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Abstract

A well-known slogan in language technology is ‘parsing-as-deduction’: syntax and meaning
analysis of a text takes the form of a mathematical proof/derivation. Developers of language
technology (and students of computational linguistics) want to visualize these mathematical
objects in a variety of formats.
We discuss a language engineering environment for two ‘logic-based’ frameworks: type-logical
grammar and ‘derivational’ minimalism. The kernel is a general theorem prover for the relevant
framework, implemented in the logic-programming language Prolog. The kernel produces
‘proof objects’ for its internal computations. The front-end displays these proof objects in
a number of user-defined formats. Local interaction with the kernel is via a tcl/tk GUI.
Alternatively, one can call the kernel remotely from dynamic PDF documents, using the form
features of Sebastian Rahtz’ hyperref package.
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1. The project

I Aim: teaching materials/courseware for logic-based NLP

I Frameworks: type-logical grammar, ‘derivational’ minimalism

I Architecture:

. Kernel: logic programming implementation of the general algorithmic
proof theory for TLG/MG

. Interaction with the kernel:

? tcl/tk GUI

? dynamic PDF documents

I Inspiration: the fold/unfold concept of the Mathematica notebook. Discourse
interleaved with mathematical expressions that can be evaluated, visualized
on demand.
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2. The team

Michael Moortgat Coordinating the computational linguistics curriculum at Utrecht
University. Research interests: math and language, type-logical grammar.

Richard Moot Author of the type-logical grammar development environment GRAIL.
PhD thesis on proof nets for NLP.

Dick Oehrle Formerly: Linguistics, U Arizona. Then: YY. Now: . . .

Willemijn Vermaat Currently: PhD project on the logical perspective on minimal-
ist grammars. Before: IT in the computational linguistics curriculum.
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3. Current uses of the material

I Graduate level courses

. various ESSLLI installments

. European Master School on Language and Speech (Leuven, 2002).

I Undergraduate level courses

. CKI (CogScience/AI) Utrecht University

. Linguistics, Utrecht University

I Secondary school

. β workshops, Utrecht University

. Adriatic coast (Raffaella Bernardi)

I . . .
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4. Type-logical grammar

Background reading for the technical set-up:

Moortgat, Moot & Oehrle (2001) TEX in Teaching. Proceedings EuroTEX 2001
Conference, Kerkrade.

General project info and course pages:

http://grail.let.uu.nl/tour.pdf

http://www.let.uu.nl/~ctl/docenten/moortgat.html
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5. Type-logical grammar

Think of type-logical grammar as a functional programming language (cf Haskell),
customized for NLP (analysis, generation).

Functional programming

I basic types: integers, booleans, . . .

I functional types T → T ′

I using/constructing types T → T ′: application/abstraction

Curry-Howard-de Bruyn Perspective shift logic/computation.

I functional types/implicational formulas,

I type computations/logical derivations.
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6. Illustration: square

A simple example: constructing a square function out of a built-in times function:

times : Int → (Int → Int) x : Int

(times x) : Int → Int
(Elim →)

x : Int

(times x x) : Int
(Elim →)

λx.(times x x) : Int → Int
(Intro →)

I (Elim →): use of a function, application

I (Intro →): construction of a function, abstraction
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7. The logic of grammar

Let us write A • B for the combination of an expression A with an expression B.
We obtain a grammar logic by dropping all ‘structural rules’ for the product:

I Resource sensitivity: no duplication/waste of material

I Structure sensitivity: linear order/grouping

. Drop Commutativity: A •B = B • A

Would imply that linear order doesn’t affect well-formedness

But: compare man bites dog and dog bites man.

. Drop Associativity: (A •B) • C = A • (B • C)

Destroys structural information:

I had completely forgotten how good beer tastes.
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8. Parsing as deduction

Two implications in the absence of Commutativity!

Algebra: residuation laws

A → C/B iff A •B → C iff B → A\C

Logic: inference rules (elimination/introduction)

X ` B Y ` B\A
X ◦ Y ` A

\E
X ` A/B Y ` B

X ◦ Y ` A
/E

B ◦X ` A
X ` B\A \I X ◦B ` A

X ` A/B
/I
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9. The structural module

To capture variation, structural rules can be reintroduced in a controlled form.

Control operations ♦, 2 in addition to the composition operations /, •, \.

I Logical rules

♦A → B iff A → 2B

I Structural rules: under ♦ control. For example:

♦A •B → B • ♦A

(A •B) • ♦C → A • (B • ♦C)
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10. The GRAIL system

Richard Moot’s unix-based GRAIL system offers a general development environment
for type-logical grammars. Software components:

I SICStus Prolog: the programming language for the kernel;

I Tcl/Tk for the graphical user interface;

I a standard teTeX environment for the visualization/export of derivations.

The system is available under the GNU General Public License agreement from

ftp.let.uu.nl/pub/users/moot
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11. A session

The user designs a grammar fragment, using the following tools:

I Lexicon tool: graphical editor to assign formulas (and meaning programs) to
words in the lexicon or edit lexical entries,

I Postulate tool: graphical editor to add or modify structural rewrite rules,

I Parsing/debugging: run the theorem prover on sample expressions; interactive
mode using proof net technology.
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12. Export formats

User-defined LATEX output formats.

Prawitz style Derivations in tree format, using Tatsuta’s proof.sty package.

knuth
np

surpassed

(np\s)/np
himself

((np\s)/np)\(np\s)
surpassed ◦ himself ` np\s [\E]

knuth ◦ (surpassed ◦ himself) ` s
[\E]

Fitch style Linear format, handy when meaning assembly is included.

1. knuth : np− knuth Lex
2. surpassed : (np\s)/np− surpass Lex
3. himself : ((np\s)/np)\(np\s)− λz2.λx3.((z2 x3) x3) Lex
4. surpassed ◦ himself : np\s− λx3.((surpass x3) x3) \E (2, 3)
5. knuth ◦ (surpassed ◦ himself) : s− ((surpass knuth) knuth) \E (1, 4)
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13. Dynamic derivations

The core notion of ‘proof’ is inherently dynamic:

‘a sequence of inference steps, leading from axioms to the desired conclusion’

; dynamic display format

Tools for the implementation (thanks to Bernhard Fisseni):

I an expanded version of \infer from proof.sty, taking advantage of

I the \stepwise family of commands from Lehmke’s texpower.sty package

I the kernel computes the sequencing order from the internal proof object, with
bottom-up or top-down options
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14. Dynamic derivations: bottom up
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Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))
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16. Internal proof term representation

N: 1 ; Mean: $\iota$(^K.(write(knuth,K) & book(K))) ;
rule(dre([]),(the *[](book *[](that *[](knuth *[]wrote)))),np,B(D(^E.H(E)(G))(C)),
[rule(lex,the,(np /[] n),B,[]),
rule(dle([]),(book *[] (that *[] (knuth *[] wrote))),n,D(^E.H(E)(G))(C),
[rule(lex,book,n,C,[]),
rule(dre([]),(that *[] (knuth *[] wrote)),(n \[] n),D(^E.H(E)(G)),
[rule(lex,that,((n \[] n) /[] (s /[] np)),D,[]),
rule(dri([],1),(knuth *[] wrote),(s /[] np),^E.H(E)(G),
[rule(P2,((knuth *[] wrote) *[] E),s,H(E)(G),
[rule(dle([]),(knuth *[] (wrote *[] E)),s,H(E)(G),
[rule(lex,knuth,np,G,[]),
rule(dre([]),(wrote *[] E),(np \[] s),H(E),
[rule(lex,wrote,((np \[] s) /[] np),H,[]),
rule(hyp(1),E,np,E,[])])])])])])])]),
Con: [],Subst: [$\iota$,book,3-^I.^J.^K.(I(K) & J(K)),knuth,write], NV 8
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17. Web interaction with the kernel

To realize web interaction with the kernel, we move through the following stages.

I Command line interaction (Prolog)

I Shell interaction (Unix)

I Web interaction (Cgi)

I
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18. Prolog command line interaction

Consulting a fragment, parsing test sentences, producing LATEX output eg.tex to
be processed by a wrapper file proofs.tex

SICStus 3.8.5 (sparc-solaris-5.7): Fri Oct 27 10:12:22 MET DST 2000
Licensed to let.uu.nl
| ?- consult(’notcl2000.pl’). % the kernel without tcl/tk GUI
{consulting notcl2000.pl...}
yes
| ?- consult(’knuth.pl’).
{consulting knuth.pl...}
{consulted knuth.pl in module user, 20 msec 6952 bytes}
yes
| ?- tex([knuth,surpassed,himself],s).
===
Lookup: 0, Max # links: 12
===
Telling LaTeX output directory eg.tex
1 solution found. CPU Time used: 0.200 ... ... latex ready
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19. From shell interaction to web interaction

Unix ; shell interaction. The SICStus save_program predicate saves a state of the
run of the program that can be resumed with the -r flag. In addition, arguments
can be passed from the unix command line using the -a flag.

% sicstus -r wwwgrailstate
-a knuth yes yes yes inactive nd s knuth surpassed himself
{restoring wwwgrailstate...}
{wwwgrailstate restored in 80 msec 513808 bytes}
{consulting knuth.pl...}

Cgi ; web interaction. The sicstus -r ... -a ... call is realized via a cgi pro-
gram, using the html or pdf form facilities.
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20. Using Rahtz’ hyperref package

We can use the \href command of the hyperref package to call a cgi script:

...
\hyperbaseurl{http://grail.let.uu.nl/cgi-bin/grail/}
\newcommand{\parsescript}[4]
{\href{wwwgrail.cgi?
frag=#1&struct=yes&sem=no&lexsem=yes&unary=inactive&mode=nd&goal=#2&test=#3}{#4}}
...

The parameters for \parsescript are a fragment name (#1), a goal formula (#2),
and the test expression, in cgi (#3) and print (#4) format. Sample sentences can
now be evaluated/parsed on-line. wwwgrail.cgi sends back the typeset derivation,
and the source file.

...
\parsescript{whleft}{np}{de+soepschildpad+die+alice+wil+plagen}
{de Soepschildpad die Alice wil plagen} $\vdash np$
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21. Fragment libraries

The next step in the direction of the Mathematica ‘notebook’ concept:

The kernel transforms Prolog source code into a typeset fragment, with evaluable
examples, and form interaction.

I Static library. A directory of annotated fragments used for didactic purposes.
For example

http://www.let.uu.nl/~Michael.Moortgat/personal/Courses/fragments/

I Dynamic library. Users submit their individual fragments, which the Perl LWP
module fetches from a specified URL.

http://grail.let.uu.nl/submitfragment-e.html

I
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22. hyperref form interaction

\section{Interactive session}
\renewcommand{\LayoutTextField}[2]{\makebox[2in][l]{#1}#2}
\renewcommand{\LayoutChoiceField}[2]{\makebox[1.5in][l]{#1}#2}
\renewcommand{\LayoutCheckField}[2]{#1\makebox[1.5in][l]{#2}}
\renewcommand{\DefaultWidthofCheckBox}{12pt}
\renewcommand{\DefaultHeightofCheckBox}{12pt}

\begin{Form}[action=http://grail.let.uu.nl/cgi-bin/grail/wwwgrail.cgi,
encoding=html,method=post]

\subsection*{Test example}
\TextField[width=3in,name=test]{Type in an example:}
\TextField[width=3in,name=goal]{Goal formula:}
...
\subsection*{Display options}
\ChoiceMenu[radio,default=yes,name=struct]{Structure labels:}{Yes=yes,No=no}
...
\Submit{\textsf{Submit}}\quad\Reset{\textsf{Reset}}
\end{Form}
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23. Future work/worries

I Work. Extend the form interaction to allow for

. Lexicon editing/updating

. Postulate editing/updating

. Proof net unfolding

I Worry. Can we depend on Acrobat? Dynamic PDF features might change,
disappear . . .

I Alternative? Is a switch to Hans Hagen’s conTEXt environment an option?

. lets ask him . . .
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