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ABSTRACT
A distribution X over binary strings of length n has
min-entropy k if every string has probability at most
2−k in X.1 We say that X is a δ-source if its rate k/n
is at least δ.

We give the following new explicit constructions (namely,
poly(n)-time computable functions) of deterministic ex-
tractors, dispersers and related objects. All work for any
fixed rate δ > 0. No previous explicit construction was
known for either of these, for any δ < 1/2. The first two
constitute major progress to very long-standing open
problems.

1. Bipartite Ramsey f1 : ({0, 1}n)2 → {0, 1}, such
that for any two independent δ-sources X1, X2 we
have f1(X1, X2) = {0, 1}. This implies a new ex-
plicit construction of 2N -vertex bipartite graphs
where no induced Nδ by Nδ subgraph is complete
or empty.

2. Multiple source extraction f2 : ({0, 1}n)3 →
{0, 1}, such that for any three independent δ-sources
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X1, X2, X3 we have that f2(X1, X2, X3) is (o(1)-
close to being) an unbiased random bit.

3. Constant seed condenser2f3 : {0, 1}n → ({0, 1}m)c,
such that for any δ-source X, one of the c output
distributions f3(X)i, is a 0.9-source over {0, 1}m.
Here c is a constant depending only on δ.

4. Subspace Ramsey f4 : {0, 1}n → {0, 1}, such
that for any affine-δ-source3X we have f4(X) =
{0, 1}.

The constructions are quite involved and use as build-
ing blocks other new and known gadgets. But we can
point out two important themes which recur in these
constructions. One is that gadgets which were designed
to work with independent inputs, sometimes perform
well enough with correlated, high entropy inputs. The
second is using the input to (introspectively) find high
entropy regions within itself.

Categories and Subject Descriptors: G.2.1 [Dis-
crete Mathematics]: Combinatorics

General Terms: Theory.

Keywords: Ramsey Graphs, Explicit Constructions,
Extractors, Dispersers Condenser.

1. INTRODUCTION
Randomness extraction is the problem of distilling the

entropy present in “weak random sources” into a useful,
(nearly) uniform distribution. Its importance and wide
applicability to diverse theoretical and practical areas of
computer science has motivated a large body of research
over the last 20 years.

1
It is no real loss of generality, and very convenient, to think of

X as a uniform distribution on some set of 2k elements (in which
case min-entropy is the same as Shannon entropy).
2
This result was also independently obtained by Ran Raz [22].

3
This is a uniform distribution over an affine subspace of dimen-

sion at least δn.



Much of this research assumes only that the given
“weak source” has sufficient (min)-entropy, and that ex-
tractors can use an extra, short random “seed” to aid in
distilling the randomness. Such a seed (of logarithmic
length) is easily seen to be necessary. This research fo-
cused on explicitly constructing extractors of small seed
(and long output). The survey [25] explains most of the
recent developments, and the paper [17] contains the
current state-of-art construction in terms of the seed
length and output length.

However, certain applications (especially in cryptog-
raphy) cannot “afford” the use of an extra random seed
(see e.g. [18, 13, 2]). To do without it, one must impose
extra conditions (beyond entropy content) on the class
of sources from which one extracts. This body of work,
which includes [29, 5, 24, 9, 3, 28, 11, 10, 27, 19, 16, 15]
considers a variety of restrictions, mostly structural, on
the given sources, and shows how to extract from them
deterministically (without seed).

This paper provides several new explicit constructions
of seedless extractors, dispersers and related objects (all
to be defined), greatly improving on previous results.
We also give several weaker constructions, which are
not quite seedless, but only use seeds of constant size.
These are important as building blocks of the seedless
ones, and some are interesting in their own right.

We now turn to describe some of the new construc-
tions, and for each discuss history and related work. For
the sake of brevity and clarity, we would skip some of
our results, and state others in less than full generality
and precision.

1.1 Multiple independent sources
Background. Perhaps the most natural condition

allowing seedless extraction is that instead of one source
with high entropy, we have several independent ones.
This model was suggested by Santha and Vazirani [24],
and further studied by Chor and Goldreich [9] (who in-
troduced the now standard notion of min-entropy).

A function f : ({0, 1}n)` → {0, 1}m is called an `-
source extractor with entropy requirement k if for every
` sources X1, · · · , X`, each with min-entropy k, the dis-
tribution f(X1, · · · , X`) (obtained by applying f on an
independent sample from each source) is close to uni-
form on {0, 1}m.

For this model, the probabilistic method easily gives
the best that can be hoped for. Two sources and log n
entropy suffice (and are necessary) for extraction. More-

over, such a function can be computed in time 2O(n2)

(while this is a far cry from the explicitness we want
(poly(n)-time), it will come as a building block in our
constructions). We call such a function opt (for Opti-
mal Extractor).

For two sources, the best explicit construction re-
quires in contrast min-entropy > n/2. The Hadamard
function Had : {0, 1}n × {0, 1}n → {0, 1} defined by
Had(x, y) = 〈x, y〉 (mod 2) was shown by [9] to be such
an extractor. Moreover, a natural variant Had′ which
outputs m = Ω(n) was shown to be an extractor in
[28] under the same conditions (see a simplified and im-
proved analysis in [12]). To date, no one has found an

explicit 2-source extractor with sources of rate 1/2 or
less4. Indeed, until last year no extractor breaking the
1/2 rate barrier was known using less than ` = poly(n)
number of sources. Still, the Hadamard function and
its extension to long outputs Had′ will be an important
building block in our construction.

Last year [1] gave a extractor that, for any δ > 0 uses
only a constant ` = poly(1/δ) δ-sources.5 Moreover,
on n-bit sources, their extractor outputs n bits and is
exponentially close to uniform. The analysis seems to
require that the total entropy in all sources is at least the
length of one source (and hence that ` > 1/δ). Still, this
too will be a building block in our new constructions in
which the number of sources is a constant independent
of δ.

New Results. We construct a 3-source extractor
which outputs a (nearly) unbiased bit (or any constant
number of bits) for every entropy rate δ > 0. That is,
we prove the following theorem:

Theorem 1.1 (3-source extractor). For every con-
stants δ, ε > 0 and m ∈ N, and for every sufficiently
large integer n there exists a poly(n)-time computable6

3-source extractor 3ext : {0, 1}n×3 → {0, 1}m such that
for every three independent δ-sources X1, X2, X3, the
distribution 3ext(X1, X2, X3) is within ε statistical dis-
tance to the uniform distribution over {0, 1}m.

We can also increase the output length m to be a
constant fraction of the input entropy using 7 indepen-
dent sources. In both constructions the error (=dis-
tance of the output to the uniform distribution) is only
sub-constant (about 1/ log log n), and as yet we have no
idea how to make it exponentially, or even polynomially
small. Subsequently to us, Raz [22] (see also Section 1.5)
used our construction (as well as additional ideas) to ob-
tain a 3-source extractor which outputs Ω(n) number of
bits, and works with one δ-source and two sources of
logarithmic entropy.

1.2 Bipartite Ramsey graphs and 2-source
dispersers

Ramsey Graphs. The probabilistic method was
first used by Erdos to show the existence of Ramsey
graphs: That is, a 2-coloring of the edges of the com-
plete graph on N vertices such that no induced sub-
graph of size K = (2 + o(1)) log N is monochromatic.
The best known explicit construction of such a color-
ing by [14] only achieves a much larger value: K =

2Θ(
√

log N log log N).

Bipartite Ramsey graphs. An even harder vari-
ant of this problem is the bipartite Ramsey problem:

4
We note that using Weil’s estimates the Paley matrix (i.e., for

prime p the function P : F2
p → {0, 1} where P (x, y) = 1 iff x− y

(mod p) is a quadratic residue) can be proven to be an extractor
even if one source has only about log n entropy. However the
other source still has to have entropy > n/2
5
This extractor was proposed already in [30], but the analysis

there relies on an unproven number theoretic assumption.
6
This function, and all the other functions we construct, is com-

putable by a deterministic polynomial-time (uniform) Turing
machine.



Construct a 2-coloring of the edges of the complete N
by N bipartite graph such that no induced K by K
subgraph is monochromatic. Setting N = 2n, a color-
ing is a function f : ({0, 1}n)2 → {0, 1}. It immediately
follows that every 2-source extractor f with entropy-
rate δ is a coloring for the bipartite Ramsey problem
with K = Nδ (which is in turn a coloring for the non-
bipartite version). Until recently, the best known ex-
plicit construction of bipartite Ramsey graphs was that
implied by the aforementioned Hadamard 2-source ex-
tractor achieving K > N1/2. Recently, a slight improve-

ment to K = N1/2/2
√

log N (which in our terminology
translates to δ = 1/2− 1/

√
n) was given by Pudlák and

Rödl [21].7

2-source dispersers. An equivalent formulation
of this problem is constructing a 1-bit output 2-source
disperser which is a well-known relaxation of an extrac-
tor. A 2-source (zero-error) disperser of entropy rate δ
is a function disp : {0, 1}n × {0, 1}n → {0, 1}m such
that for every 2 independent δ-sources X1, X2 we have
disp(X1, X2) = {0, 1}m. In words, every possible out-
put occurs when the inputs range over all possible values
in X1, X2 (and so only the support matters, not the in-
dividual probabilities in the input sources)8. Note that
when m = 1, a disperser is equivalent to a bipartite
Ramsey graph with K = Nδ.

New Results. We give an explicit construction of a
2-source disperser with any constant (and even slightly
sub-constant) rate δ > 0 (so any K > Nδ in the bipar-
tite Ramsey problem) and any constant output length
m. Our disperser is strong in the sense that it obtains
every output with at least a constant probability, which
depends only on δ and on the number of output bits.
This construction can therefore be seen as being in be-
tween a disperser and an extractor. That is, we prove
the following theorem:

Theorem 1.2 (Two-source disperser). For every
constants δ > 0 and m ∈ N, there exists a poly(n)-
time computable function disp : {0, 1}n×2 → {0, 1}m

such that for every two δ-sources X1, X2 over {0, 1}n,
the support of disp(X1, X2) is {0, 1}m. Moreover, there
exists a constant c = c(m, δ), such that for every z ∈
{0, 1}m, Pr[disp(X1, X2) = z] ≥ c(m, δ) .

1.3 Constant seed (1-source) condensers
Intuitively, a condenser is a function whose output

distribution is “denser” (has higher entropy rate) than
its input distribution. Condensing can be viewed as a
weaker form of extraction. Both in the Mathematical
sense that an extractor is an ultimate condenser (its
output has maximum possible rate), as well as in the
practical sense – some constructions of extractors pro-

7
The construction in that paper is only “weakly explicit” in the

sense that the 2-coloring can be found in time polynomial in N .
The Hadamard 2-source extractor (as well as all the construc-
tions in this paper) are “strongly explicit” meaning that f is
computable in time polynomial in n = log N .
8
In the extractor literature dispersers usually come with an error

parameter ε, and then the requirement is that the output of f
contains at least (1 − ε)-fraction of all elements in {0, 1}m. We
use the 0-error definition, which is more relevant to our setting.

ceed by iterated condensing. Various condensers appear
in [23, 26, 17, 8] and other works, mainly as building
blocks to constructing extractors and expanders.9

It is not hard to see that, like extractors, there are no
deterministic condensers. However, unlike extractors,
which require logarithmic seed, condensing is possible
(for interesting parameters) with only constant length
seed. As usual, this was shown via the probabilistic
method, and no explicit construction was known. All
constructions in the papers above either use a super-
constant seed, or use a constant seed without guaran-
teeing the condensing property.10

New Results. We give the first explicit constant
seed condenser for linear entropy. More precisely, for
every δ > 0 there are integers c, d and a poly(n)-time

computable function con : {0, 1}n → ({0, 1}n/c)d (i.e.
con maps n bit strings into d blocks of length n/c), such
that for every δ-source X there is at least one output
block con(X)i (exponentially close to) having entropy
rate ≥ 0.9 (here the 0.9 is an arbitrary constant - we
can get as close as we want to 1, but all we shall need is
any constant > 1/2). The constant seed may be viewed
as selecting the output block at random. In the paper
we prefer the view of outputting several blocks, and call
this construction a somewhere condenser. The theorem
that we prove is the following:

Theorem 1.3 (Somewhere condenser). For every
constant δ > 0, there exists constants ε > 0 and ` ∈ N
and a poly(n)-time computable function con : {0, 1}m →
{0, 1}(εn)×` such that for every δ-source X over {0, 1}n

there exists a random variable I (correlated with X) over
[`] such that con(X)I is within 2−εn statistical distance
to the uniform distribution over {0, 1}εn, where con(X)I

denotes the Ith-block of con(X).

As we shall see, this condenser is not only interesting
in its own right, but it also serves as a basic block in
our new constructions. Roughly speaking, it gives us
the means to break the 1/2 rate barrier, as it converts
an input source of rate below that barrier into one (of a
few output blocks - something to be dealt with) whose
rate is above that barrier.

The condenser above is obtained by iterating a con-
stant number of times a basic condenser bcon (described
in the Section 2.1), which uses only a 2-bit seed (namely
has 4 output blocks) and increases the entropy rate by
a constant amount.

We note that, independently from us, Ran Raz [22]
has obtained a different constant seed condenser con-
struction, which also use the [1] paper, but in another
way. (In fact, using a new variant of the [17] merger, Raz
constructs a condenser with the advantage that most of
the output blocks are condensed.) We elaborate on this
and also some other subsequent works in Section 1.5.

9
We note that in some of these works the definition is relaxed to

allow situations when the output rate is smaller than the input
rate, as long the the output length is shorter - these gadgets turn
out to be useful as well.

10
The latter are the so called “win-win” condensers whose analy-

sis shows that when they fail to condense, some other good thing
must happen.



1.4 A disperser for affine subspaces
Background. There are some other natural restric-

tions on sources (beyond allowing a few independent
ones) that admit deterministic extraction. Two such
models are bit-fixing sources [10, 3, 11, 19, 16, 15] and
efficiently samplable distributions [27]. In the bit-fixing
model, an (unknown) subset of δn bits (out of the n
input bits) is uniformly distributed, and the rest of the
bits are fixed to some unknown value.11 In the “ef-
ficiently samplable distributions” model the source is
obtained by applying an efficiently computable “sam-
pling” function g : {0, 1}δn → {0, 1}n on a uniformly
distributed input. Trevisan and Vadhan [27] give a
construction (based on unproven complexity theoretic
assumptions) that works for sources with entropy rate
δ > 1/2 that are sampled by polynomial sized circuits
g. (In fact, in that construction δ ≥ (1 − γ) for some
small constant γ).

In this paper we consider sources which are uniformly
distributed over an affine subspace of GF(2)n. Such
sources can be seen as a natural generalization of bit-
fixing sources (since any bit-fixing source is in particular
a distribution over an affine subspace), or alternatively,
as a restriction of the model of [27] in which the sam-
pling function g is affine (note that every such function
can be computed in size n2).

Strangely, what was known about this model is very
similar quantitatively to the two independent source
model in the sense one one hand there is a (noncon-
structive) “optimal extractor” for entropy Θ(log n) but
on the other hand an explicit extractor was known only
for entropy rate δ > 1/2. (In fact, this explicit extractor
is no other than the Hadamard function Had mentioned
above, applied to two halves of the sample [4].)

New Results. We give an explicit zero-error dis-
perser for affine sources of entropy rate δ, that outputs
constantly many bits. As in the case of the two-source
disperser, the affine-source disperser is strong, obtaining
each output string with at least a constant probability.
That is, we prove the following result

Theorem 1.4 (Seedless affine disperser). Let δ > 0
and m ∈ N be some constants. Then, there exists a
poly(n)-time computable function a-disp : {0, 1}n →
{0, 1}m such that for every affine-subspace X ⊆ {0, 1}m

with dimension at least δn, a-disp(X) = {0, 1}m. More-
over, there exists a constant d = d(m, δ), such that for
every z ∈ {0, 1}m, Prx∈RX [a-disp(x) = z] ≥ d(m, δ) .

For 1-bit output a Ramsey theoretic interpretation
of the result suggests itself – we give a 2-coloring of
the Boolean cube F n

2 , in which no affine subspace of
linear dimension is monochromatic. Due to space con-
siderations, we defer all details of this construction to
the appendix. It proceeds by first showing a somewhere
extractor for affine subspaces (which uses the [1] extrac-
tor on different parts of the source). We then use this
somewhere affine-extractor to obtain an affine-disperser
in a way very similar to the way we use our 2-source
somewhere extractor to obtain a 2-source disperser.

11
In the terminology of the above papers this is the so-called

oblivious bit-fixing model.

Note that the new results here are quantitatively the
same as our 2-source results. As mentioned above, the
techniques are related as well, but at this point this
fact may be surprising - there seem to be little resem-
blance between the models, and indeed there seem to
be no reductions between them in either direction. The
similarity in techniques may simply be a byproduct of
the fact that we were working on them in parallel, and
progress on one suggested related progress on the other
(note that at some point we do use the two-source Ram-
sey construction as a black box in the affine-source dis-
perser, but we could have just as well used a direct
construction there). This simply manifests the general-
ity of our techniques, however it would be interesting to
find any tighter connections between the two models.

1.5 Some independent and subsequent works.
As mentioned earlier, Ran Raz [22] has some results

related to ours, parts of which are independent of ours
and parts of which are subsequent to ours. Indepen-
dently of this work, Raz gives an alternative construc-
tion of a somewhere condenser (that also builds on the
construction of [1]). He also shows how to obtain a
condenser where most of the blocks are condensed (as
opposed to only one of them, as in our case). He also
shows how to generalize some of our results to the asym-
metric case, where each source can have different length
and entropy. We also note that subsequently to this
work, Zuckerman (Personal Communication, 2005) gave
an somewhat improved version of our condenser, with a
simplified analysis, which is based on another result in
[7] (implied by the sum-product theorem): an estimate
on the number of incidences of points on lines in prime
fields.

Subsequently to this work, Pudlak [20] gave a differ-
ent (and simpler) construction of a coloring of the full
bipartite N by N graph with 3 colors such that no sub-
set of size N1/2−ε by N1/2−ε is monochromatic for some
fixed small ε. In a very recent work, Bourgain [6] gave
a statistical version of Pudlak’s construction, namely
an extractor for two sources of entropy rate 1/2− ε for
some small constant ε > 0. This extractor outputs Ω(n)

bits with statistical distance 2−Ω(n) (where n = log N).
Both these works also use the above mentioned points
vs. lines estimate.

2. TECHNIQUES AND OVERVIEW OF
THE MAIN CONSTRUCTIONS

Unfortunately, due to space consideration we have no
room for the proofs of our results (except for the con-
denser) in this extended abstract. However, in the fol-
lowing subsections we describe some detail some of the
extra gadgets we develop, and how to compose them
with each other and with known gadgets to get the
constructions above. By far the most difficult is the
2-source disperser, and the ideas leading to it take sev-
eral subsections to describe even partially. Still, read-
ing these will simplify understanding the formal proofs
(which can be found in the full version of this paper).

2.1 A 2-bit seed condenser



Here we describe our basic condenser bcon, which uses
only a 2-bit seed to increase the entropy rate of any
source by a constant amount. Iterating it a constant
number of times on a δ-source allows us to increase to
rate (of some output block) above 0.9 (say), thus giving
the condenser con described in Section 1.3.

Our basic condenser bcon will take strings of length
n with n = 3p for some prime p.12 For every x ∈
{0, 1}n let x = x1x2x3 its natural partition to three
length p blocks. Define bcon : {0, 1}3p → ({0, 1}p)4

by bcon(x) = x1, x2, x3, x1 · x2 + x3 (with arithmetic in
GF (2p)).

We prove that in X is a δ-source with δ < 0.9, then
at least one of the output blocks is a (δ +Ω(δ2))-source.
Using this, we prove the following theorem:

Theorem 2.1 (Basic condenser). There exists a con-
stant α > 0 and a polynomial-time computable some-
where condenser bcon : {0, 1}n → {0, 1}(n/3)×4 that
satisfies the following: For every δ-source X (with δ �
n−1/4), there exists a dependent random variable I over
[4] such that bcon(X)I is within statistical distance ε =

2−αδ2n to having rate at least (1 + αδ)δ.

The proof (which is in Section 3) heavily relies on the
main lemma of [1], who proved x1 ·x2 +x3 is condensed
assuming that the xi’s are independent. We certainly
cannot assume that in our case, as X is a general source.
Still, we use that lemma to show that if none of these
first 3 blocks is more condensed than the input source,
then they are “independent enough” for using that main
lemma.

2.2 A 2-source constant-seed/“somewhere”
extractor

Our two main deterministic constructions in this pa-
per are a 3-source extractor and a 2-source disperser.
For both, an essential building block, is a constant seed
2-source extractor s ext (short for “somewhere extrac-
tor”) for linear entropy, which we describe next.

What we prove is that for every δ > 0 there are
integers c, d and a poly(n)-time computable function

s ext : ({0, 1}n)2 → ({0, 1}n/c)d, such that for every
two δ-sources X1, X2 there is at least one output block
s ext(X1, X2)i which is (exponentially close to) uni-
form.

Constructing the somewhere extractor s ext is simple,
given the condenser con of the previous subsection. To
compute s ext(X1, X2), compute the output blocks of
con(X1) and con(X2). By definition, some output block
of each has rate > .9. We don’t know which, but we
can try all pairs! For each pair we compute the Vazirani
variant Had′ of the Hadamard 2-source extractor for rate
> 1/2 [28] to obtain a constant number of linear length
blocks, one of which is exponentially close to uniform.
Formally, if d is the number of output block of con, then
s ext will produce d2 blocks, with s ext(X1, X2)i,j =
Had′(con(X1)i, con(X2)j). This construction is depicted
in Figure 1.

12
Note that if n is not of this form than it can be converted to

this form by padding the input with o(n) additional bits using
standard number theoretic bounds on the density of primes.

To see the power of this gadget, let us first see (in-
tuitively) how to get from it a deterministic 4-source
extractor for linear entropy. Later we will employ it in
several ways to get our 2-source disperser.

2.3 A 4-source extractor (and a 3-source
one)

In this subsection we explain how to construct a 4-
source extractor 4ext, and then how to modify it to
the promised 3-source extractor 3ext. These will com-
bine the 2-source somewhere extractor s ext with the
nonuniform optimal 2-source extractor opt.

Recall that our 2-source somewhere extractor s ext

produces a constant number (say) d of linear length out-
put blocks, one of which is random. First we note that
producing shorter output blocks maintains this prop-
erty13.

Let us indeed output only a constant b bits in every
block (satisfying b ≥ log(db)). Concatenating all out-
put blocks of this s ext(X1, X2) gives us a distribution
(say Z1) on db bits with min-entropy ≥ b. If we have 4
sources, we can get another independent such distribu-
tion Z2 from s ext(X3, X4). But note that these are two
independent distributions on a constant number of bits
with sufficient min-entropy for (existential) 2-source ex-
traction. Now apply an optimal (non-uniform) 2-source
extractors on Z1, Z2 to get a uniform bit; as db is only
a constant, such an extractor can be found in constant
time by brute-force search! To sum up, our 4-source
extractor is

4ext((X1, X2); (X3, X4)) = opt(s ext(X1, X2), s ext(X3, X4))

See Figure 2 for a schematic description of this construc-
tion.

Reducing the number of sources to 3 illustrates a sim-
ple idea we’ll need later. We note that essentially all
2-source constructions mentioned above are “strong”.
This term, borrowed from the extractor literature, means
that the output property is guaranteed for almost every
way of fixing the value of one of the two input sources.
With this in mind, we can reuse (say) X2 in the sec-
ond somewhere extractor s ext instead of X4 to yield a
3-source extractor

3ext((X1, X2, X3) = opt(s ext(X1, X2), s ext(X3, X2))

This construction is depicted in Figure 3. Fixing a ran-
dom sample x2 of X2 will guarantee the output proper-
ties of both s ext’s with high probability and keep the
two inputs to opt independent (since once x2 is fixed the
distributions s ext(X1, x2) and s ext(X3, x2) are inde-
pendent).

2.4 A better 2-source somewhere extractor
Our somewhere extractor s ext produced a constant

number of output blocks, one of which is random. It
gave us a 4-source (and even a 3-source) extractor, and
the intuitive reason for needing the extra independence
was that we could not tell which of the output blocks of
s ext was the random one.

13
A prefix of a random string is random. This flexibility will

prove useful in more ways than one.
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To get down to a 2-source (disperser), our general
strategy will be to try and “figure out” which of the
blocks is random. This requires a “testable” condition
on the input, which will point to the right output block.
We cannot do that directly with s ext, so we first de-
velop (using s ext) a new somewhere extractor s ext′,
for which the random output block is determined by
simple entropy conditions on the input sources. The
very subtle task of testing these (given only the input
sample) is delayed to the next subsection - we now de-
scribe s ext′.

It will be convenient to call now the two indepen-
dent input δ-sources X and Y . In a nutshell, s ext′

will consider different partitions of X into X ′X ′′ and Y
to Y ′Y ′′, and for each such partition (X ′, X ′′, Y ′, Y ′′)
apply the 4-source extractor 4ext of the previous sub-
section to obtain 4ext(X ′, Y ′′, Y ′, X ′′) (see Figure 4).

While these 4 sources are not independent, we can
use again the same idea used in decreasing 4 sources
into 3 of the previous section to try to analyze this con-
struction. As each of the s ext components in 4ext are
strong, we can show that fixing X ′ and Y ′ to random
samples x′ and y′ (resp.) will suffice to make the out-
put 4ext((x′, Y ′′), (y′, X ′′)) close to random, as long as
we have the following entropy bounds: the four sources
X ′, Y ′, X ′′|X ′ = x′, Y ′′|Y ′ = y′ all have at least εn bits
of entropy for some constant ε > 0.

Another observation is that a one of a constant num-
ber of partitions of X and Y will satisfy these entropy
conditions. This can be shown using the following rea-
soning. Specifically, let t = 4/δ and for i ∈ [t], de-
note by Xi the ith block of size n/t in X. That is,
X = X1, . . . , Xt. We let X≤i denote the concatenation
of the first i blocks of X (i.e., X≤i = X1, . . . , Xi) and
let X>i denote the rest of X (i.e., X>i = Xi+1, . . . , Xn).
We say that i is a “good” index if X≤i has min-entropy
at least δn/4 and define i0 be the smallest good i. Since
the entropy of X≤i is at most the min-entropy of X≤i−1

plus the length of Xi we get that it is bounded from
above by 2 · (δn/4) = δn/2. Combining this with the
fact that X has min-entropy at least δn, we get that
the min-entropy of X>i0 conditioned on fixing X≤i0

is at least δn/2. Therefore if we define X ′ = X≤i0

and X ′′ = X>i0 we get the desired partition. In the
same way one can partition Y into Y ′ and Y ′′ where
Y ′ = Y≤j0 and Y ′′ = Y>j0 for some j0 ∈ [t]. We cau-
tion the reader that the effects of conditioning on min-
entropy are actually more subtle than what is reflected
by this proof sketch. The actual analysis, which is in
the full version of this work is thus much more involved
than the description here.

Our new somewhere extractor s ext′ will apply 4ext

to all t2 possible ways of defining these four sources from
the two given ones X and Y . Specifically, we define
s ext′(x, y)i,j = 4ext((x≤i, y>j), (x≤j , y>i)). We know
that the output block s ext′(x, y)i0,j0 corresponding to
i0 for X and j0 for Y as defined above will be uniformly
distributed! This “goodness” will be our “testable” en-
tropy condition.

2.5 Finding the entropy: the “Challenge-
Response” mechanism

Ideally, we’d like a test that will find the good par-
titions and point to the correct output block. Namely,
we’d like a function test : ({0, 1}n)2 → [t]2 such that
the output block s ext′(X, Y )test(X,Y ) is uniform. Note
that if we could do that, we’d have a 2-source extractor
- more than we promised. Our test will only succeed
to point out to the random output block with positive
probability (thus yielding our strong notion of a dis-
perser).

Before describing the test, we note the obvious sub-
tlety: test is applied to the same sample (x, y) from
X × Y that s ext′ is applied to! This single sample is
supposed to detect the presence of entropy in some parts
of the input sources it is coming from, by “looking in
the mirror”. The fact that this idea can make sense is
an important contribution of our paper.

To explain the nature of the test test, we oversimplify
our problem, and assume we have the following extra
gadget to help us.

Temporary unrealistic assumption: We’ll as-
sume a deterministic 1-source extractor (called ext∗)
for any linear entropy sources. It of course seems very
strange to assume an object much stronger than what
we’re trying to construct (indeed so strong that it doesn’t
exist). Nonetheless we believe it will be a useful didac-
tic tool. Later, we will examine the properties of ext∗

that we actually needed in order to obtain the function
test and how these properties can be obtained by more
realistic gadgets.

We will test each of the prefixes of input parts (poten-
tial choices of the first part of the partition X ′), namely
X≤1, X≤2, · · · , X≤t of X, for containing entropy. To
test in the input part X≤k has entropy, we apply the
(hypothetical) extractor ext∗ to compute a challenge
Ck = ext∗(X≤k) of (sufficiently large) constant length
c. We will also apply ext∗ on the second source Y to
generate a string R = R1, R2, · · ·Rt, where the length
of every response Rk is c as well. We note that as Y is
a δ source, R is essentially a random string of length tc.

We say that the challenge Ck is met by the response
Rk simply if Rk = Ck. We now define the candidate
value of the index i′ (this index determines the parti-
tion of X to X ′X ′′ selected by the test test) to be k+1
for the largest k for which the challenge was met (and
default to i′ = 1 if no challenge was met). We similarly
determine the partition of Y by picking j′ similarly, re-
versing the roles of X and Y above. This will give us
the pair (i′, j′) which is the output of the test test.

2.6 Analyzing the challenge-response mech-
anism

Now why does this work, and in what sense? Let us
focus on the choice of i′ (the argument for j′ is analo-
gous). We want to claim that test above produces i′

which is the smallest good index for X. While this may
fail, we can claim that it holds in a constant probability
event in X × Y . Essentially, this event will be defined
by conditioning parts of X and Y to fix the outcome
of some challenge and response strings, resulting in the



“correct” choices made by the test test, and all inde-
pendence and entropy requirements holding after these
fixings. A simple observation, which will be crucial in
the analysis below, is that if X is a random variable on
{0, 1}n, and f : {0, 1}n → {0, 1}c is a function with a
constant output length c, then if we let z be a “typi-
cal” output of f(X) and let X ′ be X conditioned on
f(X) = z, then then entropy of X ′ is only a constant
smaller than the entropy of X.

Now, let i0 be the actual smallest good index for X.
For all k = 1, 2, · · · , i0 − 1 (in that order) we condition
Xk in a way that fixes the responses Ck, k < i0 to their
most popular values (by the observation above, this re-
duces the entropy of X by a constant only). Now we
also fix the values of the responses Rk, k < i0 so that
they meet the respective challenges above. Then we fix
set Rk for k ≥ i0 to an arbitrary value. Again, fixing
all the responses reduces the entropy of Y by only a
constant.

We now repeat the same process with j0, the smallest
good index for Y . Call the resulting sub-sources thus
generated X̃ and Ỹ . Now in the space X̃×Ỹ everything
we want actually happens.

• X̃ and Ỹ are independent.

• X̃ has constant probability in X (and same for Y ),

and hence the entropies of X̃ and Ỹ are at least
δn−O(1).

• This means the the entropy of any subblock of
X can also change by at most a constant amount
in X̃ (with the same holding for Y ). Therefore,

X̃≤i0 , X̃>i0 is a “good” partition of X̃, with X̃≤i0

, X̃>i0 |X̃≤i0 both having entropy at least δn/4 −
O(1). Again, the same holds for Ỹ .

• By design, in X̃ the test test selects i′ = i0 with
probability very close to one. This happens since
we forced all the first i0 − 1 challenges to be met,
and all remaining ones will be missed with very
high probability (1−t/2c), and so by the definition
of test, it will select i′ = i0. Same happens with
j′ = j0.

To summarize, with constant probability the sample
(x, y) from X × Y actually lands in the event X̃ × Ỹ ,
in which case we produce a close to uniform output.
Otherwise, we have no guarantee. This is precisely the
strong disperser promised.

2.7 Removing the unrealistic assumption
We will be very brief here. The main thing to fix of

course, is our assumption that we have available (the
impossible) one source extractor ext∗. It will be re-
placed by our favorite 2-source somewhere extractor
s ext. This raises several extra issues to deal with, and
we touch on the solutions, ignoring many important de-
tails.

• When using s ext instead of ext∗, what do we
use for the second independent input source? The
answer is simple - when we used ext∗ on part of
X, we use (all of) Y as a second source, and vice
versa. This raises as variety of issues regarding

independence, and regarding preservation of en-
tropy, which did not arise above. Indeed, when
we use ext∗ to compute a response (as opposed
to a challenge) we will use as input only “tiny”
(around δ3n size) parts of X and Y so that these
parts can be fixed in the analysis without a signif-
icant loss in entropy.

• The output of s ext is not uniform, but rather
a constant number of blocks one of which is uni-
form - how does test change? The answer again is
expected - the challenges and responses comprise
the whole output of s ext (of appropriate lengths).
However now a response meets a challenge if one of
the output blocks of the response equals the (the
whole) challenge string. Hence, when computing
a response we will output a much larger (although
still constant size) string than when computing
a challenge. This raises several issues regarding
the probabilities with which challenges are met,
with bearing on entropies lost, which did not arise
above.

This is of course by no means a complete description
of our 2-source disperser and its analysis. The complete
description and analysis can be found in the appendices.

3. PROOF OF THEOREM 1.3 (BASIC CON-
DENSER)

Proof. We start by assuming that n = 3p for some prime
p. We later explain what we do in the case that n is not
of this form. For x = (x1, x2, x3) ∈ {0, 1}3p we define
bcon(x) = (x1, x2, x3, x1 · x2 + x3).

Let X be a δ-source over {0, 1}3p. Let θ be such that
the main lemma of [1] guarantees that for every three
independent δ(1− 10θ)-sources A1, A2, A3 over GF(2p),
the distribution A1 ·A2 + A3 is 2−10θδp-close to having
rate at least δ(1 + 10θ). (It will be sufficient to choose
θ = δ/c for some absolute constant c.) We will show
that there is a random variable I = I(X) such that
bcon(X)I is 2−θδp-close to having rate at least (1+ θ)δ.

We assume without loss of generality that X is a flat
source, since it is enough to prove the theorem for such
sources, and so we can identify X with the subset of
elements on which it is supported. For i ∈ [4] de-
fine Hi ⊆ GF(2p) to be the set of “heavy” elements
of the distribution bcon(X)i. That is, Hi = {y ∈
GF(2p) | Pr[bcon(X)i = y] ≥ 2−(1+θ)δp}. Note that for

every i ∈ [4], |Hi| ≤ 2(1+θ)δp. If Pr[∃i s.t. bcon(X)i 6∈
Hi] > 1 − 2−θδp then we’re done, since we can de-
fine for all but an exponentially small fraction of the
x’s the index I(x) to be the smallest i ∈ [4] such that
bcon(x)i 6∈ Hi. Clearly, regardless of how I is defined
on these few “bad” x’s, we get that bcon(X)I is expo-
nentially close to having rate ≥ (1 + θ)δ.

Therefore, we may assume that Pr[∀ibcon(X)i ∈ Hi] ≥
2−θδp. Since X is a flat source this just means that if

X ′ =
{
x = x1x2x3 ∈ X | x ∈ H1×H2×H3, x1·x2+x3 ∈ H4

}
then

|X ′| ≥ 23δp

2θδp
= 2(3−θ)δp (1)



.
Note that X ′ is a subset of X∩H1×H2×H3. We see

that |H1| ≥ 2(1−3θ)δp, since otherwise we’ll have |X ′| ≤
|H1| · |H2| · |H3| < 2(1−3θ)δp2(1+θ)δp2(1+θ)δp = 2(3−θ)δp.

Using the same reasoning |H2|, |H3| ≥ 2(1−3θ)δp. We
define A1, A2, A3 to be three independent random vari-
ables over GF(2p) where for i = 1, 2, 3, Ai is the flat dis-
tribution over the set Hi. Note that for every i = 1, 2, 3,
the random variable Ai is at least a δ(1−3θ)-source over

GF(2p) (since |Hi| ≥ 2(1−3θ)δp). By Equation 1, it holds
that

Pr[A1 ·A2 + A3 ∈ H4] =
|X ′|

|H1| · |H2| · |H3|
≥

2(3−θ)δp

|H1| · |H2| · |H3|
≥ 2(3−θ)δp

(2(1+θ)p)3
= 2−4θδp (2)

However, for every (δ + 10θ)-source Y over GF(2p) it
holds that

Pr[Y ∈ H4] ≤ |H4|2−(1+10θ)δp ≤

2(1+θ)δp2−(1+10θ)δp = 2−9θδp (3)

Equations 2 and 3 together imply that the statistical
distance of A1 ·A2 + A3 to every δ(1 + 10θ)-source Y is
at least 2−4θδp − 2−9θδp > 2−4θδp−1, contradicting the
main lemma of [1].

In the case n is not of the form n = 3p for a prime
p, we first pad the input with zeros to length n′ for the
smallest n′ > n such that n′ = 3p. Using easy number
theoretic estimates, n′ < n + 3n3/4. Since the entropy
of X is unchanged by this padding, we get that the

rate of X as a random variable over {0, 1}n′ is equal to
δ n

n′ > δ

1+3n−1/4 . By applying the condenser this rate

is going to grow by a multiplicative factor of 1 + θ =
1 + Ω(δ) which (since n−1/4 � δ) will dwarf this factor
of 1

1+3n−1/4 .

We note that the results of [1] are somewhat stronger
for a field of prime order than for the field GF(2p) (i.e.,
a growth factor of 1 + Ω(1) instead of 1 + Ω(δ)). How-
ever, we don’t use these stronger results since we are
not aware of a deterministic polynomial-time uniform
algorithm that on input n outputs a prime of length
n bits (or at least a prime with length in the range
[n, n + o(n)]).14
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