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Abstract. Child language acquisition, one of Nature’s most fascinating phenom-
ena, is to a large extent still a puzzle. Experimental evidence seems to support
the view that early language is highly formulaic, consisting for the most part
of frozen items with limited productivity. Fairly quickly, however, children find
patterns in the ambient language and generalize them to larger structures, in a
process that is not yet well understood. Computational models of language acqui-
sition can shed interesting light on this process. This paper surveys various works
that address language learning from data; such works are conducted in different
fields, including psycholinguistics, cognitive science and computer science, and
we maintain that knowledge from all these domains must be consolidated in order
for a well-informed model to emerge. We identify the commonalities and differ-
ences between the various existing approaches to language learning, and specify
desiderata for future research that must be considered by any plausible solution
to this puzzle.

1 Introduction

Language acquisition is one of Nature’s most fascinating puzzles. Human languages are
extremely complex systems, yet (most) children acquire them naturally, fairly quickly
and seemingly effortlessly [24, p 144]. Research in language acquisition attempts to
study the mechanisms of this puzzle in order to explain the very nature of language
itself: the primary cognitive capacity which makes us human.

Two competing theories of language acquisition dominate the linguistic and psycho-
linguistic communities [60, pp. 257-258]. One, the nativist approach, originating in
Chomsky [21},122,23] and popularized by Pinker [50], claims that the linguistic capacity
is innate, expressed as dedicated “language organs” in our brains; therefore, certain
linguistic universals are given to language learners for free, requiring only the tuning
of a set parameters in order for language to be fully acquired. The other, emergentist
explanation [, 61), 142, 147, 143, |44, 60], claims that language emerges as a result of
various competing constraints which are all consistent with general cognitive abilities,
and hence no dedicated provisions for universal grammar are required. Consequently,
“[linguistic universals] do not consist of specific linguistic categories or constructions;
they consist of general ... cognitive abilities” [59, p. 101]. Furthermore, language is
first acquired in an item-based pattern: “[young children] do not operate on the basis of
any linguistic abstractions, innate or otherwise. Fairly quickly, however, they find some
patterns in the way concrete nouns are used and form something like a category of a
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noun, but schematization across larger constructions goes more slowly. The process of
how children find patterns in the ambient language and then construct categories and
schemas from them is not well understood at this point.” [59, pp. 106-107].

Computational models can shed new light on language acquisition processes and
provide new insights into the nativist vs. emergentist debate. Three related fields of
research address grammar induction from data [4]: “applied” grammar induction in
linguistics; empirical (computational) grammar induction; and formal (mathematical or
logical) grammar induction. Adriaans and van Zaanen [4] conclude that “it is time to
remove the (artificial) boundaries and combine the research performed within each sub-
field.” In this paper we survey several approaches to language learning from data and
assess their contribution to a clearer picture of child language acquisition. We review
existing work with an eye to consolidating the “applied” and “empirical” approaches
to grammar induction. We then propose future research directions that aim at a better
explanation of early stages of human language acquisition.

This paper is structured as follows. Section 2] defines the language learning task
in a general way, indicating in what ways different approaches may vary. Section [3]
discusses the difficult issue of evaluating the performance of models and algorithms
that address such tasks. We then survey existing approaches in three classes: works
whose motivation is to explain child language acquisition from a cognitive perspective
(Section [4.1)); works that aim to devise an efficient mechanism for inducing (formal)
grammars from raw data (Section[4.2)); and a few recent works that try to consolidate
some aspects of the two approaches (Section[d.3). Finally, we propose in SectionBlsome
directions for future research that consolidate the benefits of rigorous computational
models backed up by solid psycholinguistic findings.

2 The Language Learning Task

The task that we focus on is language learning: a learner, be it a child or a computer
program, is presented with data, in the form of raw utterances. To approximate the fact
that human learning is grounded in real-world situations, the raw data are sometimes
annotated with part-of-speech (POS) categories, syntactic information or even seman-
tic information. The learner’s task is to generalize the data and induce a model of the
grammatical utterances (in other words, a grammar). In the formal sense, a grammar
is a generative device that defines a set of expressions, its language, and induces some
structure (e.g., trees) on expressions in the language. A grammar can be expressed ex-
plicitly as a set of rules, perhaps with probabilities attached to them; or implicitly as
a set of “operations” on strings, with or without “slots” (which are the equivalent of
non-terminal symbols in a formal setting). The success of the learner can be evaluated
by testing its grammar on new utterances. Two aspects of the grammar can be tested:
its ability to generate new utterances; and its ability to assign a valid structure to the
grammatical utterances.

Language learning tasks rely on the existence of large text corpora that document
language use, both for training and for evaluation [25, 49, 31]]. Computational linguis-
tic tasks standardly use manually-annotated sentences from the Penn Tree Bank (PTB,
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Marcus et al. [48]), whose data are taken from the Wall Street Journal. Grammar induc-
tion tasks are sometimes limited to a subset of the PTB, where sentences are limited to
length of 10 or less (WSJ10). Clearly, this is a genre that is not well-defined linguisti-
cally, and quite likely irrelevant for language acquisition investigations.

In order to investigate the development of child language, corpora which docu-
ment linguistic interactions involving children are needed. The CHILDES database
[41], a 300MB corpus in over 25 languages, contains transcripts of spoken interac-
tions between children at various stages of language development and their caretakers.
CHILDES provides vast amounts of useful data for linguistic, psychological, and soci-
ological studies of child language development. To date, this database has served as the
basis for over 1500 published articles and as a secondary resource in hundreds of other
studies. Many of the CHILDES corpora are morphologically analyzed and annotated in
a compatible manner, which makes it possible to compare language development across
different languages. Recently, the English CHILDES database has been annotated with
syntactic structures in the form of grammatical relations [52, 53, 54]; similar efforts
are currently underway for several other languages. The CHILDES database thus pro-
vides a perfect environment for investigating language development and for evaluating
psycholinguistic hypotheses.

Computational approaches to language learning from data, and in particular the
works surveyed in Section[] can be distinguished along the following axes:

The data. What data are presented to the learner? Cognitively-motivated approaches
(Section assume that the data are raw texts, usually of child-directed speech
(but sometimes including also child speech, i.e., utterances produced earlier by the
same child). Sometimes, these data are accompanied by some form of annotation,
aiming to reflect the grounding of language in real-life situations. Grammar induc-
tion algorithms (Section [4.2) often do not assume that the data are linguistic; and
when they are, they are often annotated with POS tags, and sometimes only the
sequences of POS tags are considered, ignoring the actual words. Training material
in this paradigm consists mainly of the WSJ, and in particular WSJ10.

The task. What is the learner required to learn? Is it a language as a set of strings, or
are these strings augmented by (usually, tree-) structures?

The grammar. What formalism is the grammar expressed in? Grammar induction al-
gorithms are usually formal and explicit in their definition of the class of models
that they attempt to learn. These can be deterministic finite-state automata (FSA) or
Hidden Markov Models (HMMs) or Probabilistic context-free grammars (PCFGs)
or Tree substitution grammars, with a variety of probabilistic models. Cognitive
models are more vague on this point, and may represent the grammar implicitly
and informally, sometimes in a rather ad-hoc manner.

Evaluation. Grammar induction algorithms are evaluated on annotated data; funda-
mentally, they are expected to learn the bracketing (and, sometimes, also the la-
bels) of manually annotated corpora. In contrast, works in the cognitive tradition
evaluate on child language data, which is crucially not annotated. We elaborate on
evaluation in the next section.
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3 Evaluation

Several factors make the evaluation of language learning systems difficult. First, es-
pecially when child-data are concerned, the training data provided to the system are
extremely limited: even with high-density corpora, it is assumed that the corpus reflects
less than 10% of the utterances the child was exposed to during a very short period (see
Rowland et al. [51]). Second, it is unclear whether the task should be evaluated by test-
ing the strings generated by the grammar, or also the structures that the model induces
on them. The latter task is more demanding, and it is usually unclear what the “correct”
structures are that the grammar should produce. Clearly, the PTB is inappropriate to
investigate child language; and WSJ10 in particular is a very artificial genre. Finally,
while it is relatively easy to measure the portion of the target utterances that the system
properly generated, it is much harder to asses the proportion of the utterances generated
by the model that are indeed grammatical.

In the computational linguistics community, similar tasks are standardly evaluated
using two measures adopted from Information Retrieval: precision and recall, and their
harmonic mean, f-score. Informally, recall measures the ability of the grammar to ac-
count for new utterances: it is roughly the proportion of the strings in the test data that
can be correctly generated by the grammar. Precision, on the other hand, measures the
extent to which grammar-generated strings are observed in the test data. In the extreme
case, one can always maximize either of the two measures: if a grammar generates
nothing its precision is 100% (but its recall is 0); if it generates everything its recall is
100% (but its precision is very low). The f-score therefore balances between the two.
For language learning tasks, however, while recall is relatively easy to asses, precision
is much harder: for it is possible to present sentences from a test corpus to a learner and
verify that the learner accepts them as grammatical; but it is more difficult to ask the
learner to generate utterances, and then verify that they are correct.

van Zaanen and Geertzen [66] identify four types of approaches to the evaluation
of learning algorithms, each with is own problems. The looks good to me approach
(namely, informal evaluation by the author of a system) is obviously subjective and
unreliable. An alternative is rebuilding a-priory known grammars; here; the authors of
a system construct a small grammar whose sentences are used as input for the lan-
guage learning system. This is again subjective, and in addition only toy grammars can
be build in this fashion. The language membership method amounts to measuring the
precision and recall of a learner with respect to a test corpus, which is problematic as
explained above; finally, comparison against a treebank is particularly problematic for
child language, and is additionally very brittle [66].

To address the problem of evaluation, Chang et al. [20] propose a measure, called
sentence prediction accuracy (SPA), which basically quantifies the extent to which a
learner (be it a child or a computer program) can correctly order the words in a target
utterance, when these words are unordered. While SPA overcomes some problems (e.g.,
it is independent of the language and of any underlying linguistic theory), it is a very
inaccurate measure of grammaticality. It is extremely strict, in the sense that a mistake
in the placement of a single word renders the entire utterance unaccounted for; and it
also implies that if two grammatical utterances differ in their word order (e.g., because
an adverbial is shifted in a sentence), only one of them will be counted as correct by
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the SPA measure. Finally, the measure was only tested on extremely short utterances. [
We conjecture that it will not scale up to longer sentences (indeed, the results of Chang
et al. [20] indicate that the SPA measure correlates better with the specific corpus used
for learning than with the learning algorithm).

An alternative method for estimating both precision and recall is proposed by Brod-
sky et al. [18]. Based on the observation that two constrained models that are trained
on disjoint corpora are unlikely to agree on the grammaticality of any given sentence, it
uses large corpora to train language models that are then used to assess the probability
of the test sentences. A full evaluation of this method is still underway.

Finally, Kol et al. [36] recently proposed a first approximation for assessing the level
of over-generation in a learner. They measure the precision of a learner by training it
on a large corpus. Specifically, working with CHILDES data, in which files are ordered
chronologically, they train the model on early files, plus 90% of the (child-directed and
child) utterances in the current file; they then test on the remaining 10% of the child
utterances in the current file. To assess over-generation, they repeat the same procedure,
training on the same data but evaluating on child utterances (longer than one word) in
reverse word order. Ideally, a learner should perform well on the first task and very
poorly on the second.

4 Existing Approaches

4.1 Cognitively-Motivated Computational Approaches to Child Language
Acquisition

Within the cognitive linguistics paradigm, computational approaches to language learn-
ing investigate the degree to which the utterances a child is exposed to can be used to de-
termine the multi-word expressions the same child will produce during early language
development. Lieven et al. [40] suggest that “a lexically-based positional analysis can
account for the structure of a considerable proportion of children’s early multi-word ut-
terances.” This is tested on eleven children aged between 1;0 and 3;0. On average, 60%
of all the children’s multi-word utterances are defined as frozen by the analysis. These
results are replicated by Lieven et al. [38], this time focusing on one child, but using a
high-density corpus consisting of 5 hours of recordings per week (together with a ma-
ternal diary for the previous 6 weeks.) The findings are that only one third of the multi-
word utterances of the child are novel, and three quarters of those can be accounted for
by one operation only on the basis of previous utterances. Five types of “operations”
are defined which the child can use to construct a new utterance from fragments of
previously-heard
utterances.

Dabrowska and Lieven [26] identify two problems with the above method: first, “the
method does not provide an explicit description of the child’s linguistic knowledge.” In

! While this piece of data is missing in Chang et al. [20], it can be deduced that the average
length of an utterance in their corpus was less than 3. These figures are specified in Dabrowska
and Lieven [26], p. 446, presumably referring to the same corpus. There, the number of words
per utterance ranges between 1.56 (Brian, age 2;0) and 3.15 (Annie, age 3;0). Even in the adult
speech the average utterance length is 4.44).
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other words, no explicit model of linguistic knowledge, or grammar, is defined. Second,
“the method is too unconstrained since the five operations defined by the authors made
it possible, in principle, to derive any utterance from any string.” In other words, the
above models are over-generating. To overcome the problems, they propose two opera-
tions: juxtaposition and superimposition. Working with a dense corpus of two children
at ages 2;0 and 3;0, they divide the corpora into two parts: approximately the first 80%
of the utterances in each corpus are defined as the main corpus, and the remainder are
called fest. The focus is syntactic questions; for each such utterance in the test corpus,
called the rarget, they extract relevant component units from the main corpus. These
are utterances that share lexical material with the target. They then determine whether
the target can be produced from the extracted utterances by means of juxtaposition (i.e.,
concatenation) or superimposition. The latter operation is loosely defined; it amounts to
identifying similarities among patterns in the main corpus, and generalizing such pat-
terns to schemas with slots. Superimposition allows slots to be filled by lexical material.
Crucially, the corpora used in this research were manually annotated with semantic in-
formation. Superimposition is then constrained by the semantic type of the slot, such
that only fillers of the same type can be used. The results show that as much as 75%
of the questions at age 2;0 are immediate imitations of previous questions (this figure
goes down to as low as 21% at age 3;0); and all the rest can be generated with few (at
most 4) operations from previously-heard material.

Lieven et al. [39] adapt the previous research, extending it to four children. The
method, which is referred to as the traceback procedure here, is basically the same.
Again, the data are assumed to be semantically annotated and the semantic tags are used
in the definition of ‘slots’. The actual algorithm is not defined in sufficient detail (for
example, it is unclear how schemas with more than one slot are generated, or whether
there is an upper bound to the number of slots in a schema).

Bannard et al. [7] augment the traceback procedure by a trace forward procedure.
Here, the task of the learner is better defined: given a main corpus to learn from, the
learner has to extract a formal grammar by generalizing the utterances in the main
corpus. The grammar induction procedure is not described with sufficient rigor, but it is
clear that the emerging grammar is a context-free grammar with a single non-terminal
symbol. Rules are generated based on utterances that share lexical material, as above,
but the details are not specified. Out of the infinitely many possible grammars that fit
the data, Bannard et al. [7] select those that are most probable given the data, using a
Bayesian model with simple independence assumptions for optimizing the likelihood,
and minimum description length (MDL) assumptions of the prior. The results show
that the extracted grammars perform well both in terms of their recall and, in lieu of a
precision evaluation, in terms of their perplexity (defined informally as “how surprised
the model is by the data”).

In a series of works, Freudenthal et al. [28, 29, 30] develop the MOSAIC (Model
of Syntax Acquisition in Children) paradigm. This model takes as input corpora of
transcribed child-directed speech and learns to produce as output utterances that become
progressively longer as learning proceeds. The model is based on a hierarchical network
in which more deeply embedded nodes represent longer utterances, and where links
connect nodes to form certain generalizations. Crucially, the same corpus is given to
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the learner several times. While MOSAIC has been shown to properly simulate several
phenomena associated with early language acquisition in several languages, in part due
to its inherent bias towards learning from the edges of the utterance, it is not viewed as
a realistic model of the language acquisition process itself, but rather as one possible
implementation of inherent biases in learning.

4.2 Computational Grammar Induction

A different line of research falls under the category of grammar induction (or, more
specifically, computational grammar inference). Here the goal is to devise algorithms
that can learn accurate, compact models for identification of language (i.e., grammars)
from finite sets of examples [4]. Such approaches are usually not cognitively motivated;
Klein and Manning [32], p. 35, for example, explicitly mention that “the presented sys-
tem makes no claims to modeling human language acquisition,” and Borensztajn et al.
[17] add that their approach “has no pretense of being a model for language acquisi-
tion”; but the relation to the works discussed above is obvious. Formally, a finite set of
examples is consistent with infinitely many different grammars, and thus different ap-
proaches must somehow constrain or bias the set of hypotheses from which grammars
can be drawn [27].

The EMILE model [, 12, 3] attempts to learn the grammatical structure of a language
from positive examples, without prior knowledge of the grammar. It is based on the idea
that expressions of the same (syntactic) type can be substituted in the same context,
and hence it searches for clusters of expressions and contexts in the input, interpreting
them as grammatical types. The model then generalizes the sample and learns rules
of a context-free grammar. A related approach is Alignment-based Learning (ABL)
[63,164,162]. Given a corpus of sentences, an alignment learning phase first finds possi-
ble constituents by aligning pairs of sentences and identifying parallel strings. Strings
that are unequal in a pair of sentences are considered hypotheses. Then, non-terminal
types are assigned to hypotheses, merging different non-terminals that occur in the same
context. The result is an induced context-free grammar. While ABL and EMILE are im-
plemented differently, and EMILE only extracts a rule when sufficient support is avail-
able in the corpus whereas ABL stores all possible rule candidates and selects the best
ones [65], the two systems are similar in spirit. In particular, both can learn recursive
structures. The two systems were evaluated on Dutch corpora; the metric was unlabeled
bracketing f-score. Whereas EMILE reached an f-score of 0.25-0.41 (depending on
the corpus), ABL’s performance was much higher, at 0.39-0.62 [65].

Stolcke and Omohundro [58] propose a technique called Bayesian Model Merging
(BMM): first, strings that are observed in the data are incorporated by adding ad-hoc
rules to form an initial grammar; then, the grammar is made more concise by merg-
ing some of the rules. Stolcke and Omohundro [58] discuss two incarnations of their
technique, one in which the models are probabilistic context-free grammars (PCFGs),
and another in which they are hidden Markov models (HMMs). In the former, rules
are merged by identifying non-terminal symbols A and B if the rule A — B is in the
grammar; this leads to (over-) generalizations, and renders the grammar more compact.
In the latter, two HMM states are merged to a state that inherits the union of their tran-
sitions (and emission probabilities). In both cases, the prior probabilities are optimized



Computational Models of Language Acquisition 93

by minimizing their description length. Stolcke and Omohundro [58] discuss the appli-
cation of BMM to natural language learning, but do not provide quantitative evaluation
results.

In a series of works, Klein and Manning [32,133,135] present the constituent-context
model (CCM). Here the task is to determine the correct bracketing of sentences in the
input: the assumption is that the input is tagged with parts of speech (POS); in fact, the
algorithm ignores the actual words and works on POS tag sequences. The output is a
tree structure without the labels of non-terminal symbols. The model is a generative one;
first, an initial bracketing is chosen from some distribution and a sentence is generated
given the bracketing, assuming that the context and yield of each span are independent
of each other. Then, an EM algorithm is run on the model to induce structure, assuming
that the sentence is observed but the bracketing is not. This model was evaluated on
the PTB WSJ10 subset, resulting in an f-score of 0.71, reducing about a quarter of
the errors of a trivial (right-bracnhing trees) baseline (which yields 0.60). This result
improves to 0.776 when the model is combined with a dependency parsing model in
subsequent work [34].

Data-oriented parsing (DOP, Bod et al. [15]) is a paradigm for supervised parsing
that differs from other approaches in that it considers all the possible structures given
in a training corpus, and estimates their likelihood from the data. It can then be used to
assign a structure to a new utterance by combining sub-trees from the training corpus.
In its unsupervised version [11,[12,[13], called U-DOP, the algorithm initially assigns
all possible unlabeled binary trees to an un-annotated training set, and then employs a
probabilistic model to determine the most likely tree for a new utterance (various proba-
bilistic models were investigated). The best results outperform the previous model, with
an f-score of up to 0.80 on WSJ10.

Various works address the issue of inducing labels for the unlabeled trees. Notably,
Borensztajn and Zuidema [[16] extend the BMM model of Stolcke and Omohundro 58],
but they assume that the input is already bracketed. Their algorithm then proceeds by
merging nonterminal labels to maximize a Bayesian objective function. The algorithm
is evaluated on the PTB WSJ10 subset, and shows best performance on the labeling task
(although when used only for bracketing, it is much inferior to competing algorithms).

While many grammar induction algorithms start with strings of POS tags, this is not
the case with Seginer [53], who uses lexical information (and does not assume known
POS tags). While other algorithms resort to unsupervised learning of POS tags, which
amounts to clustering, here the algorithm collects lists of labels for each word, based on
its neighbors, and uses these labels to parse. The parser is incremental, local and greedy,
and hence quite efficient. Evaluated on WSJ10, the results are an f-score of almost 0.76
when parsing begins from plain text.

Note that algorithms for inducing part of speech categories from raw data (i.e., unsu-
pervised POS tagging) abound, both in the cognitive linguistic literature (e.g., Li et al.
[37] and references therein) and in the computational linguistic literature (e.g., Banko
and Moore [3], Smith and Eisner [56]).
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4.3 Consolidating the Two Approaches

Most of the works described above fall into one of two classes: either the motivation
is to explain child language acquisition from a cognitive perspective (Section [d.1); or
it is to devise an efficient mechanism for inducing (formal) grammars from raw data
(Section[£.2). Very few works, and only recently, try to consolidate some aspects of the
two approaches.

The ADIOS system [57] implements a novel algorithm that learns a complex context-
free grammar from raw data. Based on a graph representation, the algorithm performs
segmentation and generalization of the input simultaneously. The system was applied
to several types of data, both linguistic (including CHILDES data) and non-linguistic
(protein sequences). Recall was evaluated automatically, while to assess precision hu-
man judgements were used. The results show that ADIOS is superior to other grammar
induction algorithms that can learn from raw data. In a subsequent work, Berant et al.
[9] observe that the algorithm does not deal well with complex texts and improve it by
applying a two-stage learning technique: first, sentences in the input are split to sub-
sentences on the basis of conjunctions in the text; then, the resulting simpler corpus is
processed as above. Precision was evaluated by feeding the sentences generated by the
learner to an alternative parser, and f-score varied between 0.24 and 0.39, depending
on the precise task. Brodsky et al. [1§] apply ADIOS to the full (English section of
the) CHILDES corpus. Training on 300,000 utterances and testing on 500, the system
reached a recall of 0.5 and precision of 0.63. Precision was again evaluated manually
by humans judging the grammaticality of 100 generated utterances.

Borensztajn et al. [[17] use the DOP paradigm as a vehicle for investigating psycho-
linguistic hypotheses. Specifically, they use the syntactically-anotated Brown corpus of
CHILDES [54] to learn DOP-style structures. These tree fragments are then used to
induce structure on utterances in the test corpus. This is an automatic approach to iden-
tifying the most probable multi-word units (constructions) in children’s utterances. The
main result is that abstraction, defined as the ratio between non-terminal and terminal
leaves in the tree fragments that represent constructions, increases with age. One of
the main drawbacks of this approach is that the grammar is induced from POS-tagged
and syntactically-annotated corpora; cognitively, this amounts to assuming that chil-
dren have access to the syntactic structure of the utterances they are exposed to, which
cannot be the case in early language acquisition.

5 Directions for Future Research

According to Edelman and Waterfall [27], p. 265, “of the three goals of linguistic the-
ory... the most promising one at present is, in fact, an algorithmic discovery procedure
for grammar.” Similarly, Adriaans and van Zaanen [4], p. 200 observe that “researchers
within the several sub-fields [linguistic, empirical and formal grammatical inference]
seem to have created certain boundaries between the fields” and conclude that “it is time
to remove the (artificial) boundaries and combine the research performed within each
sub-field.” We propose that future research should indeed consolidate well-established
findings of psycholinguistics with developments in computational linguistics to yield a



Computational Models of Language Acquisition 95

research program that is on one hand informed by our understanding of early language
acquisition, and on the other hand is rigorously defined and robustly evaluated.
We list below some desiderata for the kind of computational models that we envision.

Data. Unlike much work in the area of grammar induction algorithms (Section [£.2)),
research concerned with child language acquisition must be trained (and evaluated)
on dedicated corpora, of the kind exhibited by CHILDES. Ideally, they should be
tested on more than one language. Models can be trained on both child and child-
directed speech.

Task. We suggest that computational models of language acquisition focus on the eas-
ier task of learning language as a set of strings, leaving the induction of syntactic
structures to future research.

Grammar. Cognitive works (Section[d.T) tend to be more vague on the formal proper-
ties of the class of languages admitted by the models they suggest. A good model
must be explicit on this point. We believe that a reasonable language class for early
language (up to, say, three years of age) is a proper subset of the regular languages.
Models that can learn unrestricted context-free languages, for example, miss an
important point and are likely to over-generate.

Model. Works that are specifically designed to model early child language acquisition
should incorporate into the framework biases that reflect psycholinguistic models
of acquisition processes [46, 42]. These include item-based learning, rote learning
[45], left-edge biases [30], etc.

Evaluation. Clearly, evaluation is still an unsolved problem (Section [B), and much
work is still needed in this area. Still, and in contrast to some of the approaches
described in section 4.1l any computational model of language acquisition must be
rigorously evaluated on real data.

To further emphasize this last point, Kol et al. [36] conducted an alternative evaluation
of the traeback model [38,126,139,16,167]. They show that the original evaluation scheme
in these works is lacking, as it focuses on recall but completely ignores precision. As a
measure of over-generation, Kol et al. [36] apply the traceback method not just to child
utterances in the test corpus, but also to the same utterances in reverse order. While
the model can generate 64-64% of the genuine child utterances (showing reasonable
recall), it can also generate 42-50% of the reverse utterances, indicating a serious over-
generation problem.

One of the reasons for this problem is that the traceback model is not defined in a
sufficiently rigorous way. The sets of operations allowed for traceback is not fixed, and
changes from one work to another. Much of the work involved in applying the model to
data is done manually in a way that prohibits computational re-implementation.

In contrast, works such as those discussed in Section [£.2] are often evaluated on
WSIJ10, a clearly inadequate corpus for assessing child language development. Some of
them assume that the data are already annotated with parts of speech or even syntactic
information, an obviously unacceptable assumption when child language is concerned.
Language learning from sequences of POS-tags is a particularly bad example of how to
model child language acquisition.

Clearly, then, the benefits of these different approaches must be consolidated in order
for a formal, computational, linguistically- and cognitively-informed model of language
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acquisition to emerge. Such a model must be rigorously defined, in a way that lends
itself to computational implementation; formally, it should exhibit highly-retricted
computational expressivity; it should employ biases that correspond to established ob-
servations of child language research (such as item-based learning, rote learning [45],
left-edge biases [30], adherence to stages of acquisition [[19,/10], etc.) Only future works
that will correspond to such considerations will properly address the criticism of Bod
[14], whereby “almost any current linguistic theory ... has given up on the construction
of a precise, testable model of language use and language acquisition.”
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