+1 by the rule Ri, and σk+1 → σk+2 by R1.

Figure 6.1 lists two grammar rules, ρ1, ρ2. The sequence 〈ρ1, ρ2〉 is cyclicly unifiable,

e.g. by 〈σ1 =





cat : P

f : a



 , σ2 =





cat : Q

f : a



 , σ3 =
[

f : b
]

, σ4 =





cat : Q

f : b



〉.

σ1 is unifiable with ρ1’s head, σ1 → σ2 by ρ1, σ2 → σ3 by ρ2, and then σ3 → σ4 by ρ1.

The sequence 〈ρ2, ρ1〉 is not cyclicly unifiable; whatever ρ2 applies to, the resulting

63

feature structure is
[

f : b
]

; then, applying ρ1 necessarily yields





cat : Q

f : b



, which is in-

compatible with the head of ρ2. Hence ρ2 cannot be applied again.

R =



















ρ1 :

[

cat : P
f : 1

]

−→

[

cat : Q
f : 1

]

ρ2 :
[

f : a
]

−→
[

f : b
]



















Figure 6.1: An example grammar rules

Definition 6.2 (Jaeger’s OLP constraint (OLPJA1
)). A grammar G is OLP iff it

contains no cyclicly unifiable sequences.

Lemma 6.1. If a grammar G contains no cyclicly unifiable sequences, G does not permit

any derivation tree with a non-branching dominance chain in which the same rule is used

more than once.

Proof. Assume towards a contradiction that a unit-rule ρ1 is used more than once in a

non-branching dominance chain. Therefore, there exists a sequence of MRSs σ1, . . . , σk+2,

the chain nodes on the derivation tree, and a sequence of unit-rules ρ1, . . . , ρk, such that

for 1 ≤ i ≤ k, σi → σi+1 by ρi, and σk+1 → σk+2 by ρ1. Thus, the grammar contains a

cyclicly unifiable sequence, a contradiction.

Lemma 6.2. The depth of every derivation tree whose yield is of length n admitted by an

OLPJA1
grammar G is bounded by u× n, where u is the number of G’s unit-rules.

Proof. Since the grammar contains no cyclicly unifiable sequences, by lemma 6.1 no rule

may be applied more than once in a non-branching dominance chain. Therefore, the depth

of any generated non-branching dominance chain is bounded by u, thus in every derivation

tree admitted by G, every u consecutive applications of unit-rules (at most) are followed

by either a terminating node or an application of a non-unit-rule, expanding the yield

(recall that no ε-rules are allowed). Therefore, the depth of every derivation tree is at

most u times the size of its yield.

Corollary 6.3. Parsing termination is guaranteed for OLPJA1
grammars.

64

Proof. Since the depth of every derivation tree admitted by an OLPJA1
grammar is

bounded by a linear function of the size of its yield, it is possible to enumerate the

derivation trees that have a given string as their yield, therefore parsing termination and

decidability of the recognition problem are guaranteed.

Theorem 6.4. It is decidable whether a grammar is OLPJA1
.

Proof. In the next section we present an algorithm for deciding OLPJA1
.

6.1.1 An algorithm for deciding OLPJA1

In order to detect cyclicly unifiable sequences, only unit-rules should be considered; we

use a graph annotation and search for cycles in the graph.

We first create a unit-rules transitions graph, UTG, a directed transitions graph repre-

senting unifiability; every vertex is a unit-rule, and an edge leads from u to v iff the body

of u is unifiable with the head of v (the body is of length 1). The head and the single

element in the body of a unit-rule ρi are represented by Hi, Bi respectively.

Then, we look for cycles in the UTG, which may indicate a cyclicly unifiable sequence.

For each cycle, we simulate its operation by consecutively applying all its vertices in order

to verify whether they form a cyclicly unifiable sequence. Simulation is done by applying

the rules according to the order of the sequence, whereas the initial symbol is the empty

feature structure.

The cycle edges represent unifiability between the head and body of each two consecu-

tive cycle vertices, but they are not necessarily indicative of a cyclicly unifiable sequence,

as it is not guaranteed that after applying several rules, unifiability between the resulting

feature structure and the head of the next rule still holds. Simulation of the cycle should

be applied beginning each time with a different cycle vertex, as it is possible that by

beginning the simulation with some vertex, the cycle’s vertices form a cyclicly unifiable

sequence, but for others they do not as noted in figure 6.1 above.

The algorithm is listed in figure 6.2.

6.1.2 Correctness of the algorithm

In order to look for cyclicly unifiable sequences in a grammar G, only unit-rules should

be taken into consideration. We first make a transformation from a grammar to a graph

65

annotation, thus we can use some graph algorithms. We then search for cycles in the

graph, and check whether any of these cycles’ vertices form a cyclicly unifiable sequence.

Lemma 6.5. If a sequence of unit-rules does not appear as a cycle in the UTG, then it

is not cyclicly unifiable.

Proof. Let R1, . . . , Rk be a cyclicly unifiable sequence, let Hi,Bi be the head and body of

each Ri respectively. Therefore, there exists a sequence σ1, . . . , σk+2, such that for each

1 ≤ i ≤ k − 1, Bi v σi+1 and σi+1 is unifiable with Hi+1, therefore Bi is unifiable with

Hi+1. Furthermore, Bk v σk+1, σk+1 is unifiable with H1, and therefore Bk is unifiable

with H1. Thus R1, . . . , Rk represent a cycle in the UTG. Therefore, if a sequence of rules

does not form a cycle in the UTG, it is not a cyclicly unifiable sequence.

Since any cyclicly unifiable sequence is represented as a cycle in the UTG, only cycles

of vertices should be considered. Once a cycle is detected, it represents unifiability between

every two consecutive vertices; unifiability between the head and body of two consecutive

rules. It still does not necessarily imply that the cycle’s vertices form a cyclicly unifiable

sequence. We simulate the cycle’s operation using the function is cyclicly unifiable, whose

input is a sequence of rules (some rotation of the cycle’s vertices), beginning each time

with a different cycle vertex. The function applies each of the rules consecutively using

unification in context (as defined in Francez and Wintner (In preperation, 121-122)), and

if one of the rules may not be applied (the resulting feature structure is not unifiable

with the rule’s head) then it returns false; if all rules have been applied successfully, the

function returns true.

Lemma 6.6. is cyclicly unifiable(V1, . . . , Vk) returns true iff V1, . . . , Vk is a cyclicly unifi-

able sequence.

Proof. If is cyclicly unifiable(V1, . . . , Vk) returns true, then all rules V1, . . . , Vk have been

applied and V1 may be applied again. The variable FS contains the resulting feature

structure after applying each rule. Consider all of FS intermediate values, let FSi be

the value of FS after applying Vi and all its predecessors. Since FSk is unifiable with

V1, V1 may be applied again; let FSk+1 be the resulting feature structure. Consider the

sequence 〈σ1, . . . , σk+2〉 = 〈〈[]〉, 〈FS1〉, . . . , 〈FSk+1〉〉, for 1 ≤ i ≤ k, σi → σi+1 by Ri, and

σk+1 → σk+2 by R1, therefore, by definition V1, . . . , Vk is a cyclicly unifiable sequence.

66

If is cyclicly unifiable(V1, . . . , Vk) returns false, then either there exists some rule Vi,

whose head is not unifiable with the resulting feature structure FS or all rules have

been applied and the resulting FS is not unifiable with the head of V1. Assume that

after applying some rules, Vj may not be applied, since the simulation begins with the

most general feature structure, the sequence 〈〈[]〉, 〈FS1〉, . . . , 〈FSj−1〉〉 is the most general

sequence after applying V1, . . . , Vj−1: for any other sequence 〈〈FS ′
0〉, 〈FS

′
1〉, . . . , 〈FS

′
j−1〉〉

such that each FS ′
i−1 → FS′

i by Vi, each FSi v FS′
i. Hence, if FSj−1 is not unifiable

with Vj ’s head then neither is FS ′
j−1, and there exists no sequence of MRSs satisfying the

constraint. Therefore V1, . . . , Vk is not a cyclicly unifiable sequence.

Theorem 6.7. The algorithm returns true iff G is OLPJA1
.

Proof. In order to check whether G contains cyclicly unifiable sequences, only unit-rules

should be considered. By lemma 6.5, while checking if a sequence of unit-rules is cyclicly

unifiable, only cycles of rules should be taken into consideration, and since a cyclicly

unifiable sequence is always represented by a cycle in the UTG, all cyclicly unifiable

sequences are always detected.

On each cycle, is cyclicly unifiable is applied from each of the cycle’s vertices, and by

lemma 6.6, the function returns true only for cyclicly unifiable sequences. Therefore, if

the algorithm returns true, then all cycles have been tested and none of their vertices

orderings represent a cyclicly unifiable sequence, thus the grammar contains no cyclicly

unifiable sequences and is OLPJA1
.

If the algorithm returns false then is cyclicly unifiable returned true on a set of vertices,

by lemma 6.6, this set represents a cyclicly unifiable sequence, thus the grammar contains

at least one cyclicly unifiable sequence and is not OLPJA1
.

6.2 Evaluation

OLPJA1
is applicable to both skeletal and general unification grammars. By omitting

ε-rules, it is more liberal than the existing decidable definitions that are limited to skele-

tal formalisms only, and unlike all definitions that are applicable to general unification

grammars, it can be tested efficiently.

The grammars Gww of figure 2.1 and Gabc of figure 2.3 are OLPJA1
; they contain no

unit-rules, therefore no non-branching dominance chains can be generated. The grammar

67

Gb2
n of figure 2.13 is OLPJA1

, as it contains only one unit-rule, which clearly is not cyclicly

unifiable.

The class of OLPJA1
grammars contains the class of OLPJO1

grammars; since an

OLPJO1
grammar cannot generate a derivation tree in which the same category appears

twice in a non-branching dominance chain, no rule may be applied more than once in a

non-branching dominance chain. Thus, any OLPJO1
grammar G is also OLPJA1

.

An OLPJO2
grammar G is not necessarily OLPJA1

. In an OLPJO2
grammar for every

w ∈ L(G) there exists an OLP derivation tree, but it does not imply that the grammar

cannot generate derivation trees in which the same rule may applied more than once

sharing the same yield. The grammar Gfin of figure 2.7 is OLPJO2
, since there exist an

OLP derivation tree for the string b. Gfin is not OLPJA1
, its second rule may be applied

repeatedly infinitely many times, thus the grammar contains cyclicly unifiable sequences.

Since an OLPPW grammar may contain ε-rules, an OLPPW grammar G is not neces-

sarily OLPJA1
.

OLPJA1
admits grammars whose c-structure may contain a non-branching dominance

chain in which the same category may appear twice as long as it is generated by a sequence

of unit-rules that is not cyclicly unifiable. Furthermore, It does not assume an explicit

context-free skeleton.

The following grammar is OLPJA1
but neither OLPJO nor OLPPW :

R =















[

f : s
]

−→
[

f : a
]

S −→ P

[

f : a
]

−→
[

f : b
]

P −→ P















L(b) =
{

〈
[

f : b
]

, P 〉
}

The following discussion shows that neither HP nor DB nor FA imply OLPJA1
.

The grammars GHP−b+ of figure 2.4, which is HP and FA, and GHP−b of figure 2.7,

which is HP , are not OLPJA1
; e.g. by their second rule and the following set of feature

structures:










cat : p

word : 〈t〉



 ,





cat : p

word : 〈t, t〉



 ,





cat : p

word : 〈t, t, t〉











Their second rule may be applied repeatedly many times, resulting in a non-branching

dominance chain in which the same rule may be applied more than once.

68

The grammar GDB−b+ of figure 2.10 is DB and FA, but it is not OLPJA1
; e.g. by the

third rule and the following set of feature structures:




























cat : p

depthCount : 〈t, t, t〉

innerCount : 〈t, t, t〉











,











cat : p

depthCount : 〈t, t, t, t〉

innerCount : 〈t, t〉











,











cat : p

depthCount : 〈t, t, t, t, t〉

innerCount : 〈t〉





























It can generate a non-branching dominance chain in which the third rule may be applied

more than once.

An OLPS grammar G is not necessarily OLPJA1
. Figure 6.3 lists an OLPS grammar

generating the language {b+}. A string of n occurrences of b has a derivation tree of

depth 3 × n. The depth of every non-branching chain is 3, furthermore, there exist only

four possible feature structures for each node in every derivation tree admitted by GS ,

therefore there exists a finite-ranged function F (e.g. mapping each feature structure to

itself) such that no two nodes on a derivation tree sharing the same yield are mapped

to the same feature structure. The grammar is not OLPJA1
, since the first rule may be

applied twice consecutively, resulting in a cyclicly unifiable sequence. In section 6.3 we

present an improvement to OLPJA1
which allows GS .

Every OLPJA1
grammar G is also HP ; by lemma 6.2, the depth of every derivation

tree for a string of n symbols is bounded by a linear function of n, therefore for every

w ∈ L(G) there exists a derivation tree whose depth is polynomial in the size of w.

By lemma 6.2, every derivation tree for a sentential form of length n is bounded

by a linear function of n, therefore, an OLPJA1
grammar G is also DB. Thus, by the

transitivity of implicature, An OLPJA1
grammar G is also FA.

OLPJA1
is a restriction on derivation trees such that no two nodes sharing the same

yield on a derivation tree are unifiable with the same rule’s head. OLPS is a restriction

on derivation trees such that no two nodes on a derivation tree sharing the same yield are

mapped to the same range. We tend to believe that an OLPJA1
is not necessarily OLPS ,

meaning that there exist an OLPJA1
grammar for which there exists no finite-ranged

mapping function satisfying the OLPS conditions, but we have not been able to come up

with one. Our intuition is as follows: by definition in an OLPS grammar there exist a

finite-ranged mapping function f mapping each two nodes on a derivation tree sharing the

same yield to a different range. f is finite and maps each feature structure to a certain

value, satisfying the constraint, without considering its occurrences on the derivation tree.

69

If a grammar G is OLPJA1
then the depth of every sub-derivation sharing the same yield

is bounded by the number of G’s unit-rules. We think that there might be some cases in

which the same feature structure must be mapped to a different range in different chains

in order to satisfy the constraint. Thus the G is OLPJA1
but it might not be OLPS .

Figure 6.4 depicts the revised inter-relations hierarchy diagram of the OLP definitions

including OLPJA1
.

6.2.1 Limitations of OLPJA1

The class of OLPJA1
grammars can never be equal to any of the other OLP classes for

general unification grammars. Since the constraints for general unification grammars are

undecidable, if any of these classes were equal to the class of OLPJA1
, then using the

algorithm for deciding OLPJA1
, we could also decide whether a grammar satisfies the

other constraint which is undecidable.

OLPJA1
guarantees parsing termination, but there exist non-OLPJA1

grammars for

which parsing termination holds. The grammar of figure 6.3 is OLPS , thus parsing termi-

nation is guaranteed but it is not OLPJA1
.

Assume that a grammar G contains a cyclicly unifiable sequence, R1, . . . , Rk. Whether

any of R1, . . . , Rk may ever be applied in any derivation tree admitted by G is an unde-

cidable problem. Therefore, G is not OLPJA1
although parsing termination may still be

guaranteed for it.

OLPJA1
does not allow any unit-rules sequences in which the same rule may be applied

more than once. There might be some unit-rules sequences in which at some point, after

applying the sequence rules repeatedly several times, unification between the resulting

feature structure and the head of the next rule may no longer hold, hence parsing will

terminate. In the next section we propose an improvement to OLPJA1
called OLPJA−l,

which allows such grammars.

6.3 Improvements

6.3.1 A decidable definition of OLP (version 2)

In the following section we present the second version of our OLP constraint. The previous

version of our constraint is more liberal than Johnson’s constraint, but since it does not

70

permit grammars which contain ε-rules, it is incomparable with Pereira and Warren’s

constraint. Furthermore, ε’s play a major role in many natural languages descriptions. In

this version we allow ε-rules and prove that our constraint is more liberal then the existing

decidable constraints.

We first create a set of ε-derivables E, consisting of the heads of all the rules that are

not considered to never derive an ε. We later use the set for defining our constraint.

In order to create the set E we provide a notion of a local-unifiability tree for each of

the grammar rules; the tree is constructed beginning each time with a different grammar

rule. The tree is used to verify whether there exists a path in which some rule may be

applied more than once sharing the same yield, ε.

Definition 6.3 (A local-unifiability tree). Let G = 〈R,L, As〉 be a unification gram-

mar. Let ρ ∈ R be some grammar rule. A tree is a local unifiability tree admitted by G

iff:

• The root is ρ’s head;

• The vertices are feature structures;

• If a vertex A has k descendants, B1, B2, . . . , Bk, then there exists a rule B →

B1, B2, . . . , Bk ∈ R and A is unifiable with B.

The edges represent unifiability between a vertex and some rule’s head, and the vertex’

daughters are the unifiable rule’s body. Thus the daughters are the most general feature

structures after applying the rule. Therefore the tree can be calculated off-line.

Definition 6.4 (ε-derivables set, E). Given a grammar G = 〈R,L, As〉, let Ed be the

set of rule’s heads that are not considered to never derive an ε by a local-unifiability tree

of depth at most d. Let dmax be the the size of R.

• E1 = {A | A→ ε ∈ R}

• Ed = {A | A → A1, . . . An ∈ R and there exists a sequence B1 . . . Bn such that for

each 1 ≤ i ≤ n, Ai is unifiable with Bi ∈ Eli where li < d}

Calculate Ed for d ≤ dmax. Let E be the union of all Ed’s for 1 ≤ d ≤ dmax.

Lemma 6.8. E is finite and can be calculated in a polynomial time.

71

Proof. E contains at most all rules’ heads, therefore the size of E is at most |R|.

Each Ei is calculated incrementally beginning with E1. In order to calculate each Ei,

all rules’ bodies should be checked for unifiability with elements of Ed for 1 ≤ d < i. The

union of these sets contains at most |R| elements. Let l be the maximum rule’s length,

therefore for each rule, at most (l − 1) × |R| unifiability checks should be made. Thus

each Ei can be calculated in at most (l − 1)× |R|2 steps and therefore E is calculated in

at most (l − 1)× |R|3 steps ((l − 1)× |R|2 × dmax).

Lemma 6.9. If A 6∈ E, where A is some rule’s head, then A may never derive the empty

string.

Proof. Assume towards a contradiction that A may derive the empty string. Therefore

there exists a derivation tree of some depth n whose root is A and each of its leaves is ε.

We next prove that each internal vertex on the derivation tree is unifiable with elements

of E. We define the internal vertices level as follows: the root is on level l = n, all internal

vertices on depth n− i are on level l = i (a bottom-up view).

The proof is By induction on l, the tree’s level, such that all internal vertices up to

level l are unifiable with elements of E.

For l = 1, since all internal vertices of depth n are ε’s, all of their mothers (at depth

n−1) are feature structures unifiable with ε-rule’s head. Thus all internal vertices on level

1 are unifiable with elements of E

Assuming that the induction hypothesis holds for l < n, so that all internal vertices

on each up to level l are unifiable with elements of E.

The induction step l = n, level n consists of A only therefore all internal vertices

N1, . . . , Nm on level l − 1 are derived by the rule A → N1, . . . , Nm. By the induction

hypothesis, each of these vertices is unifiable with elements of E, and thus, by the con-

struction of E, A ∈ E, contradiction.

We next construct the set UR which we later use in order to decide whether G is OLP.

UR is constructed as follows:

• UR contains all of G’s unit-rules.

• For any rule A → A1 . . . An ∈ R where n > 1, if A ∈ E, for 1 ≤ i ≤ n add the rule

A→ Ai to UR.

72

• For any rule A → A1 . . . An ∈ R if all of the bodies’ elements but one (Ai) are

unifiable with elements of E, add the rule A→ Ai to UR.

In this OLP version, as in the previous one, we would to prevent grammars which

generate derivation trees in which the same rule may be applied more than once sharing the

same yield. Since the grammar may contain ε-rules, it is not enough to search for unit-rules

chain. The purpose of the second bullet is to prevent applications of the same rule more

than once in a sub-derivation tree whose yield is ε (for example, the context-free grammar

of figure 6.5a). Thus preventing grammars generating infinitely deep sub-derivation trees

whose yield consists of ε’s only. The purpose of the third bullet is to consider rules that

all of their bodies’ elements but one are unifiable with elements in E as unit-rules, thus

preventing an application of the same rule more than once in a sub-derivation tree sharing

the same yield (For example the context-free grammar of figure 6.5b).

We later verify whether there exist UR chains which may indicate the possibility of

applying its dual rules more than once sharing the same yield.

Definition 6.5. Let R = R1, . . . , Rk (k ≥ 1) be a sequence of UR rules. R is cyclicly

unifiable iff there exists a sequence of MRSs σ1, . . . , σk+2 of length 1 (feature structures)

such that for 1 ≤ i ≤ k, σi → σi+1 by the rule Ri, and σk+1 → σk+2 by R1.

Figure 6.1 lists two grammar rules, ρ1, ρ2. The sequence 〈ρ1, ρ2〉 is cyclicly unifiable; ρ1

may be applied twice, the sequence 〈ρ2, ρ1〉 is not cyclicly unifiable; ρ2 cannot be applied

more than once.

Definition 6.6 (Jaeger’s OLP constraint (OLPJA2
)). A grammar G is OLP iff it

contains no cyclicly unifiable sequences.

Lemma 6.10. Let G be an OLPJA2
grammar. G does not permit any derivation trees in

which the same rule is applied more than once sharing the same yield.

Proof. Assume towards a contradiction that an OLPJA2
grammar G can generate a deriva-

tion tree which contains a sub-derivation in which the same rule is applied more than once

sharing the same yield. Therefore there exists a derivation tree such that some rule ρ

is applied more than once sharing the same yield as shown in figure 6.6. Let A be the

dominating feature structure from which the first application of ρ is applied. Let B be its

descendant from which ρ may be applied again sharing the same yield.

73

Such a sub-derivation can result only by consecutive applications of unit-rules, ε-

deriving rules and rules whose all of their bodies’ elements but one may derive an ε

(all other rules are branching rules in which at least two of the bodies’ element are non

ε-derivable, thus extending the yield).

Let V1, . . . , Vk be the applied rules and FS1, . . . , FSk−1 be the feature structures on

the path leading from A to B.

We construct the sequence V ′
1 , . . . , V

′
k as follows, for each 1 ≤ i ≤ k:

• If Vi is a unit-rule then V ′
i = Vi.

• If Vi = A→ A1, . . . , An, A ∈ E and FSi is on the j− th place on the derivation tree

after applying Vi, then V ′
i = A→ Aj .

• If Vi = A → A1, . . . , An, and all of the bodies’ elements but Aj are unifiable with

elements of E, then V ′
i = A → Aj (the derivation step from FSi−1 to FSi must

have been by Aj , otherwise since Aj is non ε-derivable, A and B would not share

the same yield).

Thus each of V ′
1 , . . . , V

′
k is a UR rule and all of them may be applied consecutively resulting

in FS1, . . . , FSk−1, B. Since V1 is applied more than once, the head of V ′
1 is unifiable with

B thus V ′
1 may be applied again resulting in FS. Therefore, the sequence V ′

1 , . . . , V
′
k

is cyclicly unifiable by A,FS1, . . . , FSk−1, B, FS. Hence G contains a cyclicly unifiable

sequence and it is not OLPJA2
, contradiction.

Lemma 6.11. The depth of any OLPJA2
derivation tree for a string of n symbols is

bounded by |R| × n.

Proof. Let G be an OLPJA2
grammar. By lemma 6.10, the maximum depth of a sub-

derivation sharing the same yield is bounded by |R|, thus in every derivation tree after at

most R derivation steps sharing the same yield there must be either a terminating node

or an application of a rule expanding the yield. Therefore, in order to generate a string of

n symbols, the depth of every derivation tree is at most |R| × n.

Corollary 6.12. Parsing termination is guaranteed for OLPJA2
grammars.

Proof. Since the depth of every derivation tree admitted by an OLPJA2
grammar is

bounded by |R| × n, it is possible to enumerate the derivation trees that have a given

74

string as their yield, therefore parsing termination and decidability of the recognition

problem are guaranteed.

Theorem 6.13. It is decidable whether a grammar is OLPJA2
.

Proof. The algorithm is listed in figure 6.7.

Since the set of UR rules consists of unit-rules only, the algorithm for deciding OLPJA1

of section 6.1.1 can be also used for deciding OLPJA2
given a UR set.

Evaluation

OLPJA2
is more liberal than OLPJA1

; since the set of unit-rules is a subset of UR, any

grammar satisfying OLPJA1
would also satisfy OLPJA2

.

Unlike version 1, any OLPPW grammar G is also OLPJA2
, otherwise, G contains

cyclicly unifiable sequences and thus the same rule may be applied more than once sharing

the same yield resulting in an infinitely ambiguous context-free backbone (by lemma 3.1).

OLPJA2
is still not as liberal as the undecidable constraints, but it can be tested

efficiently.

Figure 6.8 depicts the revised inter-relations hierarchy diagram of the OLP definitions

including OLPJA2
.

6.3.2 A decidable definition of OLP, OLPJA−l

We extend the class of OLPJA2
grammars by allowing UR rules sequences whose equivalent

rules may be applied at most a constant number of times. The improved constraint is called

OLPJA−l, where l is an arbitrary number:

Definition 6.7. A sequence of UR rules R1, . . . , Rk is l-cyclicly-unifiable iff (R1, . . . , Rk)
l

is cyclicly unifiable.

Definition 6.8. A grammar G is OLPJA−l iff it contains no l-cyclicly-unifiable sequences.

The grammar of figure 6.3 is not OLPJA2
, but it is OLPJA−2, its first rule may be

applied repeatedly at most twice, therefore the sequence 〈ρ1, ρ1〉 is not cyclicly unifiable.

Parsing termination is guaranteed for OLPJA−l grammars; since the grammar contains

no l-cyclicly-unifiable sequences, the depth of any sub-derivation sharing the same yield

75

is bounded by l times the number of grammar rules (where l is a constant number).

Therefore, the depth of every derivation tree whose yield is of length n admitted by an

OLPJA−l grammar G is bounded by (l × |R|)× n.

OLPJA−l is decidable; the algorithm for deciding OLPJA2
of figure 6.7 can be extended

in order to decideOLPJA−l, the only difference being that on each cycle is cyclicly unifiable

is called with some cyclic rotation of (V1, . . . , Vk)
l. is cyclicly unifiable is unchanged. The

algorithm for deciding OLPJA−l is listed in figure 6.9.

As shown above, the grammar of figure 6.3 is not OLPJA2
, but it is OLPS and

OLPJA−2. OLPJA−l is an improvement to OLPJA2
, but it is still not equivalent to the

class of OLPS grammars; a grammar G is OLPS if there exists a finite ranged function

satisfying the constraint, meaning there exists some l such that |range(F)| = l. Given a

natural number l it is decidable whether G is OLPJA−l. But the question whether there

exist some value of l such that G is OLPJA−l is undecidable.

6.3.3 A decidable definition of OLP, OLPJA−rot

A cyclicly unifiable sequence of UR rules may have some cyclic rotation which is not

cyclicly unifiable. A grammar containing such sequences is not OLPJA2
(e.g. the grammar

of figure 6.1: the sequence 〈ρ1, ρ2〉 is cyclicly unifiable, but the sequence 〈ρ2, ρ1〉 is not

cyclicly unifiable). As we prove below, if a sequence of UR rules has some cyclic rotation

which is not cyclicly-unifiable, then none of its rotations is 2-cyclicly-unifiable, thus in every

rotation none of the rules may be applied more than twice (when applied consecutively

together). We would like to extend the class of OLPJA2
grammars by allowing such

sequences.

Proposition 6.14. Let R = R1, . . . , Rk be a cyclicly unifiable sequence. If there exists

some cyclic rotation V = V1, . . . , Vk of R such that V is not a cyclicly unifiable sequence,

then it is possible to apply each rule at the sequence consecutively at most twice. Therefore,

neither R nor any of its rotations is 2-cyclicly-unifiable.

Proof. Let R be a cyclicly unifiable sequence. Let V be a cyclic rotation of R i positions

to the right which is not cyclicly unifiable. Consider a sequence of MRSs, σ1, σ2, . . . , σk+2,

satisfying R’s cyclicly-unifiability. V is not cyclicly unifiable, therefore there exist some

rule, Vj , which may not be applied. Consider the most general sequence of MRSs, ρ1 =

76

〈[]〉, ρ2, . . . , ρj , such that for x < j, each ρx is unifiable with Rx’s head resulting in ρx+1

and for x = j, ρj is not unifiable with Rj ’s head.

• For each 1 ≤ x ≤ j, ρx v σx+i:

By induction on j,

For j = 1, [] v σi+1

Assuming that the induction hypothesis holds for j ≤ j − 1, so that for each 1 ≤

x ≤ j, ρx v σx+i.

The induction step, j = j, by the induction hypothesis, ρj−1 v σj−1+i. ρj , σj+i are

resulted by applying the same rule, Ri+j−1, on ρj−1, σj−1+i correspondingly. Thus

ρj v σj+i.

• i+ j > k + 1:

Assume towards a contradiction that i + j ≤ k + 1, by the above, ρj v σi+j , ρj is

not unifiable with Ri+j ’s head, therefore σi+j is not unifiable with Ri+j ’s head, in

contradiction to the fact that R is cyclicly unifiable.

• i + j < i + k + 2: since V is not a cyclicly unifiable sequence j must be less than

k + 2, otherwise all of the sequence rules may be applied.

• None of the sequence rules may be applied consecutively more than twice:

By the above, ρ1 = 〈[]〉, ρ2, . . . , ρj is the most general sequence of MRSs after ap-

plying V1, . . . , Vj−1 (or alternatively Ri+1, . . . , Rk, R1, . . . , Ri+j−1).

Since ρj v σi+j and ρj is not unifiable with Vj ’s head (or alternatively Ri+j) then

neither σi+j nor any other resulting MRS after applying Vj−1 is unifiable with Vj ’s

head (since i + j > k + 1, Vj−1 is applied after applying at least all of V1, . . . , Vj−2

consecutively). Thus, the sequence rules cannot be applied consecutively more than

once.

Therefore, for each cyclicly unifiable rotation of the sequence none of the rules may be

applied more than twice when applied consecutively together, thus none of the sequence

rotations is 2-cyclicly-unifiable.

Thus OLPJA2
can be improved into OLPJA−rot:

77

Definition 6.9. A sequence of UR rules R = R1, . . . , Rk (k ≥ 1) is rotating cyclicly

unifiable iff every cyclic rotation of R is cyclicly unifiable.

Definition 6.10. A grammar G is OLPJA−rot iff it contains no rotating cyclicly unifiable

sequences.

The grammar of figure 6.1 is not OLPJA2
, but it is OLPJA−rot, since its only cycle

{ρ1, ρ2} is not a rotating cyclicly unifiable sequence.

An OLPJA−rot grammar contains no rotating cyclicly unifiable sequences, therefore

any OLPJA−rot grammar G is also OLPJA−2 and thus parsing termination is guaranteed

for OLPJA−rot grammars.

OLPJA−rot is decidable, the algorithm for deciding OLPJA−rot is listed in figure 6.10.

78

An algorithm for deciding OLPJA1

scan grammar(G): Boolean

Input: A unification grammar G.
Output: True iff G is OLPJA1

.

Construct a directed unit-rules transitions graph, UTG, where

Each vertex is a unit-rule ρ ∈ R where |ρ| = 2.

There exists a directed edge from vertex 〈A1, A2〉 toward vertex 〈B1, B2〉
iff B1 is unifiable with A2.

For each cycle C =C1, . . . , Ck, C1 in UTG:

for i from 0 to k − 1

Let V1 . . . Vk be the cyclic rotation of C, i positions to the right.

If is cyclicly unifiable(V1, . . . , Vk)

Return FALSE

Return TRUE.

is cyclicly unifiable(V1, . . . , Vk): Boolean

FS = [] /* the most general feature structure */

for i from 1 to k

Vi = 〈Hi, Bi〉 is the current rule.

if FS tHi fails

Return FALSE

else ((FS, 1) t (Vi, 1) = (FS′, V ′
i)),where V

′
i = (H ′

i, B
′
i)

FS = B′
i /* unification in context */

if FS tH1 fails

Return FALSE

Return TRUE

Figure 6.2: An algorithm for deciding OLPJA1
.

79

As =
[

f : 〈tb , tb 〉
]

R =











ρ1 :
[

f : 〈tb | 1 〉
]

−→
[

f : 1

]

ρ2 :
[

f : 〈 〉
]

−→
[

f : 〈tb , tb 〉
] [

f : tb
]











L(b) =
{[

f : tb
]}

[

f : 〈tb , tb 〉
]

[

f : 〈tb 〉
]

[

f : 〈 〉
]

[

f : 〈tb , tb 〉
] [

F : tb
]

...

Figure 6.3: An example OLPS grammar, GS and its derivation form.

80

Hierarchy for skeletal grammars:

First definition of OLPJO .

DB FA HP

OLPS OLPJA1

OLPPW OLPJO

Second definition of OLPJO .

DB FA HP

OLPS OLPJA1

OLPPW OLPJO

Hierarchy for general unification grammars:

DB FA HP

OLPS OLPJA1

Figure 6.4: Revised hierarchy diagram, OLPJA1

P → PP P → PQ

P → ε P → b

Q→ ε

(a) (b)

Figure 6.5: Motivation for UR rules

81

����� �

� � � �

�	� �

�

� � � �� � �
�
 � ���

Figure 6.6: An example of derivation tree such that A dominates B, and they are both
sharing the same yield and unifiable with ρ’s head.

82

An algorithm for deciding OLPJA2

scan grammar(G): Boolean

Input: A unification grammar G.
Output: True iff G is OLPJA2

.

Construct E and UR as instructed above.

Construct a directed UR rules transitions graph, UTG, where

Each vertex is a UR rule ρ ∈ R where |ρ| = 2.

There exists a directed edge from vertex 〈A1, A2〉 toward vertex 〈B1, B2〉
iff B1 is unifiable with A2.

For each cycle C =C1, . . . , Ck, C1 in UTG:

for i from 0 to k − 1

Let V1 . . . Vk be the cyclic rotation of C, i positions to the right.

If is cyclicly unifiable(V1, . . . , Vk)

Return FALSE

Return TRUE.

is cyclicly unifiable(V1, . . . , Vk): Boolean

FS = [] /* the most general feature structure */

for i from 1 to k

Vi = 〈Hi, Bi〉 is the current rule.

if FS tHi fails

Return FALSE

else ((FS, 1) t (Vi, 1) = (FS′, V ′
i)), whereV

′
i = (H ′

i, B
′
i)

FS = B′
i /* unification in context */

if FS tH1 fails

Return FALSE

Return TRUE

Figure 6.7: An algorithm for deciding OLPJA2
.

83

Hierarchy for skeletal grammars:

First definition of OLPJO .

DB FA HP

OLPS OLPJA2

OLPPW OLPJO

Second definition of OLPJO .

DB FA HP

OLPS OLPJA2

OLPPW OLPJO

Hierarchy for general unification grammars:

DB FA HP

OLPS OLPJA2

Figure 6.8: Revised hierarchy diagram, OLPJA2

84

An algorithm for deciding OLPJA−l

is olpja−l(G, l): Boolean

Input: A unification grammar G and a natural number l > 0.
Output: True iff G is OLPJA−l.

Construct E and UR as instructed above.

Construct a directed UR rules transitions graph, UTG, where

Each vertex is a UR rule ρ ∈ R where |ρ| = 2.

There exists a directed edge from vertex 〈A1, A2〉 toward vertex 〈B1, B2〉
iff B1 is unifiable with A2.

For each cycle C =C1, . . . , Ck, C1 in UTG:

for i from 0 to k − 1

Let V1 . . . Vk be the cyclic rotation of C, i positions to the right.

If is cyclicly unifiable((V1, . . . , Vk)
l)

Return FALSE

Return TRUE.

Figure 6.9: An algorithm for deciding OLPJA−l.

An algorithm for deciding OLPJA−rot

is olpja−rot(G): Boolean

Input: A unification grammar G.
Output: True iff G is OLPJA−rot.

Construct E and UR as instructed above.

Construct a directed UR rules transitions graph, UTG, where

Each vertex is a UR rule ρ ∈ R where |ρ| = 2.

There exists a directed edge from vertex 〈A1, A2〉 toward vertex 〈B1, B2〉
iff B1 is unifiable with A2.

For each cycle C =C1, . . . , Ck, C1 in UTG:

for i from 0 to k − 1

Let V1 . . . Vk be the cyclic rotation of C, i positions to the right.

If !is cyclicly unifiable(V1, . . . , Vk)

Return TRUE

Return FALSE.

Figure 6.10: An algorithm for deciding OLPJA−rot.

85

86

Chapter 7

Conclusions

In this research we have examined variants of the off-line parsability constraint. We used

some grammar examples to emphasize the differences between the several OLP variants.

There exist several variants of OLP suggested by several researchers some of which which

were suggested without recognizing the existence of all other variants. We have made a

comparative analysis of the several different variants for the first time and reached some

hierarchy among them in terms of the classes of grammars each variant allows.

Several researchers (Haas, 1989; Torenvliet and Trautwein, 1995) conjecture that OLP

is undecidable; it is undecidable whether a grammar satisfies the constraint, although none

of them provides any proof of it. In chapter 5, we provide one of our main contributions,

undecidability proofs for three of the undecidable OLP variants: Finite Ambiguity, Depth-

Boundedness and Shieber’s constraint. We use a reduction from the Turing machines

halting problem on the empty input to a unification grammar and show that by deciding

whether a grammar is OLP we are also able to decide whether a Turing machine M

terminates on the empty input ε.

In chapter 6 we provide our main contribution, a novel OLP constraint, a decidable

constraint. Our constraint is applicable to all unification grammar formalisms. It is

more liberal than the existing decidable constraint and unlike all definitions that are

applicable to general unification grammars it can be tested efficiently. In this chapter we

also provide an algorithm for deciding whether a grammar satisfies the constraint as well

as an evaluation of our constraint compared with the other OLP variants and place our

constraint in the OLP hierarchy diagram. We also provide some improvements to our

87

constraint.

As for future work, while comparing our OLP constraint to Shieber’s constraint, we have

proved that a grammar satisfying Shieber’s does not necessarily satisfy our constraint, but

we have not been able to prove that other direction. We tend to believe that since these

two condition impose unrelated restriction, they are incomparable; non of them contains

one another, meaning there might also be some grammars satisfying our constraint which

do not satisfy Shieber’s constraint, but we have not been able to come up with such

grammars.

We provide some improvements to our constraint, but we would like to get some more

opinions and views on direction on how our constraint may be improved even more.

There exist some OLP variants which are applicable only to unification grammar for-

malisms which assume an explicit context-free backbone. General unification grammars

do not necessarily yield an explicit context-free backbone. We intend to better understand

these skeletons and perhaps devise an algorithm for extracting such a skeleton when it is

not explicit.

References

Bob Carpenter. 1992. The Logic of Typed Feature Structures. Cambridge Tracts in

Theoretical Computer Science. Cambridge University Press.

Noam Chomsky. 1975. Remarks on nominalization. In Donald Davidson and Gilbert H.

Harman, editors, The Logic of Grammar, pages 262–289. Dickenson Publishing Co.,

Encino, California.

Nissim Francez and Shuly Wintner. In preperation. Feature structure based linguistic

formalisms.

G. Gazdar, E. Klein, G. Pullum, and I. Sag. 1985. Generalized Phrase Structure Grammar.

Harvard University Press.

Andrew Haas. 1989. A parsing algorithm for unification grammar. Computational Lin-

guistics, 15(4):219–232.

88

Mark Johnson. 1988. Attribute-Value Logic and the Theory of Grammar. CSLI Lecture

Notes. CSLI.

Ronald M. Kaplan and Joan Bresnan. 1982. Lexical-functional grammar: A formal system

for grammatical representation. The MIT Press, page 266.

Martin Kay. Functional unification grammar: A formalism for machine translation. pages

75–78.

Jonas Kuhn. 1999. Towards a simple architecture for the structure-function mapping.

Proceedings of the LFG99 Conference.

Fernando C. N. Pereira and David H. D. Warren. 1980. Definite clause grammars for

language analysis. In Karen Sparck-Jones Barbara J. Grosz and Bonnie Lynn Webber,

editors, Readings in Natural Language Processing, pages 101–124. Morgan Kaufmann,

Los Altos.

Fernando C. N. Pereira and David H. D. Warren. 1983. Parsing as deduction. Proceedings

of ACL - 21.

Carl Pollard and Ivan A. Sag. 1986. Head Driven Phrase Structure Grammar. Center for

the Study of Language and Information, Stanford, CA, USA.

Stuart M. Shieber. 1986. An Introduction to Unification Based Approaches to Grammar.

CSLI Lecture Notes. CSLI.

Stuart M. Shieber. 1992. Constraint-based grammar formalisms. MIT Press.

Leen Torenvliet and Marten Trautwein. 1995. A note on the complexity of restricted

attribute-value grammars. ILLC Research Report and Technical Notes Series CT-95-

02, University of Amsterdam, Amsterdam.

Shuly Wintner and Nissim Francez. 1999. Off-line parsability and the well-foundedness

of subsumption. Journal of Logic, Language and Information, 8(1):1-16, January.

89

