
Computational tools

for logic-based grammar formalisms

M. Moortgat & W. Vermaat

Contents First Last Prev Next J

Abstract

A well-known slogan in language technology is ‘parsing-as-deduction’: syntax and meaning
analysis of a text takes the form of a mathematical proof/derivation. Developers of language
technology (and students of computational linguistics) want to visualize these mathematical
objects in a variety of formats.
We discuss a language engineering environment for two ‘logic-based’ frameworks: type-logical
grammar and ‘derivational’ minimalism. The kernel is a general theorem prover for the relevant
framework, implemented in the logic-programming language Prolog. The kernel produces
‘proof objects’ for its internal computations. The front-end displays these proof objects in
a number of user-defined formats. Local interaction with the kernel is via a tcl/tk GUI.
Alternatively, one can call the kernel remotely from dynamic PDF documents, using the form
features of Sebastian Rahtz’ hyperref package.

Contents First Last Prev Next J

Contents

1 The project . 5
2 The team . 6
3 Current uses of the material . 7
4 Type-logical grammar . 8
5 Type-logical grammar . 9
6 Illustration: square . 10
7 The logic of grammar . 11
8 Parsing as deduction . 12
9 The structural module . 13
10 The GRAIL system . 14
11 A session . 15
12 Export formats . 16
13 Dynamic derivations . 17
14 Dynamic derivations: bottom up . 18
15 Dynamic derivations: top down . 19
16 Internal proof term representation . 20
17 Web interaction with the kernel . 21

Contents First Last Prev Next J

18 Prolog command line interaction . 22
19 From shell interaction to web interaction . 23
20 Using Rahtz’ hyperref package . 24
21 Fragment libraries . 25
22 hyperref form interaction . 26
23 Future work/worries . 27

Contents First Last Prev Next J

1. The project

I Aim: teaching materials/courseware for logic-based NLP

I Frameworks: type-logical grammar, ‘derivational’ minimalism

I Architecture:

. Kernel: logic programming implementation of the general algorithmic
proof theory for TLG/MG

. Interaction with the kernel:

? tcl/tk GUI

? dynamic PDF documents

I Inspiration: the fold/unfold concept of the Mathematica notebook. Discourse
interleaved with mathematical expressions that can be evaluated, visualized
on demand.

Contents First Last Prev Next J

2. The team

Michael Moortgat Coordinating the computational linguistics curriculum at Utrecht
University. Research interests: math and language, type-logical grammar.

Richard Moot Author of the type-logical grammar development environment GRAIL.
PhD thesis on proof nets for NLP.

Dick Oehrle Formerly: Linguistics, U Arizona. Then: YY. Now: . . .

Willemijn Vermaat Currently: PhD project on the logical perspective on minimal-
ist grammars. Before: IT in the computational linguistics curriculum.

Contents First Last Prev Next J

3. Current uses of the material

I Graduate level courses

. various ESSLLI installments

. European Master School on Language and Speech (Leuven, 2002).

I Undergraduate level courses

. CKI (CogScience/AI) Utrecht University

. Linguistics, Utrecht University

I Secondary school

. β workshops, Utrecht University

. Adriatic coast (Raffaella Bernardi)

I . . .

Contents First Last Prev Next J

4. Type-logical grammar

Background reading for the technical set-up:

Moortgat, Moot & Oehrle (2001) TEX in Teaching. Proceedings EuroTEX 2001
Conference, Kerkrade.

General project info and course pages:

http://grail.let.uu.nl/tour.pdf

http://www.let.uu.nl/~ctl/docenten/moortgat.html

Contents First Last Prev Next J

http://grail.let.uu.nl/tour.pdf
http://www.let.uu.nl/~ctl/docenten/moortgat.html

5. Type-logical grammar

Think of type-logical grammar as a functional programming language (cf Haskell),
customized for NLP (analysis, generation).

Functional programming

I basic types: integers, booleans, . . .

I functional types T → T ′

I using/constructing types T → T ′: application/abstraction

Curry-Howard-de Bruyn Perspective shift logic/computation.

I functional types/implicational formulas,

I type computations/logical derivations.

Contents First Last Prev Next J

6. Illustration: square

A simple example: constructing a square function out of a built-in times function:

times : Int → (Int → Int) x : Int

(times x) : Int → Int
(Elim →)

x : Int

(times x x) : Int
(Elim →)

λx.(times x x) : Int → Int
(Intro →)

I (Elim →): use of a function, application

I (Intro →): construction of a function, abstraction

Contents First Last Prev Next J

7. The logic of grammar

Let us write A • B for the combination of an expression A with an expression B.
We obtain a grammar logic by dropping all ‘structural rules’ for the product:

I Resource sensitivity: no duplication/waste of material

I Structure sensitivity: linear order/grouping

. Drop Commutativity: A •B = B • A

Would imply that linear order doesn’t affect well-formedness

But: compare man bites dog and dog bites man.

. Drop Associativity: (A •B) • C = A • (B • C)

Destroys structural information:

I had completely forgotten how good beer tastes.

Contents First Last Prev Next J

8. Parsing as deduction

Two implications in the absence of Commutativity!

Algebra: residuation laws

A → C/B iff A •B → C iff B → A\C

Logic: inference rules (elimination/introduction)

X ` B Y ` B\A
X ◦ Y ` A

\E
X ` A/B Y ` B

X ◦ Y ` A
/E

B ◦X ` A
X ` B\A \I X ◦B ` A

X ` A/B
/I

Contents First Last Prev Next J

9. The structural module

To capture variation, structural rules can be reintroduced in a controlled form.

Control operations ♦, 2 in addition to the composition operations /, •, \.

I Logical rules

♦A → B iff A → 2B

I Structural rules: under ♦ control. For example:

♦A •B → B • ♦A

(A •B) • ♦C → A • (B • ♦C)

Contents First Last Prev Next J

10. The GRAIL system

Richard Moot’s unix-based GRAIL system offers a general development environment
for type-logical grammars. Software components:

I SICStus Prolog: the programming language for the kernel;

I Tcl/Tk for the graphical user interface;

I a standard teTeX environment for the visualization/export of derivations.

The system is available under the GNU General Public License agreement from

ftp.let.uu.nl/pub/users/moot

Contents First Last Prev Next J

ftp.let.uu.nl/pub/users/moot

11. A session

The user designs a grammar fragment, using the following tools:

I Lexicon tool: graphical editor to assign formulas (and meaning programs) to
words in the lexicon or edit lexical entries,

I Postulate tool: graphical editor to add or modify structural rewrite rules,

I Parsing/debugging: run the theorem prover on sample expressions; interactive
mode using proof net technology.

Contents First Last Prev Next J

12. Export formats

User-defined LATEX output formats.

Prawitz style Derivations in tree format, using Tatsuta’s proof.sty package.

knuth
np

surpassed

(np\s)/np
himself

((np\s)/np)\(np\s)
surpassed ◦ himself ` np\s [\E]

knuth ◦ (surpassed ◦ himself) ` s
[\E]

Fitch style Linear format, handy when meaning assembly is included.

1. knuth : np− knuth Lex
2. surpassed : (np\s)/np− surpass Lex
3. himself : ((np\s)/np)\(np\s)− λz2.λx3.((z2 x3) x3) Lex
4. surpassed ◦ himself : np\s− λx3.((surpass x3) x3) \E (2, 3)
5. knuth ◦ (surpassed ◦ himself) : s− ((surpass knuth) knuth) \E (1, 4)

Contents First Last Prev Next J

13. Dynamic derivations

The core notion of ‘proof’ is inherently dynamic:

‘a sequence of inference steps, leading from axioms to the desired conclusion’

; dynamic display format

Tools for the implementation (thanks to Bernhard Fisseni):

I an expanded version of \infer from proof.sty, taking advantage of

I the \stepwise family of commands from Lehmke’s texpower.sty package

I the kernel computes the sequencing order from the internal proof object, with
bottom-up or top-down options

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

that

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

that

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

that
(n\n)/(s/np)

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

that
(n\n)/(s/np)

knuth

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

that
(n\n)/(s/np)

knuth

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

wrote

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

wrote

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

wrote
(np\s)/np

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

wrote
(np\s)/np [p1 ` np]1

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

wrote
(np\s)/np [p1 ` np]1

[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

wrote
(np\s)/np [p1 ` np]1

wrote ◦ p1 ` np\s [/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

wrote
(np\s)/np [p1 ` np]1

wrote ◦ p1 ` np\s [/E]

[\E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

wrote
(np\s)/np [p1 ` np]1

wrote ◦ p1 ` np\s [/E]

knuth ◦ (wrote ◦ p1) ` s
[\E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

wrote
(np\s)/np [p1 ` np]1

wrote ◦ p1 ` np\s [/E]

knuth ◦ (wrote ◦ p1) ` s
[\E]

[P2]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

wrote
(np\s)/np [p1 ` np]1

wrote ◦ p1 ` np\s [/E]

knuth ◦ (wrote ◦ p1) ` s
[\E]

(knuth ◦ wrote) ◦ p1 ` s
[P2]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

wrote
(np\s)/np [p1 ` np]1

wrote ◦ p1 ` np\s [/E]

knuth ◦ (wrote ◦ p1) ` s
[\E]

(knuth ◦ wrote) ◦ p1 ` s
[P2]

[/I]1

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

wrote
(np\s)/np [p1 ` np]1

wrote ◦ p1 ` np\s [/E]

knuth ◦ (wrote ◦ p1) ` s
[\E]

(knuth ◦ wrote) ◦ p1 ` s
[P2]

knuth ◦ wrote ` s/np
[/I]1

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

wrote
(np\s)/np [p1 ` np]1

wrote ◦ p1 ` np\s [/E]

knuth ◦ (wrote ◦ p1) ` s
[\E]

(knuth ◦ wrote) ◦ p1 ` s
[P2]

knuth ◦ wrote ` s/np
[/I]1

[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

wrote
(np\s)/np [p1 ` np]1

wrote ◦ p1 ` np\s [/E]

knuth ◦ (wrote ◦ p1) ` s
[\E]

(knuth ◦ wrote) ◦ p1 ` s
[P2]

knuth ◦ wrote ` s/np
[/I]1

that ◦ (knuth ◦ wrote) ` n\n [/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

wrote
(np\s)/np [p1 ` np]1

wrote ◦ p1 ` np\s [/E]

knuth ◦ (wrote ◦ p1) ` s
[\E]

(knuth ◦ wrote) ◦ p1 ` s
[P2]

knuth ◦ wrote ` s/np
[/I]1

that ◦ (knuth ◦ wrote) ` n\n [/E]

[\E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

wrote
(np\s)/np [p1 ` np]1

wrote ◦ p1 ` np\s [/E]

knuth ◦ (wrote ◦ p1) ` s
[\E]

(knuth ◦ wrote) ◦ p1 ` s
[P2]

knuth ◦ wrote ` s/np
[/I]1

that ◦ (knuth ◦ wrote) ` n\n [/E]

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

wrote
(np\s)/np [p1 ` np]1

wrote ◦ p1 ` np\s [/E]

knuth ◦ (wrote ◦ p1) ` s
[\E]

(knuth ◦ wrote) ◦ p1 ` s
[P2]

knuth ◦ wrote ` s/np
[/I]1

that ◦ (knuth ◦ wrote) ` n\n [/E]

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

14. Dynamic derivations: bottom up

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

wrote
(np\s)/np [p1 ` np]1

wrote ◦ p1 ` np\s [/E]

knuth ◦ (wrote ◦ p1) ` s
[\E]

(knuth ◦ wrote) ◦ p1 ` s
[P2]

knuth ◦ wrote ` s/np
[/I]1

that ◦ (knuth ◦ wrote) ` n\n [/E]

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

I

Contents First Last Prev Next J

15. Dynamic derivations: top down

Contents First Last Prev Next J

15. Dynamic derivations: top down

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

np/n

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

np/n

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n book ◦ (that ◦ (knuth ◦ wrote)) ` n

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n book ◦ (that ◦ (knuth ◦ wrote)) ` n

[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n

n

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n

n

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n

book
n

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n

book
n that ◦ (knuth ◦ wrote) ` n\n

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n

book
n that ◦ (knuth ◦ wrote) ` n\n [/E]

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n

book
n

(n\n)/(s/np)

that ◦ (knuth ◦ wrote) ` n\n [/E]

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n

book
n

(n\n)/(s/np)

that ◦ (knuth ◦ wrote) ` n\n [/E]

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n

book
n

that
(n\n)/(s/np)

that ◦ (knuth ◦ wrote) ` n\n [/E]

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n

book
n

that
(n\n)/(s/np) knuth ◦ wrote ` s/np

that ◦ (knuth ◦ wrote) ` n\n [/E]

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n

book
n

that
(n\n)/(s/np) knuth ◦ wrote ` s/np

[/I]1

that ◦ (knuth ◦ wrote) ` n\n [/E]

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n

book
n

that
(n\n)/(s/np)

(knuth ◦ wrote) ◦ p1 ` s

knuth ◦ wrote ` s/np
[/I]1

that ◦ (knuth ◦ wrote) ` n\n [/E]

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n

book
n

that
(n\n)/(s/np)

(knuth ◦ wrote) ◦ p1 ` s
[P2]

knuth ◦ wrote ` s/np
[/I]1

that ◦ (knuth ◦ wrote) ` n\n [/E]

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n

book
n

that
(n\n)/(s/np)

knuth ◦ (wrote ◦ p1) ` s

(knuth ◦ wrote) ◦ p1 ` s
[P2]

knuth ◦ wrote ` s/np
[/I]1

that ◦ (knuth ◦ wrote) ` n\n [/E]

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n

book
n

that
(n\n)/(s/np)

knuth ◦ (wrote ◦ p1) ` s
[\E]

(knuth ◦ wrote) ◦ p1 ` s
[P2]

knuth ◦ wrote ` s/np
[/I]1

that ◦ (knuth ◦ wrote) ` n\n [/E]

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n

book
n

that
(n\n)/(s/np)

np

knuth ◦ (wrote ◦ p1) ` s
[\E]

(knuth ◦ wrote) ◦ p1 ` s
[P2]

knuth ◦ wrote ` s/np
[/I]1

that ◦ (knuth ◦ wrote) ` n\n [/E]

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n

book
n

that
(n\n)/(s/np)

np

knuth ◦ (wrote ◦ p1) ` s
[\E]

(knuth ◦ wrote) ◦ p1 ` s
[P2]

knuth ◦ wrote ` s/np
[/I]1

that ◦ (knuth ◦ wrote) ` n\n [/E]

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

knuth ◦ (wrote ◦ p1) ` s
[\E]

(knuth ◦ wrote) ◦ p1 ` s
[P2]

knuth ◦ wrote ` s/np
[/I]1

that ◦ (knuth ◦ wrote) ` n\n [/E]

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np wrote ◦ p1 ` np\s
knuth ◦ (wrote ◦ p1) ` s

[\E]

(knuth ◦ wrote) ◦ p1 ` s
[P2]

knuth ◦ wrote ` s/np
[/I]1

that ◦ (knuth ◦ wrote) ` n\n [/E]

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np wrote ◦ p1 ` np\s [/E]

knuth ◦ (wrote ◦ p1) ` s
[\E]

(knuth ◦ wrote) ◦ p1 ` s
[P2]

knuth ◦ wrote ` s/np
[/I]1

that ◦ (knuth ◦ wrote) ` n\n [/E]

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

(np\s)/np

wrote ◦ p1 ` np\s [/E]

knuth ◦ (wrote ◦ p1) ` s
[\E]

(knuth ◦ wrote) ◦ p1 ` s
[P2]

knuth ◦ wrote ` s/np
[/I]1

that ◦ (knuth ◦ wrote) ` n\n [/E]

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

(np\s)/np

wrote ◦ p1 ` np\s [/E]

knuth ◦ (wrote ◦ p1) ` s
[\E]

(knuth ◦ wrote) ◦ p1 ` s
[P2]

knuth ◦ wrote ` s/np
[/I]1

that ◦ (knuth ◦ wrote) ` n\n [/E]

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

wrote
(np\s)/np

wrote ◦ p1 ` np\s [/E]

knuth ◦ (wrote ◦ p1) ` s
[\E]

(knuth ◦ wrote) ◦ p1 ` s
[P2]

knuth ◦ wrote ` s/np
[/I]1

that ◦ (knuth ◦ wrote) ` n\n [/E]

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

15. Dynamic derivations: top down

the
np/n

book
n

that
(n\n)/(s/np)

knuth
np

wrote
(np\s)/np [p1 ` np]1

wrote ◦ p1 ` np\s [/E]

knuth ◦ (wrote ◦ p1) ` s
[\E]

(knuth ◦ wrote) ◦ p1 ` s
[P2]

knuth ◦ wrote ` s/np
[/I]1

that ◦ (knuth ◦ wrote) ` n\n [/E]

book ◦ (that ◦ (knuth ◦ wrote)) ` n
[\E]

the ◦ (book ◦ (that ◦ (knuth ◦ wrote))) ` np
[/E]

Meaning. ι(λy3.(write(knuth, y3) ∧ book(y3)))

Contents First Last Prev Next J

16. Internal proof term representation

N: 1 ; Mean: ι(^K.(write(knuth,K) & book(K))) ;
rule(dre([]),(the *[](book *[](that *[](knuth *[]wrote)))),np,B(D(^E.H(E)(G))(C)),
[rule(lex,the,(np /[] n),B,[]),
rule(dle([]),(book *[] (that *[] (knuth *[] wrote))),n,D(^E.H(E)(G))(C),
[rule(lex,book,n,C,[]),
rule(dre([]),(that *[] (knuth *[] wrote)),(n \[] n),D(^E.H(E)(G)),
[rule(lex,that,((n \[] n) /[] (s /[] np)),D,[]),
rule(dri([],1),(knuth *[] wrote),(s /[] np),^E.H(E)(G),
[rule(P2,((knuth *[] wrote) *[] E),s,H(E)(G),
[rule(dle([]),(knuth *[] (wrote *[] E)),s,H(E)(G),
[rule(lex,knuth,np,G,[]),
rule(dre([]),(wrote *[] E),(np \[] s),H(E),
[rule(lex,wrote,((np \[] s) /[] np),H,[]),
rule(hyp(1),E,np,E,[])])])])])])])]),
Con: [],Subst: [ι,book,3-^I.^J.^K.(I(K) & J(K)),knuth,write], NV 8

Contents First Last Prev Next J

17. Web interaction with the kernel

To realize web interaction with the kernel, we move through the following stages.

I Command line interaction (Prolog)

I Shell interaction (Unix)

I Web interaction (Cgi)

I

Contents First Last Prev Next J

18. Prolog command line interaction

Consulting a fragment, parsing test sentences, producing LATEX output eg.tex to
be processed by a wrapper file proofs.tex

SICStus 3.8.5 (sparc-solaris-5.7): Fri Oct 27 10:12:22 MET DST 2000
Licensed to let.uu.nl
| ?- consult(’notcl2000.pl’). % the kernel without tcl/tk GUI
{consulting notcl2000.pl...}
yes
| ?- consult(’knuth.pl’).
{consulting knuth.pl...}
{consulted knuth.pl in module user, 20 msec 6952 bytes}
yes
| ?- tex([knuth,surpassed,himself],s).
===
Lookup: 0, Max # links: 12
===
Telling LaTeX output directory eg.tex
1 solution found. CPU Time used: 0.200 latex ready

Contents First Last Prev Next J

19. From shell interaction to web interaction

Unix ; shell interaction. The SICStus save_program predicate saves a state of the
run of the program that can be resumed with the -r flag. In addition, arguments
can be passed from the unix command line using the -a flag.

% sicstus -r wwwgrailstate
-a knuth yes yes yes inactive nd s knuth surpassed himself
{restoring wwwgrailstate...}
{wwwgrailstate restored in 80 msec 513808 bytes}
{consulting knuth.pl...}

Cgi ; web interaction. The sicstus -r ... -a ... call is realized via a cgi pro-
gram, using the html or pdf form facilities.

Contents First Last Prev Next J

20. Using Rahtz’ hyperref package

We can use the \href command of the hyperref package to call a cgi script:

...
\hyperbaseurl{http://grail.let.uu.nl/cgi-bin/grail/}
\newcommand{\parsescript}[4]
{\href{wwwgrail.cgi?
frag=#1&struct=yes&sem=no&lexsem=yes&unary=inactive&mode=nd&goal=#2&test=#3}{#4}}
...

The parameters for \parsescript are a fragment name (#1), a goal formula (#2),
and the test expression, in cgi (#3) and print (#4) format. Sample sentences can
now be evaluated/parsed on-line. wwwgrail.cgi sends back the typeset derivation,
and the source file.

...
\parsescript{whleft}{np}{de+soepschildpad+die+alice+wil+plagen}
{de Soepschildpad die Alice wil plagen} $\vdash np$

Contents First Last Prev Next J

21. Fragment libraries

The next step in the direction of the Mathematica ‘notebook’ concept:

The kernel transforms Prolog source code into a typeset fragment, with evaluable
examples, and form interaction.

I Static library. A directory of annotated fragments used for didactic purposes.
For example

http://www.let.uu.nl/~Michael.Moortgat/personal/Courses/fragments/

I Dynamic library. Users submit their individual fragments, which the Perl LWP
module fetches from a specified URL.

http://grail.let.uu.nl/submitfragment-e.html

I

Contents First Last Prev Next J

http://www.let.uu.nl/~Michael.Moortgat/personal/Courses/fragments/
http://grail.let.uu.nl/submitfragment-e.html

22. hyperref form interaction

\section{Interactive session}
\renewcommand{\LayoutTextField}[2]{\makebox[2in][l]{#1}#2}
\renewcommand{\LayoutChoiceField}[2]{\makebox[1.5in][l]{#1}#2}
\renewcommand{\LayoutCheckField}[2]{#1\makebox[1.5in][l]{#2}}
\renewcommand{\DefaultWidthofCheckBox}{12pt}
\renewcommand{\DefaultHeightofCheckBox}{12pt}

\begin{Form}[action=http://grail.let.uu.nl/cgi-bin/grail/wwwgrail.cgi,
encoding=html,method=post]

\subsection*{Test example}
\TextField[width=3in,name=test]{Type in an example:}
\TextField[width=3in,name=goal]{Goal formula:}
...
\subsection*{Display options}
\ChoiceMenu[radio,default=yes,name=struct]{Structure labels:}{Yes=yes,No=no}
...
\Submit{\textsf{Submit}}\quad\Reset{\textsf{Reset}}
\end{Form}

Contents First Last Prev Next J

23. Future work/worries

I Work. Extend the form interaction to allow for

. Lexicon editing/updating

. Postulate editing/updating

. Proof net unfolding

I Worry. Can we depend on Acrobat? Dynamic PDF features might change,
disappear . . .

I Alternative? Is a switch to Hans Hagen’s conTEXt environment an option?

. lets ask him . . .

Contents First Last Prev Next J

References

Type-logical grammar

Lambek, J. 1958, The mathematics of sentence structure. American Mathematical
Monthly, 65:154–170.

Moortgat, M. 1997, Categorial type logics. Chapter 2, Handbook of Logic and Lan-
guage. Elsevier/MIT Press, pp. 93–177.

Moot, R. 1998, Grail: an automated proof assistant for categorial grammar logics,
in R. Backhouse, ed., ‘Proceedings of the 1998 User Interfaces for Theorem
Provers Conference’, pp. 120–129.

References Contents First Last Prev Next J

Packages

Lehmke, S. 2001, The TEXPower bundle. Currently available in a pre-alpha release
from http://ls1-www.cs.uni-dortmund.de/~lehmke/texpower/.

Radhakrishnan, C.V. 1999, ‘Pdfscreen.sty’, Comprehensive TEX Archive Network.
macros/latex/contrib/supported/pdfscreen/.

Rahtz, S. 2000, ‘Hyperref.sty’, Comprehensive TEX Archive Network.
macros/latex/contrib/supported/hyperref/.

Story, D.P. 2001, ‘Exerquiz.sty’, Comprehensive TEX Archive Network.
macros/latex/contrib/supported/webeq/.

Tatsuta, M. 1997, ‘Proof.sty’, Comprehensive TEX Archive Network.
macros/latex/contrib/other/proof/proof.sty.

Taylor, P. 1996, ‘Prooftree.sty’, Comprehensive TEX Archive Network.
macros/generic/proofs/taylor/prooftree.sty.

References Contents First Last Prev Next J

	The project
	The team
	Current uses of the material
	Type-logical grammar
	Type-logical grammar
	Illustration: square
	The logic of grammar
	Parsing as deduction
	The structural module
	The GRAIL system
	A session
	Export formats
	Dynamic derivations
	Dynamic derivations: bottom up
	Dynamic derivations: top down
	Internal proof term representation
	Web interaction with the kernel
	Prolog command line interaction
	From shell interaction to web interaction
	Using Rahtz' hyperref package
	Fragment libraries
	hyperref form interaction
	Future work/worries

