PROBABILISTIC ALGORITHMS: EX2

1. (a) The proabilistic MAX-CUT algorithm:
Input: A graph G = (V, E)
Output: A cut C such that E[Size(C)] > |E| /2
C=0
For each v € V

{

toss a fair coin.
if the result is HEADS put v in C.

}
Theorem 1 The algorithm produces a cut C such that E[Size(C)] > |E| /2

Proof: For each edge (u,v) € E we'll define a random variable X, such that:

X _ {1 if edge (u,v) goes out from C

0 otherwise

Thus we can write that Size(C) = 3_, e Xuv , and we seek for E[Size(C)].
E[Size(C)|=E| Y Xu

(u,v)EE

Using the linearity of expectation we get

E[Size(C)] = Y E[Xu)]

Since X, is and indicator

1
E X, =1-Pr[X,, =1]= 5

We’ll prove that Pr[X,, = 1] = %,keeping in mind that each vertex is chosen indepen-
dently with equal probability to be in C or not.

Pr[ Xy, =1]=Pr[ucCArv¢C)V(ug ChveC) =



Prjue C]-Pr[v ¢ C)+Prlu¢ C]-Prve (] =

Finally:
E[Size(C)] = Z E[Xw] = |E|/2
(u,v)EE
|

The derandomized version.

For the sake of clarity we’ll assume that each vertex has an index i(1 < i < n), meaning
the vertices have some order.Therefore V = {vi,v2... v, }.

We also define

o V; = {v1...v;} , the set of vertices which have already been visited after the ith
iteration.

C; CV; , the set of vertices which have been chosen to be in C' by the ¢ iteration.
Ci = Vi\C;

[ ‘/; = {Ui+1--'vn} 5
We can view the algorithm which creates a random cut C in the graph G = (V, E) as a
binary tree, where each node is a choice point and each path from the root to a leaf in
the tree corresponds to a sequence of choices which determines a particular outcome of
the random experiment. The root node corresponds to not having any choice yet, the
vertices at level 1 corresponds to putting v; in C' or not, and in general the nodes at
level i corresponds to the ways of choosing the sides for V; in the original graph.
Let Y = # of edges crossing the resulting cut .
We'll define E[Y\Ci,m to be the expected value of Y conditioned on the event that
C;CCandC;NC =0.
We label each node at level i in the tree with the E[Y|C;, Ci]. (Obviously for each node
at level i there is a different sequence of choices made in order to reach it, meaning that
for every node, C; is a different set of vertices). According to the proof on previous section
the root should be labelled with |E| /2, beacuse no choices have been done, yet. We call
a node in the tree good, if its label E[Y|C;, Ci] > |E| /2. Our goal is to find a path
from the root to a leaf using only good nodes, and thus we’ll reach E[Y|Cy,, Cy] > |E| /2
meaning a cut in the original graph with the desired size.
We should notice that

E[Y’Ci_l, Cz‘—l = PI’[’UZ‘ S CZ]E [Y’CZ‘_1 U {’Uz‘}, Ci_1 +Pr [’Ui S m ‘E[Y|Ci_1, Ci—l U {’UZ}] =

1 1 _
B . E[Y‘Ci_l U {Ui}, Ci_1| + 3 . E[Y‘Ci_l, Ci_1 U {Ul}]

From the above expression we can conclude that one of the following happens:

E[Y|Ci—1,Ci—1] < E[Y|Ci—1 U {v;}, Ci4

or

E[Y|Ci—1,Ci—1] < E[Y|Ci1,Ci1 U {vi}]

That means that every node has a child which is a good node.



In order to identify the good child, we have to evaluate E[Y!Cz-_l,Ci_l U {vi}], and
E [Y|Ci_1 @] {UZ'}, Ci—l] .

To do that we define Pr[X,,,,, = 1|C;, Ci] to be the probability of the edge (vs,v)
crossing the cut conditioned on the event of C; C C.

E[Y|C“m = Z(’Us,’l)t)eE Pr [X”S:Ut = 1|C7;’ CZ]

The probability calculation over the edges is as follows:

N

if vg € Cj,v4 E@
if vy € C;, v € Cj
if vg € C’i,vt e C;
if vy € C;, v, € C;
if vg € C;, vy Evi
if vy € Cs, v €V
if v € Vi, v € C;
if vy EVi,vt eC;
if v, € Vi, v €V

Pr[X,, ., =1(C;,Ci] =

NI= =R NN O O = =

e

The algorithm is as follows:

Input: A graph G = (V, E)

Output: A cut C, such that Size(C,) > |E| /2
Co=0,Co=10

Fori:=1ton

{
let el = E[Y|Ci_1, Ci_1 U {v,}]
let e2 = E[Y|Ci_1 U {v;}, Ci—l]
if e2 > el

Theorem 2 The algorithm produces a cut C such that Size(C) > |E| /2

Proof: According to the detailed description above we get that
E[Y|Cyn,Cr] 2 E[Y|Cp1,Cp1] > ... = E[Y|Cy, Cy] > |E| /2
This means that there is a cut C,, where Size(Cy,) > |E| /2 ]



2. Let i € {0,1}" , i is of the form aob,where a contains exactly k ones, and b = 0%/2. Generally
we're looking for a permutation o such that o(a o b) = boa. That means that we have 2k
bits that we have to change, and |S| = 2k. On a general random permutation 7, the 7(¢) bit
is flipped on the ¢th step. Since there are 2k bits to be changed then there are (2k)! possible
random permutations o.

Specifically we’re looking for permutations which pass the packets through 0"/2 0 0"/2. To
satisfy this restriction, all k ones of a must be changed to zeroes before the corresponding
bits of b are changed to ones.

The number of sub-permutation which for step 1 < /¢ <k 1 < 7w(¢) <k, is k!. The number of
sub-permutations which for step k < £ <2k, n/2 < w({) <n/2+k, is k.

Therefore, for a given node ¢ of the form a o 0"/2 | the probability that the permutation
o(ao0™?) = 0"?2 0 q will pass through 0™2 o 0™/ is:

KR 1

| (2k
We are intereseted with the expected number of such nodes ¢ as described above. Since a
contains k ones in its first n/2 bits ,then the number of such nodes is (%2)

For every node i of the form ao0/2, where a contains exactly k ones, we’ll define the random
variable X; such that:

)1 ifo(aoc 0"/2) = 0™2 0 a , and i sends its packet through 0%/2 o 0™/2
" 10 otherwise

(")
Then the number of such nodes is X = Z X;.
i=1
(") (")

EX|=E Z Xi| = Z E[X;] , by linearity of expectation.
i=1 i=1

Since X is indicator the E[X;] = 1 - Pr[X; = 1] = 5. Therfore we can say:

(o)’

)
)= Y e =1 = () s> (") = ()’

/8 n
Since k = n/8e we can say that E[X] > (W"/Seyl “ = 2% = 2% That means that there

exist a packet which needs 24 steps to get to its destination. We want to know that this
would happen with probabilty at least 3/4 .

Since all X; are independenet 0/1 variables and X = ), X; we can use Chernoft’s inequality
to determine how much X can get far from its expected value. According to Chernoff’s

52E X
[X]

Pr[X < (1 - §)E[X]] < 2



If6 = % we would get the probability that half of the expected packets won’t pass through

on/2 o 0n/2
28e

Pr[X < 28%/2} <o % <1/4
And from this result we can conclude:

Pr[X > 2% /2] =1-Pr[X <28 /2] >1-27% >3/4



3.

(a)

Finding an independent set.

We'll set an order on the set of vertices, so that V = {vj,va...v,}.

For each vertex v;(1 < j < n), we'll define its set of adjacent vertices , which determines
its incident edges. E(v;) = {vi|(vi,vj) € EA(j > )}

[IS] the independent-set algorithm:

Input: A graph G = (V, E)

Output: A set S C V such for every vy, vy € S, v1 and v are not connected by an edge
S=V

for each v € S

if E(v)NS #0

S = S\{v} return S

Theorem 3 The IS algorithm produces a independent set of size at least |V| — |E]

Proof: By the construction of the algorithm we visit every v; € V' and remove it from
S if there was some v; (i < j) such that (v; v;) forms an edge. Removing v; is actually
removing the edges (v;,v;) (for i < j). By defining E(vj) in the above way we ensure
every edge to occur only once. That means that there is only one way to remove (v;, v;),
(¢ < j) which is removing v;. We can remove at most |E| vertices since there are |E|
edges and therefore we get an independent set S, where |S| = |V| — |E]|. |

For each v; € V we’ll define a random variable X :

{1 if v; is not deleted
i =

0 otherwise

Since the each vertex is deleted independently we can say that Pr[X; = 1] = 1/d. The
number of remaining vertices is X = Y " | X; and therefore E[X] = E[>"" ;| X;]. By
linearity of expectation,we get E[X] ="  E[X;]=>",1-Pr[X; =1] =n/d

For each e; € E we’ll define a random variable Y :

{1 if e; is not deleted
j P—

0 otherwise

An edge e; is not deleted iff both vertices which form it were not deleted. There-
fore if e; = (vk, vm) then Pr[Y; = 1] = Pr[(vy is not deleted) A (vy, is not deleted)] =
Prlvy is not deleted] - Pr([v,, is not deleted]. The last equality is due to the indepen-
dence in vertex deleting. Therefore Pr[Y; =1] = 1/d - 1/d = 1/d?. The number of

211/12 Y; and therefore E[Y] = E{Z?i/f Yj} By linearity of

expectation,we get E[Y] = Z?i/f E[Y;] = Z;Li/lz 1-PrlY; =1] = %d . d% = 24

remaining edges is Y = )



()

[PIS] the probabilisic independent-set algorithm:
Input: A graph G = (V,E) |V|=n,|E|=nd/2 (d > 1)
Output: An independent-set S C V ,|S| =n/2d

for each v € V/

{

roll a d sided die.

if the result # 1 then

{
delete every (v,w) € E'.
delete v from V.

}

let r = |V/]

let S = {v,v2...v,.} .(each v; € V' after the deletion phase and S sets order on the
vertices of V')

For each vertex v;(1 < j <r), we'll define its set of adjacent vertices , which determines
its incident edges. E‘(vj) = {vil(vi,vj) € EN(] > 1)}

forj=1tor

if BE(v;)NS#0
S = S\{v;}

return S
On the first part of the algorithm (till the end of the first loop) we apply the algorithm
from section 3(b), on the graph G’ = (V', E'). When this part ends then according to
the proof in 3(b) |V’/| = n/d and |E’'| = n/2d.
On the second part of the algorithm, we apply the algorithm from section 3(a), on the
graph G” = (V' E’). This algorithm creates an independent set ,S, which expected size
is (according to the proof on section 3(a) ) at least |V'| — |E'| =n/d — n/2d = n/2d
Let V = {v1...v,}. We'll view the algorithm as a binary tree where in the ith step we
choose whether to pick v; to be in .S or not , dependent on our sequnce of choices for
{Ul ce Ui—1}~
We’ll define the following.

o Vi = {v1...v;} , the set of vertices which have already been visited after the ith

iteration.

e S; CV;, the set of vertices which have been chosen to be in S by the ¢ iteration.

o Si=V\S;

® Vz: {le...vn} 5
In order to know the expected size of the independent set we have to calculate the dif-
ference between expected number of vertices and the expected number of edges in our

sample.
Let Z = # of vertices remained in the independent set.



On section 3(b) we have definded:

X - number of vertices remained after the deleting method.

Y - number of edges remained after the deleting method.

Thus E[Z] = E[X — Y]. We'll define E[Z]S;, S;| E[X]S;, S;| . E[Y]S;, Si] to be the ex-
pected values of Z,X,Y respectively, conditioned on the event that S; C S. E [Z |Sis ﬂ =
E[X - Y|S;, 5] =E[X|S;, Si] — E[Y|S;, 5]

by linearity of expectation.

We label each node at level i in the tree with the E[Z \S’l,g] According to the proof
on previous section the root should be labelled with n/2d, beacuse no choices have been
done, yet. We call a node in the tree good, if its label E[Z|Si,ﬂ > n/2d. We find a
path from the root to a leaf using only good nodes, and thus we’ll reach E[Z]Sn,% >
meaning an independent-set in the original graph with the desired size.

E[Z|S;-1,5i—1] = Pr[v; € S;]'E[S|Ci—1 U {vi}, Sic1]4+Pr[v; € Si|-E[Z|Ci—1, Sim1 U {vi}] =

1 1 —
P 'E[Z’Si_l U{vi}, Sica| + (1 — g) . E[Z’Si_l, Si—1 U {UZ}]

From the above expression we can conclude that one of the following happens:
E[Z|S;-1,5i-1] < E[Z]Si—1 U{v;}, Ci]

or
E[Z’Si—hm < E[Z’Si_l,ﬁu {Uz}]

That means that every node has a child which is a good node.

In order to identify the good child, we have to evaluate E[Z|S;_1,S;_1 U {v;}], and

E [Z‘Si,1 U {1)7;}, m .

That means we have to evaluate E[X|[S;_1, 51 U{v;}] — E[Y[S;_1,S-1 U {v;}], and

E[Y|Si,1,ﬁ U {UZ}] — E[Y|Sl,1 U {UZ‘}, Si*l} .

To do that we define Pr [XU,C = 1|S,-,$ to be the probability of the vertex v; wasn’t

deleted conditioned on the event of S5; C S.

we also define Pr[Y,, ,, = 1]5;,5;] to be the probability of the edge (vs, v¢) wasn’t deleted

conditioned on the same event.

E[X|S;, Si] =Y -, Pr[X,, =1|5;, 5]

E[Y’SWQ = Z(vs,vt)eE Pr[XUSvUt = 1|Si’ﬁ

The probability over the vertices is as follows

1 ifo,€e8;
Pr[X,, =1|5,5]=¢0 ifv€S;
é ikaGVZ'



The probability calculation over the edges is as follows:

if vg € 5;,v €°5;
ifvSGSZ‘,UtEE
if vg € S;,v € 5;
if v, € 85,0, €V
ifUSGSZ‘,UtEVi
ifvs e Vi, €V

Pr[sz,vt = 1|Sz’§z] =

%‘,_,Q.\H o O O =

The algorithm is as follows:

Input: A graph G = (V, E)

Output: Independent-Set S,, € V' such that |S,| > n/2d
So=10,S =0

Fori:=1ton

{

For each vj; € Sy, vy € Sy, such that k£ > j

if (vj,v,) € E
Sy = Sn\{vj}

Theorem 4 The algorithm produces a cut Sy, such that S, > n/2d

Proof: According to the description above we get that

E[Z|Sy,5n] =2 E[Z|Sh—1,5-1] > ... > E[Z]Sy, So| > n/2d

Since E[Z|Sy, Sn| = E[X|Sy, Sn] — E[Y[Sn, ;] It means that the expected difference
between number of vertices (X) and number of edges (V) is at least n/2d, and the last
part of the algorithm just deletes one vertex of each remaining edge. That means that
we got ,deterministically, an independent-set S,, where |S,,| > n/2d [



