# Probabilistic Models of Natural Language Processing Empirical Validity and Technological Viability

Khalil Sima'an

Institute For Logic, Language and Computation Universiteit van Amsterdam

FIRST COLOGNET-ELSNET SYMPOSIUM

Trento, Italy, 3-4 August 2002

Khalil Sima'an, Computational Linguistics, UvA

**Speech and Language Technology** 

What is common for these applications ?

- Document Retrieval, Document Categorization,…
- Question Answering, Information Extraction,  $\cdots$
- Text Summarizing, Dictation systems, Machine Translation,  $\cdots$
- Speech Understanding, Speech-based Dialogue systems,  $\cdots$

A Model of Natural Language Processing (N L P)?

## **Common Wisdom – Current Experience**

**Practice:** *advanced NLP models* do not work !

**Common Speech-Tech wisdom** 

Hiring linguistics hurts the company's shares

**Common IR-Tech wisdom** 

Linguistic models do not help retrieval

**Can there be a role for NLP in applications ?** 

**This talk:** Empirical Validity and Technological Viability

### **Empirical Validity vs. Technological Viability**

Empirically valid model: cognitive ? black-box view ?…

**Technologically viable model:** what applications/resources ?···

We leave psycholinguistics aside and concentrate now on the joint requirements (black-box model):

Technological: Correctness, robustness and efficiency

**Cognitive:** Correctness, robustness and efficiency

- Where does the common wisdom come from ?
- How can we meet these requirements ?

### The Paradigmatic Role of Syntactic Processing

Syntactic processing (parsing) is interesting because:

**Fundamental:** it is a major step to utterance understanding

Well studied: vast linguistic knowledge and theories

**Example role:** formal devices of syntactic processing can be examples for subsequent processing (semantics, discourse,...)

Infrastructure: data and test-suits are available

Exploitable: applications can benefit from good parsing

"Shallow parsing" is already entering applications

## **Structure of Talk**

- Set-theoretic (categorical) approach to parsing and where it fails
- Probabilistic approach: new life to the set-theoretic approach ?
- Advantages of the probabilistic approach: empirical validity
- Technological viability of the probabilistic approach
- Examples of existing parsing models
- A view on future research

## **Set-theoretic Approach to Parsing**

Assigning linguistic structure to input utterances with the goal of facilitating semantic interpretation.

A Language is a set of sentence-analysis pairs

- **Formal devices:** A language is described by a formal generative device e.g. Context-Free / Unification Grammar,...
- **Belief:** A formal grammar is suitable for processing utterances in order to extract syntactic structure

Does the set-theoretic approach satisfy the

requirements set on applied/cognitive models ?

### **Problems of Set-Theoretic Approach**

**Ambiguity:** Multiple analyses associated with the same sentence ! BUT: Humans do select a single preferred analysis

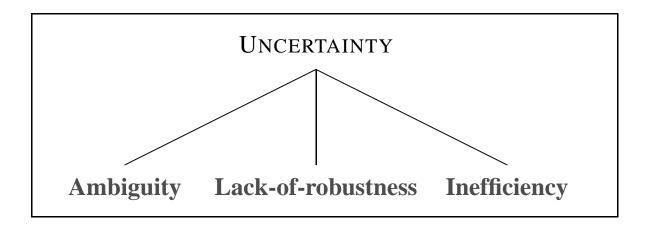
¬ **Robustness:** Input is not in the set describing the language ! BUT: Humans do understand ``weird" utterances

**Inefficiency:** *Worst case complexity* under grammar types !

BUT: Humans process utterances efficiently

Can the set-theoretic approach deal with these problems ?

### CLAIM: THREE FACES OF UNCERTAINTY



| Problem      | Uncertainty w.r.t.                      |
|--------------|-----------------------------------------|
| Ambiguity    | Output: which output is best ?          |
| ¬Robustness  | Input: what inputs to expect ?          |
| Inefficiency | Processing algorithm: how to navigate ? |

## **Ambiguity and Uncertainty**

Ambiguity due to contextual / linguistic / extra-linguistic factors, e.g.

- Word-sense: bank (of the river) vs. bank (e.g. ABN-AMRO)
- **Part-of-speech:** list as verb/noun; following as verb/adj/noun
- Sentence structure: I saw the man/dog with the telescope The telegraphy and telephone services are important

Uncertainty due to hazard (in technological applications) e.g.

- **Spelling:** I was teading, (teading  $\in$  {leading, reading, feeding,  $\cdots$ })
- Speech: Travel to Almelo/Ermelo/marmalade/Elsloo

## **Coverage and Robustness**

What utterances are "grammatical"? example problems:

- "Ungrammatical" use: He say no to mom ! (third person agreement)
- Infrequent use: Cats eat, tigers <u>devour</u> (subcat frames)

What utterances might occur in the input ? example problems:

- Speech utterances: repetitions, corrections, hesitations,...
- Communication noise: sending messages over a channel



Expectations "as in human processing", e.g.

Frequency: Does frequency of occurrence affect processing speed ?

**Domain:** What domain of language use ?

**Context:** Where a phrase is likely / unlikely to appear ?

**Prediction:** What to expect after seeing only part of an utterance ?

**Limited beam:** Why explore the whole space ?



In this *methodological* issue we think this could be **unwise**:

#### **Structure and Probability:**

Employ the set-theoretic approach as a **first informed approximation** of the preferred model structure, and recast the model in Probabilistic formulae.

#### **Structure and Data (Bayesian Learning):**

 $\arg max_{m \in Models} P(m \mid data) = \arg max_{m \in Models} P(m) \times P(Data \mid m)$ 

**Structured Probabilistic Language Models** 

## Language Models: Extending Sets

A *language model* is a probability mass function over utterances-analyses:

$$P: U \times T \to [0,1] \qquad \qquad \sum_{\langle u,t \rangle \in (U \times T)} P(\langle u,t \rangle) = 1$$

The probabilistic view provides:

- a generalization over sets + an established solution to uncertainty
- direct empirical interpretation: *Statistics*
- direct links to theories of *learning*
- methodological advantages, e.g. *model integration, optimization, hypothesis testing, evaluation*

## **Aspects of Language Models**

- How do language models:
  - $(Q_1)$  Achieve disambiguation/robustness/efficiency?
  - $(Q_2)$  Link to Learning, Statistics, (in)dependence and modularity?
  - ( $Q_3$ ) **Incorporate** formal languages (probabilistic grammars) ?
- Briefly on state of the art:
  - Ambiguity resolution: Memory vs. Dependencies.
  - Robustness: smoothing by hidden structure.
  - Efficiency: pruning and model specialization.



Given a language model *P*:

**Parsing utterances:** for an input utterance *u*, output the pair

 $\langle u,t\rangle^* = \arg\max_{\langle u,t\rangle} P(\langle u,t\rangle)$ 

**Ambiguous input:** for an ambiguous input  $U_x \subseteq U$ , output

$$u^* = \arg \max_{u \in U_x} \sum_{\langle u, t \rangle} P(\langle u, t \rangle)$$

How can we achieve correct disambiguation ?

## **Language Models and Robustness (***Q*<sub>1</sub> **cont.))**

A well-informed (e.g. linguistically) language model *P* might assign probability zero to some highly infrequent pair  $\langle u, t \rangle \in U \times T$ .

**Smooth** *P* to assign  $P(u,t) \neq 0$  (e.g. Good-Turing, Katz)

**Interpolate** a weaker language model  $P_w$  with P

$$P_i = \lambda P + (1 - \lambda) P_w$$

**Reveal latent** structure  $\mu$  for informed smoothing:

$$P(X) = \sum_{\mu} P(X,\mu) = \sum_{\mu} P(\mu) P(X|\mu)$$

How can we achieve suitable robustness?



Given an input utterance  $u = w_1, \dots, w_n$ :

- **Expectations:** a probability mass function  $P_e$  over subutterancesubanalysis pairs  $\langle u_1, t_1 \rangle$ , given some preceding part  $\langle u_0, t_0 \rangle$ :  $P(u_1, t_1 | u_0, t_0)$
- **Beam:** prune distribution of subanalyses for  $w_i, \dots, w_j$
- **Frequency:** compile *P* such that more frequent utterances can be retrieved faster

How can we achieve satisfying efficiency ?

### **Statistics, Learning and Model Integration** (*Q*<sub>2</sub>)

Methodological advantages of language models:

- Learning/Estimation: parameter  $\mu$  estimation from data D

| Maximum-A-Posteriori | $arg \max_{\mu} P(\mu D)$ | (Bayesian Updating) |
|----------------------|---------------------------|---------------------|
| Maximum-Likelihood   | $arg \max_{\mu} P(D \mu)$ | (Maximum-Entropy)   |
| • • • •              | :                         |                     |

Error-bounds: Bayesian classifiers.

- Model Integration: Noisy-Channel (explicit assumptions):

P(m,t|u) = P(m|t,u)P(t|u) (meaning, tree, utterance)

### **Probabilistic Grammars as Language Models** (Q<sub>3</sub>)

Extend formal grammars to become probabilistic grammars:

- **Parameters:** how to estimate probabilities of the set  $\mu$  of rewrite-events given their contexts ? what kind of context ?
- **Stochastic processes:** how to estimate probabilities of derivations, i.e. sequences of rewrite-events in context ?

**Probabilities of pairs:** how to estimate probability  $P(\langle u, t \rangle)$ ?

**Represent a language model** *P* by a set of parameter values  $\mu$ 

- What constitutes a good language model ?

## **Tree-Bank Grammars**

Probabilistic grammar is a generative device (vs. reduction system):

- **Generative view:** Every parse-tree *t* is generated from the start-symbol of the grammar *S*
- **Stochastic processes:** a parse is generated through an ordered sequence of rewrite-events  $r_1, \dots, r_n$ , each with probability conditioned properly

$$P(r_1\cdots r_n|S) = \prod_{i=1}^n P(r_i|r_1,\cdots,r_{i-1})$$

**Tree-bank:** a representative multiset of utterance-tree pairs

**Tree-bank models:** the rewrite-events and their probabilities are extracted from a tree-bank

### **Example: Prob. Context-Free Grammar**

A Probabilistic CFG (PCFG) extends a CFG with a probability mass function P over the finite set of rewrite-rules  $\mathcal{R}$  such that

**Generative model:** probability of  $A \rightarrow \alpha$  conditioned on *A* only

**Similar statement:** for all nonterminals  $A: \sum_{\alpha:A \to \alpha \in \mathcal{R}} P(A \to \alpha | A) = 1$ 

**Independence:** no context effects, i.e. probability of derivation  $d = r_1, \dots, r_n$  is estimated by  $P(d) = \prod_{i=1}^n P(r_i)$ 

Simple extension (remains PCFG): add some context, e.g. condition on label of parent of *A*, as extracted from examples found in the tree-bank

# **Current Research on Parsing (1)**

- **Tree-bank based:** training material *D* is a multiset of utterance-analysis pairs (manually annotated/corrected, use of specific domains)
- **Example tree-bank:** Penn Wall Street Journal(WSJ),  $10^6$  words,  $5 \times 10^4$  sentences of average length 23 words (up to 115 words !) from the WSJ newspaper
- Main questions: what rewrite units, context to extract ? with what probabilities ? how to smooth using linguistic knowledge ?
- **Evaluation:** Labeled Recall/Precision (percentage of nodes that exactly match) over a test-set of 2400 sentences not involved in training

# **Current Research on Parsing (2)**

**Magnitude of problem:**  $\approx 75\%/75\%$  recall/precision for **broad-coverage linguistic grammars** (IBM; Probabilistic LFG (PARC)), *each developed over* > 10 *linguistic-labour years* 

- **Bilexical-dependency models:**  $\approx 91\%/91\%$ , a well-smoothed model with probabilities ranging over dependencies between head-words
- **Data Oriented Parsing:**  $\approx 91\%/91\%$  with a model that puts probabilities over large chunks of linguistic structure

#### **Two successful kinds of rewrite-events (3)**

**Bilexical-dependencies:** head-driven Markov Grammars, e.g. (Collins 97, Charniak 99)

**Events:** pairs (*Parent.word*1,*Child.word*2).

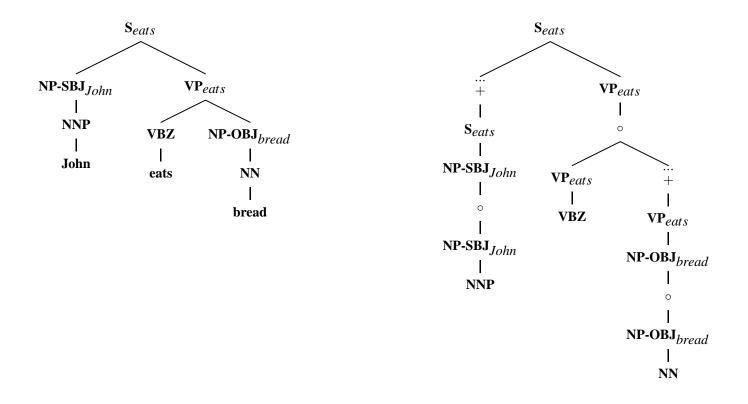
**Probability:**  $P(\langle Parent.word1, Child.word2 \rangle | Parent.word1)$ 

Structural relations: e.g. DOP (Scha 90; Bod 95; Sima'an 99).

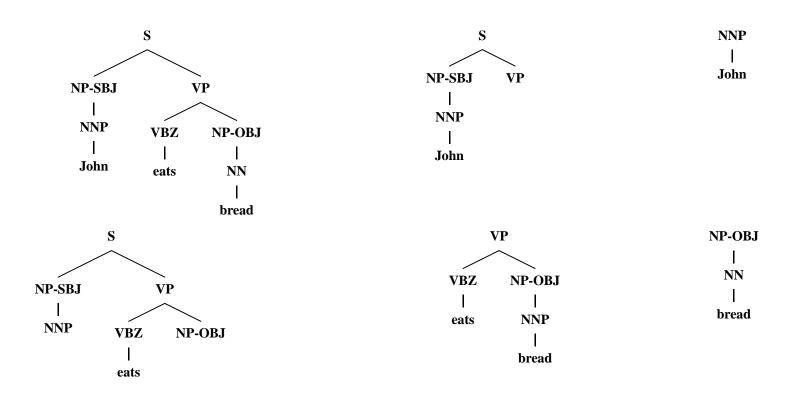
**Events:** arbitrary size syntactic structures, e.g. DOP subtrees are connected CFG-rules,

**Probability:**  $P(subtree \mid label.root(subtree))$ 

### **Example: Bilexical-dependencies**



### **Example: Data Oriented Parsing (some subtrees)**



## **Smoothing for Robustness: Examples**

**Backoff:** many possibilities (Katz method):

$$P(\langle A, X \rangle \to \alpha | \langle A, X \rangle) \approx \Theta(P(A \to \alpha | A) P(X \to \alpha | X))$$

**Markov Grammar:** smoothing PCFGs for flat Phrase-Structure (Collins 1996, Charniak 1999):

$$P(A \rightarrow B_1 \cdots B_n | A) = P(B_1 | A) \times \prod_{i=2}^n P(B_i | A, B_1, \cdots, B_{i-1})$$

**Hidden Structure:** Assume edit-operations (delete, insert,  $\cdots$ ) on frames as a hidden process (Eisner 2001):

- Given set of frames, each with a probability given a verb,
- Expand by Expectation Maximization (EM) on large bodies of text.

## **Efficiency: e.g. Suitable Pruning**

How to allow pruning of subanalyses  $XP \rightarrow *(w_i \cdots w_j)$ ?

**Inside probabilities:** Language models provide estimates for  $P(XP \rightarrow^* w_i \cdots w_j)$ 

**Outside probabilities:** BUT they do not provide estimates for:  $P(S \rightarrow^* w_1 \cdots w_{i-1} XP w_{j+1} \cdots w_n)$ 

**Pruning:** use approximations of the Outside probabilities, estimated on many examples from a given domain of language use.

Future: More Expected Utterances Processed Faster

# **Next Issues in Empirical NLP**

- Feature-structures + **Distributional-Similarity** ("Prob. Unification")
- Robust and correct semantics of utterances
  - Lambda expressions, compositionality and "cooccurence semantics"
  - Predicate-Argument structures, dropping/insertion of arguments
  - Distributions over Lambda-expressions: expressing underspecification
- P(sem, syn, utter) = P(sem)P(syn|sem)P(utter|sem, syn)

#### **Future: Cooccurence Statistics over Structure for Processing**