Computational tools

for logic-based grammar formalisms
M. Moortgat \& W. Vermat

Abstract

A well-known slogan in language technology is 'parsing-as-deduction': syntax and meaning analysis of a text takes the form of a mathematical proof/derivation. Developers of language technology (and students of computational linguistics) want to visualize these mathematical objects in a variety of formats. We discuss a language engineering environment for two 'logic-based' frameworks: type-logical grammar and 'derivational' minimalism. The kernel is a general theorem prover for the relevant framework, implemented in the logic-programming language Prolog. The kernel produces 'proof objects' for its internal computations. The front-end displays these proof objects in a number of user-defined formats. Local interaction with the kernel is via a tcl/tk GUI. Alternatively, one can call the kernel remotely from dynamic PDF documents, using the form features of Sebastian Rahtz' hyperref package.

Contents

1 The project 5
2 The team 6
3 Current uses of the material 7
4 Type-logical grammar 8
5 Type-logical grammar 9
6 Illustration: square 10
7 The logic of grammar 11
8 Parsing as deduction 12
9 The structural module 13
10 The GRAIL system 14
11 A session 15
12 Export formats 16
13 Dynamic derivations 17
14 Dynamic derivations: bottom up 18
15 Dynamic derivations: top down 19
16 Internal proof term representation 20
17 Web interaction with the kernel 21
18 Prolog command line interaction 22
19 From shell interaction to web interaction 23
20 Using Rahtz' hyperref package 24
21 Fragment libraries 25
22 hyperref form interaction 26
23 Future work/worries 27

1. The project

- Aim: teaching materials/courseware for logic-based NLP
- Frameworks: type-logical grammar, 'derivational' minimalism
- Architecture:
\triangleright Kernel: logic programming implementation of the general algorithmic proof theory for TLG/MG
\triangleright Interaction with the kernel:
$\star \mathrm{tcl} / \mathrm{tk}$ GUI
* dynamic PDF documents
- Inspiration: the fold/unfold concept of the Mathematica notebook. Discourse interleaved with mathematical expressions that can be evaluated, visualized on demand.

2. The team

Michael Moortgat Coordinating the computational linguistics curriculum at Utrecht University. Research interests: math and language, type-logical grammar.

Richard Moot Author of the type-logical grammar development environment GRAIL. PhD thesis on proof nets for NLP.

Dick Oehrle Formerly: Linguistics, U Arizona. Then: YY. Now: ...
Willemijn Vermaat Currently: PhD project on the logical perspective on minimalist grammars. Before: IT in the computational linguistics curriculum.

3. Current uses of the material

- Graduate level courses
\triangleright various ESSLLI installments
\triangleright European Master School on Language and Speech (Leuven, 2002).
- Undergraduate level courses
\triangleright CKI (CogScience/AI) Utrecht University
\triangleright Linguistics, Utrecht University
- Secondary school
$\triangleright \beta$ workshops, Utrecht University
\triangleright Adriatic coast (Raffaella Bernardi)

4. Type-logical grammar

Background reading for the technical set-up:

Moortgat, Moot \& Oehrle (2001) $\mathrm{T}_{\mathrm{E} X}$ in Teaching. Proceedings EuroTEX 2001 Conference, Kerkrade.

General project info and course pages:

```
http://grail.let.uu.nl/tour.pdf
http://www.let.uu.nl/~}ctl/docenten/moortgat.html
```


5. Type-logical grammar

Think of type-logical grammar as a functional programming language (cf Haskell), customized for NLP (analysis, generation).

Functional programming

- basic types: integers, booleans, ...
- functional types $T \rightarrow T^{\prime}$
- using/constructing types $T \rightarrow T^{\prime}$: application/abstraction

Curry-Howard-de Bruyn Perspective shift logic/computation.

- functional types/implicational formulas,
- type computations/logical derivations.

6. Illustration: square

A simple example: constructing a square function out of a built-in times function:

$$
\frac{\text { times : Int } \rightarrow(\operatorname{lnt} \rightarrow \operatorname{lnt}) \quad x: \operatorname{lnt}}{\frac{(\operatorname{times} x): \operatorname{lnt} \rightarrow \operatorname{lnt}}{\frac{(\text { times } x x): \ln t}{\lambda x \cdot(\text { times } x x): \operatorname{lnt} \rightarrow \operatorname{lnt}}(\text { Intro } \rightarrow)} \quad x: \operatorname{lnt}}(\text { Elim } \rightarrow)
$$

- $($ Elim $\rightarrow)$: use of a function, application
- (Intro \rightarrow): construction of a function, abstraction

7. The logic of grammar

Let us write $A \bullet B$ for the combination of an expression A with an expression B. We obtain a grammar logic by dropping all 'structural rules' for the product:

- Resource sensitivity: no duplication/waste of material
- Structure sensitivity: linear order/grouping
\triangleright Drop Commutativity: $A \bullet B=B \bullet A$
Would imply that linear order doesn't affect well-formedness
But: compare man bites dog and dog bites man.
\triangleright Drop Associativity: $(A \bullet B) \bullet C=A \bullet(B \bullet C)$
Destroys structural information:
I had completely forgotten how good beer tastes.

8. Parsing as deduction

Two implications in the absence of Commutativity!

Algebra: residuation laws

$$
A \rightarrow C / B \quad \text { iff } \quad A \bullet B \rightarrow C \quad \text { iff } \quad B \rightarrow A \backslash C
$$

Logic: inference rules (elimination/introduction)

$$
\begin{aligned}
\frac{X \vdash B \quad Y \vdash B \backslash A}{X \circ Y \vdash A} \backslash E & \frac{X \vdash A / B \quad Y \vdash B}{X \circ Y \vdash A} / E \\
\frac{B \circ X \vdash A}{X \vdash B \backslash A} \backslash I & \frac{X \circ B \vdash A}{X \vdash A / B} / I
\end{aligned}
$$

9. The structural module

To capture variation, structural rules can be reintroduced in a controlled form.
Control operations \diamond, \square in addition to the composition operations $/, \bullet, \backslash$.

- Logical rules

$$
\diamond A \rightarrow B \quad \text { iff } \quad A \rightarrow \square B
$$

- Structural rules: under \diamond control. For example:

$$
\begin{aligned}
\diamond A \bullet B & \rightarrow B \bullet \diamond A \\
(A \bullet B) \bullet \diamond C & \rightarrow A \bullet(B \bullet \diamond C)
\end{aligned}
$$

10. The GRAIL system

Richard Moot's unix-based GRAIL system offers a general development environment for type-logical grammars. Software components:

- SICStus Prolog: the programming language for the kernel;
- $\mathrm{Tcl} / \mathrm{Tk}$ for the graphical user interface;
- a standard teTeX environment for the visualization/export of derivations.

The system is available under the GNU General Public License agreement from
ftp.let.uu.nl/pub/users/moot

11. A session

The user designs a grammar fragment, using the following tools:

- Lexicon tool: graphical editor to assign formulas (and meaning programs) to words in the lexicon or edit lexical entries,
- Postulate tool: graphical editor to add or modify structural rewrite rules,
- Parsing/debugging: run the theorem prover on sample expressions; interactive mode using proof net technology.

12. Export formats

User-defined $\mathrm{E}^{2} \mathrm{~T}_{\mathrm{E}} \mathrm{X}$ output formats.
Prawitz style Derivations in tree format, using Tatsuta's proof.sty package.

$$
\frac{\text { knuth }}{\frac{n p}{\text { knuth ○ (surpassed o himself }) \vdash s} \frac{\frac{\text { surpassed }}{(n p \backslash s) / n p} \frac{\text { himself }}{((n p \backslash s) / n p) \backslash(n p \backslash s)}}{\text { surpassed o himself } \vdash n p \backslash s}[\backslash E]}[\backslash E]
$$

Fitch style Linear format, handy when meaning assembly is included.

1. knuth: $n p$ - knuth
2. surpassed : $(n p \backslash s) / n p-$ surpass

Lex
3.
3. himself : $((n p \backslash s) / n p) \backslash(n p \backslash s)-\lambda z_{2} \cdot \lambda x_{3} \cdot\left(\left(z_{2} x_{3}\right) x_{3}\right) \quad$ Lex
4. surpassed o himself : $n p \backslash s-\lambda x_{3}$.((surpass $\left.\left.x_{3}\right) x_{3}\right) \quad \backslash E(2,3)$
5. knuth $\circ($ surpassed \circ himself $): s-(($ surpass knuth $)$ knuth $) \backslash E(1,4)$

13. Dynamic derivations

The core notion of 'proof' is inherently dynamic:
'a sequence of inference steps, leading from axioms to the desired conclusion' \leadsto dynamic display format

Tools for the implementation (thanks to Bernhard Fisseni):

- an expanded version of \infer from proof.sty, taking advantage of
- the \stepwise family of commands from Lehmke's texpower.sty package
- the kernel computes the sequencing order from the internal proof object, with bottom-up or top-down options

14. Dynamic derivations: bottom up

14. Dynamic derivations: bottom up

Meaning. $\iota\left(\lambda y_{3} .\left(\operatorname{write}\left(\operatorname{knuth}, y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

the

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

the

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

$\frac{\text { the }}{n p / n}$

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

book
$\frac{\text { the }}{n p / n}$

Meaning. $\iota\left(\lambda y_{3} .\left(\operatorname{write}\left(\operatorname{knuth}, y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

book
the
$n p / n$

Meaning. $\iota\left(\lambda y_{3} .\left(\operatorname{write}\left(\operatorname{knuth}, y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

$\frac{\text { the }}{n p / n} \frac{\text { book }}{n}$

Meaning. $\iota\left(\lambda y_{3} .\left(\operatorname{write}\left(\operatorname{knuth}, y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

that

$$
\frac{\text { the }}{n p / n} \frac{\text { book }}{n}
$$

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

that
$\frac{\text { the }}{n p / n} \frac{\text { book }}{n}$

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

$\frac{\text { the }}{n p / n} \frac{\text { that }}{n} \frac{\text { book }}{(n \backslash n) /(s / n p)}$

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

knuth

$\frac{\text { the }}{n p / n} \frac{\text { that }}{\frac{\text { book }}{n}} \frac{(n \backslash n) /(s / n p)}{}$

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

knuth

$\frac{\text { the }}{\frac{\text { book }}{n p / n}} \frac{\text { that }}{(n \backslash n) /(s / n p)}$

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

$\frac{\text { knuth }}{n p}$

$\frac{\text { the }}{\frac{\text { book }}{n p / n}} \frac{\text { that }}{(n \backslash n) /(s / n p)}$

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

wrote
$\frac{\text { knuth }}{n p}$
$\frac{\text { the }}{\frac{\text { book }}{n p / n}} \frac{\text { that }}{(n \backslash n) /(s / n p)}$

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

wrote
$\frac{\text { knuth }}{n p}$
$\frac{\text { the }}{\frac{\text { book }}{n p / n}} \frac{\text { that }}{(n \backslash n) /(s / n p)}$

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

$$
\frac{\text { knuth }}{n p} \quad \frac{\text { wrote }}{(n p \backslash s) / n p}
$$

$\frac{\text { the }}{n p / n} \frac{\text { that }}{n} \frac{\text { book }}{(n \backslash n) /(s / n p)}$

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

$$
\frac{\text { knuth }}{n p} \underset{(n p \backslash s) / n p}{ } \quad\left[\mathrm{p}_{1} \vdash n p\right]^{1}
$$

$\frac{\text { the }}{\frac{\text { book }}{n p / n}} \frac{\text { that }}{(n \backslash n) /(s / n p)}$

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

$$
\frac{\text { knuth }}{n p} \quad \frac{\frac{\text { wrote }}{(n p \backslash s) / n p} \quad\left[\mathrm{p}_{1} \vdash n p\right]^{1}}{[/ E]}
$$

$\frac{\text { the }}{\frac{\text { that }}{n p / n}} \frac{}{(n \backslash n) /(s / n p)}$

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

$$
\frac{\text { knuth }}{n p} \frac{\frac{\text { wrote }}{(n p \backslash s) / n p} \quad\left[\mathrm{p}_{1} \vdash n p\right]^{1}}{\text { wrote } \circ \mathrm{p}_{1} \vdash n p \backslash s}[/ E]
$$

$\frac{\text { the }}{\frac{\text { book }}{n p / n}} \frac{\text { that }}{(n \backslash n) /(s / n p)}$

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

$$
\frac{\text { knuth }}{n p} \frac{\frac{\text { wrote }}{(n p \backslash s) / n p} \quad\left[\mathrm{p}_{1} \vdash n p\right]^{1}}{{\text { wrote } \circ \mathrm{p}_{1} \vdash n p \backslash s}^{n p}}[/ E]
$$

$\frac{\text { the }}{\frac{\text { book }}{n p / n}} \frac{\text { that }}{(n \backslash n) /(s / n p)}$

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

$$
\frac{\frac{\text { knuth }}{n p}}{\frac{n p}{(n p \backslash s) / n p} \quad\left[\mathrm{p}_{1} \vdash n p\right]^{1}} \frac{\text { wrote } \circ \mathrm{p}_{1} \vdash n p \backslash s}{\text { knuth } \circ\left(\text { wrote } \circ \mathrm{p}_{1}\right) \vdash s}[/ E]
$$

$\frac{\text { the }}{\frac{\text { book }}{n p / n}} \frac{\text { that }}{(n \backslash n) /(s / n p)}$

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\boldsymbol{w r i t e}\left(\right.\right.\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

$$
\begin{aligned}
& \qquad \frac{\frac{\text { knuth }}{n p} \frac{\frac{\text { wrote }}{(n p \backslash s) / n p}\left[\mathbf{p}_{1} \vdash n p\right]^{1}}{{\text { wrote } \circ \mathrm{p}_{1} \vdash n p \backslash s}_{n-1}^{n p}}[/ E]}{\frac{\text { that }}{\text { the }} \frac{\text { book }}{n}} \frac{\left(\text { wrote } \circ \mathrm{p}_{1}\right) \vdash s}{(n \backslash n) /(s / n p)}[P 2]
\end{aligned}
$$

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

Meaning. $\iota\left(\lambda y_{3} .\left(\operatorname{write}\left(\right.\right.\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

$$
\begin{aligned}
& \qquad \frac{\frac{\text { knuth }}{n p} \frac{\frac{\text { wrote }}{(n p \backslash s) / n p}\left[\mathrm{p}_{1} \vdash n p\right]^{1}}{{\text { wrote } \circ \mathrm{p}_{1} \vdash n p \backslash s}_{n p / n}^{n}}[/ E]}{\frac{\text { that }}{\text { the }} \frac{\text { bnuth } \circ\left(\text { wrote } \circ \mathrm{p}_{1}\right) \vdash s}{n}[P 2]} \\
& \frac{(\text { knuth } \circ \text { wrote }) \circ \mathrm{p}_{1} \vdash s}{\text { knuth owrote } \vdash s / n p}[/ I]^{1}
\end{aligned}
$$

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

$$
\begin{aligned}
& \left.\left.\frac{\frac{\text { knuth }}{(n p \backslash s) / n p} \quad\left[\mathrm{p}_{1} \vdash n p\right]^{1}}{\frac{n p}{\text { wrote } \circ \mathrm{p}_{1} \vdash n p \backslash s}[/ E]} \begin{array}{l}
\frac{\text { knuth } \circ\left(\text { wrote } \circ \mathrm{p}_{1}\right) \vdash s}{(\text { knuth } \circ \text { wrote }) \circ \mathrm{p}_{1} \vdash s}[P 2] \\
\frac{\text { knuth } \circ \text { wrote } \vdash s / n p}{}[/ I]^{1} \\
\\
\end{array}\right]=E\right]
\end{aligned}
$$

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\boldsymbol{w r i t e}\left(\right.\right.\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

$$
\left.\begin{array}{l}
\frac{\text { knuth }}{\frac{\text { wrote }}{(n p \backslash s) / n p} \quad\left[\mathrm{p}_{1} \vdash n p\right]^{1}} \frac{\text { wrote } \circ \mathrm{p}_{1} \vdash n p \backslash s}{\text { knuth } \circ\left(\text { wrote } \circ \mathrm{p}_{1}\right) \vdash s}[/ E] \\
\frac{(\text { knuth } \circ \text { wrote }) \circ \mathrm{p}_{1} \vdash s}{\text { knuth } \circ \text { wrote } \vdash s / n p}[/ P 2] \\
\text { nuth o wrote }) \vdash n \backslash n
\end{array} / E\right]^{1}
$$

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

Meaning. $\iota\left(\lambda y_{3} .\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

14. Dynamic derivations: bottom up

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

15. Dynamic derivations: top down

15. Dynamic derivations: top down

Meaning. $\iota\left(\lambda y_{3} .\left(\right.\right.$ write $\left.\left.\left(\operatorname{knuth}, y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

15. Dynamic derivations: top down

the $\circ($ book $\circ($ that $\circ($ knuth \circ wrote $))) \vdash n p$
Meaning. $\iota\left(\lambda y_{3} .\left(\right.\right.$ write $\left.\left.\left(\operatorname{knuth}, y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

15. Dynamic derivations: top down

$\overline{\text { the } \circ(\text { book } \circ(\text { that } \circ(\text { knuth } \circ \text { wrote }))) \vdash n p}[/ E]$
Meaning. $\iota\left(\lambda y_{3} .\left(\right.\right.$ write $\left.\left.\left(\operatorname{knuth}, y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

15. Dynamic derivations: top down

$n p / n$
the $\circ($ book $\circ($ that $\circ($ knuth \circ wrote $))) \vdash n p[/ E]$
Meaning. $\iota\left(\lambda y_{3} .\left(\operatorname{write}\left(\operatorname{knuth}, y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

15. Dynamic derivations: top down

```
\(\overline{n p / n}\)
    the \(\circ(\) book \(\circ(\) that \(\circ(\) knuth \(\circ\) wrote \())) \vdash n p[/ E]\)
Meaning. \(\iota\left(\lambda y_{3} .\left(\operatorname{write}\left(\operatorname{knuth}, y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)\)
```


15. Dynamic derivations: top down

```
\(\frac{\text { the }}{n p / n}\)
\(\frac{n p / n}{\text { the } \circ(\text { book } \circ(\text { that } \circ(\text { knuth } \circ \text { wrote }))) \vdash n p}[/ E]\)
Meaning. \(\iota\left(\lambda y_{3} \cdot\left(\boldsymbol{w r i t e}\left(\right.\right.\right.\) knuth,\(\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)\)
```


15. Dynamic derivations: top down

```
\(\frac{\frac{\text { the }}{n p / n} \quad \text { book } \circ(\text { that } \circ(\text { knuth } \circ \text { wrote })) \vdash n}{\text { the } \circ(\text { book } \circ(\text { that } \circ(\text { knuth } \circ \text { wrote }))) \vdash n p}[/ E]\)
Meaning. \(\iota\left(\lambda y_{3} \cdot\left(\boldsymbol{w r i t e}\left(\right.\right.\right.\) knuth,\(\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)\)
```


15. Dynamic derivations: top down

Meaning. $\iota\left(\lambda y_{3} .\left(\right.\right.$ write $\left.\left.\left(\boldsymbol{k n u t h}, y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

15. Dynamic derivations: top down

```
\(\frac{\frac{\text { the }}{n p / n} \quad \frac{n}{\text { book ○ }(\text { that ○ }(\text { knuth } \circ \text { wrote })) \vdash n}}{\text { the ○ }(\text { book ○ }(\text { that } \circ(\text { knuth } \circ \text { wrote }))) \vdash n p}[/ E]\)
Meaning. \(\iota\left(\lambda y_{3} \cdot\left(\boldsymbol{w r i t e}\left(\right.\right.\right.\) knuth,\(\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)\)
```


15. Dynamic derivations: top down

$$
\begin{aligned}
& \frac{\text { the }}{n p / n} \quad \frac{n}{\text { book } \circ(\text { that } \circ(\text { knuth } \circ \text { wrote })) \vdash n}[/ E E] \\
& \text { the } \circ(\text { book } \circ(\text { that } \circ(\text { knuth } \circ \text { wrote }))) \vdash n p \\
& \text { Meaning. } \iota\left(\lambda y_{3} .\left(\text { write }\left(\text { knuth }, y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)
\end{aligned}
$$

15. Dynamic derivations: top down

$$
\begin{aligned}
& \frac{\text { the }}{n p / n} \frac{\frac{\text { book }}{n}}{\text { book ○ (that } \circ(\text { knuth } \circ \text { wrote })) \vdash n}[/ E] \\
& \text { the ○ (book } \circ(\text { that } \circ(\text { knuth } \circ \text { wrote }))) \vdash n p \\
& \text { Meaning. } \iota\left(\lambda y_{3} .\left(\text { write }\left(\operatorname{knuth}, y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)
\end{aligned}
$$

15. Dynamic derivations: top down

$\frac{\text { the }}{n p / n} \quad \frac{\text { book }}{n} \quad$ that $\circ($ knuth \circ wrote $) \vdash n \backslash n$
$\frac{\text { book } \circ(\text { that } \circ(\text { knuth } \circ \text { wrote })) \vdash n}{\text { the } \circ(\text { book } \circ(\text { that } \circ(\text { knuth } \circ \text { wrote }))) \vdash n p}[/ E]$
Meaning. $\iota\left(\lambda y_{3} .\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

15. Dynamic derivations: top down

Meaning. $\iota\left(\lambda y_{3} .\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

15. Dynamic derivations: top down

$\frac{\text { the }}{\frac{n p / n}{} \quad \frac{\text { book }}{n} \frac{(n \backslash n) /(s / n p)}{\text { that } \circ(\text { knuth o wrote }) \vdash n \backslash n}} \frac{\text { book ○ (that } \circ(\text { knuth o wrote })) \vdash n}{\text { the } \circ(\text { book } \circ(\text { that } \circ(\text { knuth } \circ \text { wrote }))) \vdash n p}[/ E]$
Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

15. Dynamic derivations: top down

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

15. Dynamic derivations: top down

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

15. Dynamic derivations: top down

$\left.\begin{array}{l}\frac{\text { the }}{n p / n} \quad \frac{\text { book }}{n} \quad \frac{\frac{\text { that }}{(n \backslash n) /(s / n p)} \text { that } \circ(\text { knuth } \circ \text { wrote }) \vdash n \backslash n}{\text { book } \circ(\text { that } \circ(\text { knuth } \circ \text { wrote })) \vdash n}[\backslash E] \\ \text { the } \circ(\text { book } \circ(\text { that } \circ(\text { knuth } \circ \text { wrote }))) \vdash n p\end{array} / E\right]$
Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

15. Dynamic derivations: top down

$\left.\left.\begin{array}{l}\frac{\text { the }}{n p / n} \quad \frac{\text { book }}{\frac{\text { that }}{n}} \frac{\frac{(n \backslash n) /(s / n p)}{\text { that } \circ(\text { knuth } \circ \text { wrote }) \vdash n \backslash n}}{\text { the } \circ(\text { book } \circ(\text { that } \circ(\text { knuth } \circ \text { wrote }))) \vdash n p}[/ I]^{1} \\ \text { book } \circ(\text { that } \circ(\text { knuth } \circ \text { wrote }) \vdash n\end{array}\right] E\right] \quad[/ E]$
Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

15. Dynamic derivations: top down

15. Dynamic derivations: top down

$$
\begin{aligned}
& \frac{n p}{\frac{n n u t h \circ\left(\text { wrote } \circ \mathrm{p}_{1}\right) \vdash s}{}[\backslash E]}\left[\begin{array}{l}
\frac{\text { that }}{(\text { knuth } \circ \text { wrote }) \circ \mathrm{p}_{1} \vdash s}[P 2] \\
\frac{\text { the }}{n p / n} \\
\frac{\text { book }}{n} \frac{(n \backslash n) /(s / n p)}{\text { thath } \circ(\text { krote } \vdash s / n p} \\
\text { the } \circ(\text { book } \circ(\text { that } \circ(\text { knuth } \circ \text { wrote }) \vdash n \backslash n \\
\text { book } \circ(\text { that }))) \vdash n p
\end{array}\right] \\
& \text { Meaning. } \iota\left(\lambda y_{3} .(\text { write }(\text { knuth } \circ \text { wrote }) \vdash n\right. \\
& \text { Mat } \left.\left.\left., y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)
\end{aligned}
$$

15. Dynamic derivations: top down

$$
\begin{aligned}
& \begin{array}{l}
\frac{\frac{n p}{\text { knuth } \circ\left(\text { wrote } \circ \mathrm{p}_{1}\right) \vdash s}[\backslash E]}{\frac{(\text { knuth } \circ \text { wrote }) \circ \mathrm{p}_{1} \vdash s}{\text { knuth } \circ \text { wrote } \vdash s / n p}[P 2]}[/ I]^{1} \\
(\text { knuth } \circ \text { wrote }) \vdash n \backslash n \\
(\text { knuth } \circ \text { wrote })) \vdash n \\
\text { h } \circ \text { wrote })) \vdash \ln [/ E]
\end{array} \\
& \text { Meaning. } \iota\left(\lambda y_{3} \cdot\left(\boldsymbol{w r i t e}\left(\text { knuth }, y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)
\end{aligned}
$$

15. Dynamic derivations: top down

$$
\begin{aligned}
& \left.\begin{array}{l}
\frac{\frac{\text { knuth }}{n p}}{\frac{\text { knuth } \circ\left(\text { wrote } \circ \mathrm{p}_{1}\right) \vdash s}{(\text { knuth } \circ \text { wrote }) \circ \mathrm{p}_{1} \vdash s}[\backslash E]} \text { knuth } \circ \text { wrote } \vdash s / n p \\
\end{array} / I\right]^{1} \\
& \text { the book } \frac{(n \backslash n) /(s / n p)}{n} \quad \text { that o (knuth o wrote) } \vdash n \backslash n ~[\backslash E] ~[/ E] \\
& n p / n \\
& \text { Meaning. } \iota\left(\lambda y_{3} \cdot\left(\text { write }\left(\text { knuth }, y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)
\end{aligned}
$$

15. Dynamic derivations: top down

$$
\begin{aligned}
& \text { Meaning. } \iota\left(\lambda y_{3} .\left(\text { write }\left(\boldsymbol{k n u t h}, y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)
\end{aligned}
$$

15. Dynamic derivations: top down

$$
\begin{aligned}
& \left.\begin{array}{l}
\left.\frac{\text { knuth }}{\frac{n p}{\text { wrote } \circ \mathrm{p}_{1} \vdash n p \backslash s}[/ E]} \begin{array}{l}
\frac{\text { knuth } \circ\left(\text { wrote } \circ \mathrm{p}_{1}\right) \vdash s}{(\text { knuth } \circ \text { wrote }) \circ \mathrm{p}_{1} \vdash s}[P 2] \\
\frac{\text { knuth } \circ \text { wrote } \vdash s / n p}{}[/ I]^{1} \\
\text { knuth } \circ \text { wrote }) \vdash n \backslash n \\
\text { knuth } \circ \text { wrote })) \vdash n
\end{array} / E E\right] \\
\text { ○ wrote })) \vdash n p
\end{array} / E\right] \quad . \\
& \text { Meaning. } \iota\left(\lambda y_{3} .\left(\text { write }\left(\text { knuth }, y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)
\end{aligned}
$$

15. Dynamic derivations: top down

$$
\begin{aligned}
& \qquad \frac{\text { knuth }}{\frac{n p}{\text { knuth } \circ\left(\text { wrote } \circ \mathrm{p}_{1}\right) \vdash s} \frac{(n p \backslash s) / n p}{\mathrm{wrote} \circ \mathrm{p}_{1} \vdash n p \backslash s}[\backslash E]}[/ E] \\
& \frac{\text { the }}{n p / n}[P 2] \\
& \text { the } \circ\left(\text { book } \circ \left(\text { that } \circ(\text { knuth } \circ \text { wrote }) \circ \mathrm{p}_{1} \vdash s\right.\right. \\
& \frac{\text { that }}{n} \\
& \text { book wrote }))) \vdash n p \\
& \frac{\text { bnuth } \circ \text { wrote } \vdash s / n p}{(n \backslash n) /(s / n p)}[/ E]^{1} \\
& \text { that } \circ(\text { knuth } \circ \text { wrote }) \vdash n \backslash n \\
& \text { Meaning. } \iota\left(\lambda y_{3} .\left(\text { write }\left(\text { knuth }, y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)
\end{aligned}
$$

15. Dynamic derivations: top down

$$
\begin{aligned}
& \text { Meaning. } \iota\left(\lambda y_{3} .\left(\text { write }\left(\text { knuth }, y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)
\end{aligned}
$$

15. Dynamic derivations: top down

$$
\begin{aligned}
& \qquad \frac{\frac{\text { knuth }}{n p}}{\frac{\frac{\text { wrote }}{(n p \backslash s) / n p}}{\text { wrote } \circ \mathrm{p}_{1} \vdash n p \backslash s}[/ E]}\left[\begin{array}{l}
\frac{\text { knuth } \circ\left(\text { wrote } \circ \mathrm{p}_{1}\right) \vdash s}{(\text { knuth } \circ \text { wrote }) \circ \mathrm{p}_{1} \vdash s}[P 2] \\
\frac{\text { that }}{\text { knuth } \circ \text { wrote } \vdash s / n p} \\
\frac{n p / n}{\text { the }} \\
\text { the } \circ(\text { book } \circ(\text { that } \circ(\text { knuth } \circ \text { wrote }))) \vdash n p
\end{array}\right. \\
& \frac{\text { book }}{n} \frac{\frac{(n \backslash n) /(s / n p)}{\text { that } \circ(\text { knuth } \circ \text { wrote }) \vdash n \backslash n}}{\text { book } \circ(\text { that } \circ(\text { knuth } \circ \text { wrote }) \vdash n}[/ E] \\
& \text { Meaning. } \iota\left(\lambda y_{3} .\left(\text { write }\left(\text { knuth }, y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)
\end{aligned}
$$

15. Dynamic derivations: top down

Meaning. $\iota\left(\lambda y_{3} \cdot\left(\right.\right.$ write $\left(\right.$ knuth,$\left.\left.\left.y_{3}\right) \wedge \operatorname{book}\left(y_{3}\right)\right)\right)$

16. Internal proof term representation

```
N: 1 ; Mean: $\iota$(`K.(write(knuth,K) & book(K))) ;
rule(dre([]),(the *[](book *[](that *[](knuth *[]wrote)))),np,B(D(`E.H(E)(G))(C)),
[rule(lex,the,(np /[] n),B,[]),
rule(dle([]),(book *[] (that *[] (knuth *[] wrote))),n,D(`E.H(E)(G))(C),
[rule(lex,book,n,C,[]),
rule(dre([]),(that *[] (knuth *[] wrote)),(n \[] n),D(`E.H(E)(G)),
[rule(lex,that,((n \[] n) /[] (s / [] np)),D,[]),
rule(dri([],1),(knuth *[] wrote),(s /[] np),`E.H(E)(G),
[rule(P2,((knuth *[] wrote) *[] E),s,H(E)(G),
[rule(dle([]),(knuth *[] (wrote *[] E)),s,H(E)(G),
[rule(lex,knuth,np,G,[]),
rule(dre([]),(wrote *[] E),(np \[] s),H(E),
[rule(lex,wrote,((np \[] s) /[] np),H,[]),
rule(hyp(1),E,np,E,[])])])])])])])]),
Con: [],Subst: [$\iota$,book,3-^I.^J.^K.(I(K) & J(K)),knuth,write], NV 8
```


17. Web interaction with the kernel

To realize web interaction with the kernel, we move through the following stages.

- Command line interaction (Prolog)
- Shell interaction (Unix)
- Web interaction (Cgi)

18. Prolog command line interaction

Consulting a fragment, parsing test sentences, producing $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ output eg.tex to be processed by a wrapper file proofs.tex

```
SICStus 3.8.5 (sparc-solaris-5.7): Fri Oct 27 10:12:22 MET DST 2000
Licensed to let.uu.nl
| ?- consult('notcl2000.pl'). % the kernel without tcl/tk GUI
{consulting notcl2000.pl...}
yes
| ?- consult('knuth.pl').
{consulting knuth.pl...}
{consulted knuth.pl in module user, 20 msec 6952 bytes}
yes
| ?- tex([knuth,surpassed,himself],s).
===
Lookup: O, Max # links: 12
===
Telling LaTeX output directory eg.tex
1 solution found. CPU Time used: 0.200 ... ... latex ready
```


19. From shell interaction to web interaction

Unix \leadsto shell interaction. The SICStus save_program predicate saves a state of the run of the program that can be resumed with the -r flag. In addition, arguments can be passed from the unix command line using the -a flag.
\% sicstus -r wwwgrailstate
-a knuth yes yes yes inactive nd s knuth surpassed himself
\{restoring wwwgrailstate...\}
\{wwwgrailstate restored in 80 msec 513808 bytes\}
\{consulting knuth.pl...\}

Cgi \leadsto web interaction. The sicstus $-\mathrm{r} \ldots$-a ... call is realized via a cgi program, using the html or pdf form facilities.

20. Using Rahtz' hyperref package

We can use the \href command of the hyperref package to call a cgi script:
\hyperbaseurl\{http://grail.let.uu.nl/cgi-bin/grail/\}
\newcommand\{\parsescript\}[4]
\{\href\{wwwgrail.cgi?
frag=\#1\&struct=yes\&sem=no\&lexsem=yes\&unary=inactive\&mode=nd\&goal=\#2\&test=\#3\}\{\#4\}\}

The parameters for \backslash parsescript are a fragment name (\#1), a goal formula (\#2), and the test expression, in cgi (\#3) and print (\#4) format. Sample sentences can now be evaluated/parsed on-line. wwwgrail.cgi sends back the typeset derivation, and the source file.

```
\parsescript{whleft}{np}{de+soepschildpad+die+alice+wil+plagen}
{de Soepschildpad die Alice wil plagen} $\vdash np$
```


21. Fragment libraries

The next step in the direction of the Mathematica 'notebook' concept:
The kernel transforms Prolog source code into a typeset fragment, with evaluable examples, and form interaction.

- Static library. A directory of annotated fragments used for didactic purposes. For example
http://www.let.uu.nl/~Michael.Moortgat/personal/Courses/fragments/
- Dynamic library. Users submit their individual fragments, which the Perl LWP module fetches from a specified URL.

> http://grail.let.uu.nl/submitfragment-e.html

22. hyperref form interaction

\section\{Interactive session\}

\begin\{Form\}[action=http://grail.let.uu.nl/cgi-bin/grail/wwwgrail.cgi, } encoding=html,method=post]

\subsection*\{Test example\}

\TextField[width=3in, name=test]\{Type in an example:\}
\TextField[width=3in, name=goal] \{Goal formula:\}
...

\subsection*\{Display options\}

\backslash ChoiceMenu[radio, default=yes, name=struct] \{Structure labels:\}\{Yes=yes, No=no\}
\backslash Submit $\{\backslash$ textsf\{Submit\}\}\quad \backslash Reset $\{\backslash$ textsf $\{$ Reset $\}\}$
\end\{Form\} }

23. Future work/worries

- Work. Extend the form interaction to allow for
\triangleright Lexicon editing/updating
\triangleright Postulate editing/updating
\triangleright Proof net unfolding
- Worry. Can we depend on Acrobat? Dynamic PDF features might change, disappear ...
- Alternative? Is a switch to Hans Hagen's conTEXt environment an option?
\triangleright lets ask him ...

References

Type-logical grammar

Lambek, J. 1958, The mathematics of sentence structure. American Mathematical Monthly, 65:154-170.

Moortgat, M. 1997, Categorial type logics. Chapter 2, Handbook of Logic and Language. Elsevier/MIT Press, pp. 93-177.

Moot, R. 1998, Grail: an automated proof assistant for categorial grammar logics, in R. Backhouse, ed., 'Proceedings of the 1998 User Interfaces for Theorem Provers Conference', pp. 120-129.

Packages

Lehmke, S. 2001, The TEXPower bundle. Currently available in a pre-alpha release from http://ls1-www.cs.uni-dortmund.de/~1ehmke/texpower/.

Radhakrishnan, C.V. 1999, 'Pdfscreen.sty', Comprehensive TEX Archive Network. macros/latex/contrib/supported/pdfscreen/.

Rahtz, S. 2000, 'Hyperref.sty', Comprehensive TEX Archive Network. macros/latex/contrib/supported/hyperref/.

Story, D.P. 2001, 'Exerquiz.sty', Comprehensive TEX Archive Network. macros/latex/contrib/supported/webeq/.

Tatsuta, M. 1997, 'Proof.sty', Comprehensive TEX Archive Network. macros/latex/contrib/other/proof/proof.sty.

Taylor, P. 1996, 'Prooftree.sty', Comprehensive TEX Archive Network. macros/generic/proofs/taylor/prooftree.sty.

