Learning linearization rules from treebanks

Geert-Jan Kruijff
NEGRA EM6/SFB 378
Computational Linguistics
Saarland University
Saarbrücken, Germany
$\langle\mathrm{GJ@COLI} . \mathrm{UnI}-\mathrm{Sb} . \mathrm{DE}\rangle$

- Use a treebank to learn rules describing linearization
- Restrictions on linearization
- Variability in linearization
- Work in progress
- Acknowledgments

Oliver Čulo (SAM/HMMr), Christian Korthals, Ivana Kruijff-Korbayová, Richard Moot (UU:CGN), Shravan Vasishth (R), Zdeněk Žabokrtsky (CU:PDT)

This work is supported by the DFG Sonderforschungsbereich 378 ResourceSensitive Cognitive Processes, Project NEGRA EM6.

\triangle Why learn rules describing linearization?

- Practical issues
- Treebank grammar: CFG productions read off TB trees (Charniak, 1996)
\Rightarrow Is a CFG strong enough?
\Rightarrow Coverage, generalizability with freer word order?
- Theoretical issues
- Cross-linguistic primitives
- Hierarchy of generative strength or performance complexity
- Four Type X languages (Greenberg, 1966; Hawkins, 1983)
- English, German, Dutch, Czech
- Different degrees of word order freedom (Steele, 1978; Kruijff, 2001)
- Empirical investigations
- Discontinuous wordgroups (more freedom \Rightarrow more discontinuity)
- Scrambling (more freedom \Rightarrow more scrambling)
\Rightarrow Beyond CFG, range of variability
- Learning linearization rules
- Learning problem
- Approach: General setting, intuitions
- First experiments
- Conclusions \& outlook
- Discontinuity in wordgroups
- Intervening material from non-dependent wordgroups
\Rightarrow Discontinuous span
- Null hypothesis: More freedom \Rightarrow more discontinuity

- Yellow span interrupted once: intervening blue material

Discontinuous wordgroups (once)

"Dort sollen 40 bis 50 weitere Militärbeobachter und französische Luftfahrtexperten zu ihm stoßen."
(There, another 40 to 50 military observers and French airline experts should push towards him.)
[NEGRA 14876]

- Yellow span interrupted twice: intervening blue and green material

Discontinuous wordgroups (twice)

"Am 27. Oktober 1810 wird erstmals in der Municipalordnung ein Polizeiamt erwähnt."
(On the 27th of October 1810 a police office is mentioned for the first time in the municipality.")
[NEGRA 165]

- Four treebanks
- English: PTB WSJ section, 49208 trees; (et al, 1995)
- German: NEGRA, 20602 trees (Skut et al., 1997)
- Dutch: CGN, 29571 trees (Oostdijk, 2000)
- Czech: PDT Row 5, 21992 trees (Hajič, 1998)
- Extract modification context for each head
- Dependency tree
- Includes both complements and adjuncts
- Count (dis)continuity
- Number of interruptions of a head's span
$-0=$ continuous, >0 discontinuous
- Relative freq. (\#occ. of head), absolute freq. (\#observed nodes)
- Presentation: Phrases with frequency $\geq 1 \%$, up to 3 holes ($\geq 0.01 \%$)

Results: Continuous wordgroups in English (WSJ)

Results: Discontinuous wordgroups in English (WSJ)

Type	$\mathbf{0}$ holes	$\mathbf{1}$ hole	$\mathbf{2}$ holes	$\mathbf{3}$ holes	Σ
ADJP	$1.64 \%(98.54 \%)$	0.02%	0.00%	0.00%	0.02%
NP	$40.13 \%(99.39 \%)$	0.24%	0.00%	0.00%	0.24%
PP	$15.69 \%(99.51 \%)$	0.08%	0.00%	0.00%	0.08%
QP	$1.41 \%(91.06 \%)$	0.14%	0.00%	0.00%	0.14%
S	$11.56 \%(97.26 \%)$	0.31%	0.00%	0.00%	0.31%
SBAR	$3.32 \%(99.11 \%)$	0.03%	0.00%	0.00%	0.03%
VP	$17.99 \%(99.06 \%)$	0.16%	0.01%	0.00%	0.17%
VPn	$2.47 \%(98.84 \%)$	0.03%	0.00%	0.00%	0.03%
VPto	$2.17 \%(99.71 \%)$	0.01%	0.00%	0.00%	0.01%
	$\Sigma^{0}=96.38 \%$	$\Sigma^{1}=1.02 \%$	$\Sigma^{2}=0.01 \%$	$\Sigma^{3}=0.00 \%$	$\Sigma^{d}=1.03 \%$

Results: Discontinuous wordgroups in German (NEGRA)

\square	One discontinuity	
\square	Two discontinuities	
\square	Three discontinuities	\square One discontinuity \square Two discontinuities Thtee discomtinuities

Frequency (in \%) of (dis)continuous occ. per total \# occ. (NEGRA)

Type	0 holes	1 hole	2 holes	3 holes	Σ
AP	$3.52 \%(86.80 \%)$	0.50%	0.04%	0.00%	0.54%
AVP	$1.01 \%(78.90 \%)$	0.27%	0.00%	0.00%	0.27%
CNP	$3.47 \%(97.17 \%)$	0.08%	0.01%	0.01%	0.10%
CS	$1.45 \%(82.22 \%)$	0.29%	0.02%	0.00%	0.31%
MPN	$2.87 \%(99.88 \%)$	0.00%	0.00%	0.00%	0.00%
NP	$27.74 \%(95.01 \%)$	1.42%	0.03%	0.00%	1.45%
PP	$23.95 \%(97.63 \%)$	0.57%	0.01%	0.00%	0.58%
S	$15.31 \%(76.53 \%)$	3.45%	1.21%	0.03%	4.69%
VP	$5.84 \%(65.18 \%)$	2.59%	0.50%	0.02%	3.11%
VZ	$1.17 \%(100.0 \%)$	0.00%	0.00%	0.00%	0.00%
	$\Sigma^{0}=86.33 \%$	$\Sigma^{1}=9.17 \%$	$\Sigma^{2}=1.82 \%$	$\Sigma^{3}=0.06 \%$	$\Sigma^{d}=11.05 \%$

Frequency (in \%) of (dis)continuous occ. per total \# occ. (CGN)

Type	0 holes	1 hole	2 holes	3 holes	Σ (discont)
ADVP	$2.05 \%(96.85 \%)$	0.07%	0.00%	0.00%	0.07%
AP	$2.54 \%(89.07 \%)$	0.30%	0.00%	0.00%	0.30%
CONJ	$2.37 \%(70.91 \%)$	0.85%	0.11%	0.01%	0.97%
CP	$3.46 \%(94.92 \%)$	0.19%	0.00%	0.00%	0.19%
DU	$11.33 \%(82.31 \%)$	2.21%	0.21%	0.02%	2.44%
INF	$2.25 \%(40.96 \%)$	2.83%	0.39%	0.03%	3.25%
MWU	$3.43 \%(98.06 \%)$	0.07%	0.00%	0.00%	0.07%
NP	$17.63 \%(90.77 \%)$	1.71%	0.08%	0.00%	1.79%
PP	$10.78 \%(86.60 \%)$	1.64%	0.03%	0.00%	1.67%
PPART	$1.32 \%(60.27 \%)$	0.78%	0.09%	0.01%	0.88%
REL	$0.97 \%(93.27 \%)$	0.07%	0.00%	0.00%	0.07%
SMAIN	$12.46 \%(77.60 \%)$	3.08%	0.46%	0.05%	3.59%
SSUB	$3.32 \%(64.98 \%)$	1.35%	0.37%	0.06%	1.78%
SV1	$3.70 \%(88.54 \%)$	0.42%	0.06%	0.00%	0.48%
TI	$0.28 \%(24.33 \%)$	0.87%	0.00%	0.00%	0.87%
	$\Sigma^{0}=77.89 \%$	$\Sigma^{1}=16.44 \%$	$\Sigma^{2}=1.80 \%$	$\Sigma^{3}=0.20 \%$	$\Sigma^{d}=18.42 \%$

Results: Continuous wordgroups in Czech (PDT)

\square Continuous phrases
 \square Occurrence in corpus

Results: Discontinuous wordgroups in Czech (PDT)

Frequency (in \%) of (dis)continuous occ. per total \# occ. (PDT)

Type	0 holes	1 hole	2 holes	3 holes	Σ (discont)
AP	$3.10 \%(67.19 \%)$	1.29%	0.19%	0.03%	1.51%
CooP	$1.82 \%(26.70 \%)$	3.38%	1.34%	0.22%	4.94%
NP	$26.29 \%(57.29 \%)$	18.28%	1.20%	0.09%	19.57%
PP	$6.90 \%(34.33 \%)$	13.10%	0.11%	0.00%	13.21%
S	$3.64 \%(16.10 \%)$	13.41%	4.71%	0.72%	18.84%
	$\Sigma^{0}=41.75 \%$	$\Sigma^{1}=49.46 \%$	$\Sigma^{2}=7.55 \%$	$\Sigma^{3}=1.06 \%$	$\Sigma^{d}=58.07 \%$

Language	Σ^{0}	Σ^{1}	Σ^{2}	Σ^{3}
English	96.38%	1.02%	0.01%	0.00%
German	86.33%	9.17%	1.82%	0.06%
Dutch	77.89%	16.44%	1.80%	0.20%
Czech	41.75%	49.46%	7.55%	1.06%

- Confirmation of null hypothesis
- German, Dutch
- VZ is continuous (nested) $\Sigma^{d}=0.00 \%$
- INF, TI are mostly 'discontinuous' (cross-serial) $\left(\Sigma^{d}=4.12 \%\right)$
- Nominal, verbal groups
- Nominal groups mostly continuous in E, G \& D (99.39\%, 95.01\%, 90.77\%)
- Verbal groups show increase in discontinuity with increase in flexibility
- Prediction: CFG more and more inadequate

Investigation: Scrambling

- Null hypothesis: More freedom \Rightarrow more scrambling
- Simple approach
- Ordered modification context: Dependency tree
- Unordered modification context: Dependency mobile
- variability factor $=\log _{2}\left(\frac{\mid \text { unique ordered } \mathrm{MCs} \mid}{\text { lunique unordered MCs } \mid}\right)$
- Variability factor: 0 means no scrambling, >0 scrambling
- Measurements
- Variability factor for MCs per head type
- Growth of |ordered MCs|, |unordered MCs|

Results: Variability factors for English (WSJ)

Type	Unique ordered	Unique unordered	Var. factor
ADJP	23	20	0.14
NP	409	303	0.30
PP	43	33	0.26
QP	95	70	0.31
S	445	325	0.31
SBAR	33	27	0.20
VP	561	452	0.22
VPn	99	76	0.26
VPto	2	1	0.69

Results: Growth of unique NP mod.ctxts for English (WSJ)

WSJ Treebank: NPs

Results: Growth of unique S mod.ctxts for English (WSJ)

WSJ Treebank: Ss

Results: Variability factors for German (NEGRA)

Type	Unique ordered	Unique unordered	Var. factor
AP	77	52	0.39
AVP	9	8	0.12
CNP	21	17	0.21
CS	4	1	1.39
MPN	4	4	0.00
NP	229	193	0.17
PP	127	109	0.15
S	688	248	1.02
VP	211	76	1.02

Results: Growth of unique NP mod.ctxts for German (NEGRA)

Negra Treebank: NPs

Results: Growth of unique S mod.ctxts for German (NEGRA)

Results: Variability factors for Czech (PDT)

Type	Unique ordered	Unique unordered	Var. factor
AP	657	576	0.13
CooP	1973	1523	0.26
NP	2400	1686	0.35
PP	169	111	0.42
S	11350	6455	0.56

- Surprising results
- Nominal groups behave similarly to English, German - expected
- Verbal groups: English $\approx 2.5 \times$ but German $\approx 0.5 \times$
- Possible reasons
- S class too indiscriminate
- Genuine division of labor?

Results: Growth of unique NP mod.ctxts for Czech (PDT)

Prague Treebank: NPs

Results: Growth of unique S mod.ctxts for Czech (PDT)

Prague Treebank: Ss

- Division of labor
- Long-distance dependencies (nonlocal)
- Scrambling (local)
- Compaction
- Square-root growth rate for TBG rule set with corpus size (Krotov et al., 1998)
- Similar observations here
- Krotov et al's compaction vs. variability in linearization

Parsing results

- "Treebank grammars"
- English
- Charniak (CFG), Xia et al. (LTAG), Hockenmaier, Clark et al. (CCG)
- German
- Becker \& Frank (topol.), Neumann (TAG/HPSG)
- Dutch
- Adriaans (stat.), Moortgat \& Moot (CTL)
- Czech
- Sarkar \& Zeman (stat.)
- Lack of baseline information
- Applicability of formal algorithms, e.g. Buszkowski \& Penn
- Data
- Discontinuous groups
- Scrambling
- Learning problem
- Given a set of trees (modification contexts,-patterns)
- Restrictions \Rightarrow constancy of (partial) orderings
- Variability \Rightarrow variation on canonical ordering
- Approach
- Framework: 3-phase learning
- Technique: multiple-sequence alignment (bioinformatics)

Robust learning of linearization rules

- Variability in linearization
- Is a given linearization a variation of a canonical order?
- Similar problem in bio-informatics
- Basic problem: Pairwise alignment
- Given two sequences, possibly with gaps
- Align the sequences
- Related by chance or through evolution: Significance of scoring
- Examples (alignment to human alpha globin) (Durbin et al., 1998)

Clear similarity to human beta globin
HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL G+ +VK+HGKKV A+++++AH+D++ +++++LS+LH KL
HBB_HUMAN GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL
Structurally plausible alignment to leghaemoglobin from yellow lupin
HBA_HUMAN GSAQVKGGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL
++ ++++H+ KV + +A ++ +L+ L+++H+ K
LGB2_LUPLU NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG
Spurious high-scoring alignment to a nematode glutathion S-transferase homologue
HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSD----LHAHKL GS+ + G + +D L ++ H+ D+ A +AL D ++AH+
F11G11.2 GSGYLVGDSLTFVDLL--VAQHTADLLAANAALLDEFPQFKAHQE

Pairwise alignment (cont'd)

- Scoring model
- Mutational processes: substitution and insertion, deletion (gaps)
- Score: Σ terms for each aligned pair of residues, plus terms for each gap
- Examples
- Match model M, aligned pairs (a,b) have joint probability $p_{a b}$
- " a and b derived independently from residue c in ancestor"
- Probability of alignment: $P(x, y \mid M)=\prod_{i} p_{x_{i} y_{i}}$
- Gap penalties: linear $\gamma(g)=-g d$, affine $\gamma(g)=-d-(g-1) e$
- Significance of scores
- Distinguish spurious from genuine alignments
- Data-driven parametrization

Pairwise alignment (cont'd)

- Alignment algorithms
- Dynamic programming techniques
- Find highest-scoring alignment of two sequences
- Fill matrix F using solutions for optimal alignments of smaller subsequences

- Different alignments
- Global alignment: Needleman-Wunsch algorithm
- Local alignment: Smith-Waterman algorithm
- Repeated matches (multiple local alignments), overlap matches
\Rightarrow Hybrid match conditions

Pairwise alignment and linearization

- Pairwise alignment
- Similarity between two sequences (dependency trees)
- Linguistically motivated gap penalty
- Families and profiling
- Generalize alignment to form families
- Create profile over family
\Rightarrow Multiple sequence alignment

Multiple sequence alignment

- Alignment of multiple sequences in colums
- Aligned substructures are 'homologous' - structurally similar
- No single optimal alignment
- Optimality depends on relatedness of training sequences \Rightarrow families
- Scoring multiple alignment
- Position conservation
- Sequences are not independent, but related
- Multiple alignment by profile HMM training

Profile Hidden Markov Models

- Match, insert and delete states
- Key idea
- Profile of multiple aligned sequences
- Transition, emission probabilities capture information about each position in alignment
- Training
- Adaptations of standard model construction methods
- Aligned or unaligned sequences as input
- Profile useful for multiple sequence alignment

Initial experiments

- Family
- Sequences of equal length
- Sequences of equal type
- Variations (dep.trees) on dependency mobile
- Tools
- Sequence Alignment Module (SAM) (Hughey and Krogh, 1996)
- Translation edge-labels \rightarrow single-characters
- Treebank Perl scipts and Java classes

Aligned sequences of equal length: S, length 5

sequence11	EFADC
sequence32	HECAE
sequence187	ECAED
sequence246	FHAEC
sequence247	ECNEA
sequence284	EFAGC
sequence291	ECAEE
sequence317	ECNAI
sequence392	ACEHI

:

Aligned sequences of equal type: S

sequence38	A. . C.
sequence39	A. . C.
sequence46	A. C. G
sequence48	G..C........ A.
sequence56	A. C.
sequence58	-. . C. ${ }^{\text {G }}$
sequence62	A. C.
sequence66	A. D........C.

[HD:VMFIN, MO:ADV, MO:ADV, OC:VP, SB:NP]

	SB	HD	MO	CP	OC	OA
Mapping table	A	C	E	F	G	H

[HD:VVFIN, MO:PP, MO:PP, SB:NP]

	SB	HD	MO	CP	OC	OA
Mapping table	A	C	E	F	G	H

- From profiles to rules
- Soft rules: Use probabilities as preferences
- Hard rules: discard patterns \leq threshold
- Example
- Hard rules yield classical topological model for II
- $\{1$ dep $\}$ HD $\{n$ deps $\}\{$ CP $\}$
- Canonical is SB-V order

\triangle Conclusions \& outlook

- Potential approach to learning linearization rules
- Robust given scrambling, discontinuity
- Linguistic intuitions
- Improving data
- Phylogenetic trees $\stackrel{?}{\leftrightarrow}$ head alternation graphs
- Sequence weighing (balancing data)
- Improving computation
- Arbitrary sequence encoding
- Linguistic data-based (affine) gapping scoring

Contents

Goal 2
Why learn rules describing linearization? 3
Overview 4
Investigation: Discontinuous wordgroups 5
Discontinuous wordgroups (once) 6
Discontinuous wordgroups (twice) 8
Experimental setup 10
Results: Continuous wordgroups in English (WSJ) 11
Results: Discontinuous wordgroups in English (WSJ) 12
Frequency (in \%) of (dis)continuous occ. per total \# occ. (WSJ) 13
Results: Continuous wordgroups in German (NEGRA) 14
Results: Discontinuous wordgroups in German (NEGRA) 15
Frequency (in \%) of (dis)continuous occ. per total \# occ. (NEGRA) 16
Results: Continuous wordgroups in Dutch (CGN) 17
Results: Discontinuous wordgroups in Dutch (CGN) 18
Frequency (in \%) of (dis)continuous occ. per total \# occ. (CGN) 19
Results: Continuous wordgroups in Czech (PDT) 20
Results: Discontinuous wordgroups in Czech (PDT) 21
Frequency (in \%) of (dis)continuous occ. per total \# occ. (PDT) 22
Comparison 23
Investigation: Scrambling 24
Results: Variability factors for English (WSJ) 25
Results: Growth of unique NP mod.ctxts for English (WSJ) 26
Results: Growth of unique S mod.ctxts for English (WSJ) 27
Results: Variability factors for German (NEGRA) 28
Results: Growth of unique NP mod.ctxts for German (NEGRA) 29
Results: Growth of unique S mod.ctxts for German (NE- GRA) 30
Results: Variability factors for Czech (PDT) 31
Results: Growth of unique NP mod.ctxts for Czech (PDT) 32
Results: Growth of unique S mod.ctxts for Czech (PDT) 33
Discussion 34
Parsing results 35
Learning linearization rules 36
3-Phase Learning 37
Robust learning of linearization rules 38
Pairwise alignment 39
Pairwise alignment and linearization 42
Multiple sequence alignment 43
Profile Hidden Markov Models 44
Initial experiments 45
Sequences of equal length: S, length 5 46
Sequences of equal type: S 48
Sequences of equal dependency mobile I (6 var) 50
Sequences of equal dependency mobile II (7 var) 51
Observations 52
Conclusions \& outlook 54

References

Eugene Charniak. 1996. Tree-bank grammars. Technical report, Department of Computer Science, Brown University.
Richard Durbin, Sean Eddy, Anders Krogh, and Graeme Mitchison. 1998. Biological Sequence Analysis. Cambridge University Press, Cambridge, England.
Mitchell Marcus et al. 1995. The Ultimate Penn Treebank Bible. Technical Report CD, Linguistic Data Consortium (UPenn). Technical Report.
Joseph H. Greenberg. 1966. Some universals of grammar with particular reference to the order of meaningful elements. In Joseph H. Greenberg, editor, Universals of Language, pages 73-114. The MIT Press, Cambridge, Massachusetts, second edition edition.
Jan Hajič. 1998. Building a syntactically annotated corpus: The Prague Dependency Treebank. In Eva Hajičová, editor, Issues of Valency and Meaning, pages 106-132. Karolinum, Prague, Czech Republic.
John A. Hawkins. 1983. Word Order Universals. Academic Press, New York, London, etc.
Richard Hughey and Anders Krogh. 1996. Hidden markov models for sequence analysis: Extension and analysis of the basic method. CABIOS, 12:95-107. Alexander Krotov, Mark Hepple, Robert Gaizauskas, and Yorick Wilks. 1998. Compacting the Penn treebank grammar. In Proceedings COLING-ACL'98, pages 699-703.

Geert-Jan M. Kruijff. 2001. A Categorial-Modal Logical Architecture of Informativity: Dependency Grammar Logic \mathcal{B} Information Structure. Ph.D. thesis, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic, April.
Nelleke Oostdijk. 2000. The spoken dutch corpus. overview and first evaluation. In Proceedings of the Second International Conference on Language Resources and Evaluation Proceedings (LREC 2000), pages 887-894.
Wojciech Skut, Brigitte Krenn, Thorsten Brants, and Hans Uszkoreit. 1997. An annotation scheme for free word order languages. In Applied Natural Language Processing 1997, pages 88-95.
Susan Steele. 1978. Word order variation: A typological study. In Joseph H. Greenberg, editor, Universals of Language. Volume 4: Syntax, pages 585-624. Stanford University Press, Stanford, California.

