
Probabilistic Algorithms: Ex2

1. (a) The proabilistic MAX-CUT algorithm:
Input: A graph G = (V,E)
Output: A cut C such that E[Size(C)] ≥ |E| /2
C = ∅
For each v ∈ V
{

toss a fair coin.
if the result is HEADS put v in C.

}

Theorem 1 The algorithm produces a cut C such that E[Size(C)] ≥ |E| /2

Proof: For each edge (u, v) ∈ E we’ll define a random variable Xuv such that:

Xuv =

{
1 if edge (u, v) goes out from C

0 otherwise

Thus we can write that Size(C) =
∑

(u,v)∈E Xuv , and we seek for E[Size(C)].

E[Size(C)] = E

 ∑
(u,v)∈E

Xuv


Using the linearity of expectation we get

E[Size(C)] =
∑

(u,v)∈E

E[Xuv]

Since Xuv is and indicator

E[Xuv] = 1 ·Pr[Xuv = 1] =
1
2

We’ll prove that Pr[Xuv = 1] = 1
2 ,keeping in mind that each vertex is chosen indepen-

dently with equal probability to be in C or not.

Pr[Xuv = 1] = Pr[(u ∈ C ∧ v /∈ C) ∨ (u /∈ C ∧ v ∈ C)] =

1

Pr[u ∈ C] ·Pr[v /∈ C] + Pr[u /∈ C] ·Pr[v ∈ C] =
1
2
· 1
2

+
1
2
· 1
2

=
1
2

Finally:
E[Size(C)] =

∑
(u,v)∈E

E[Xuv] = |E| /2

(b) The derandomized version.
For the sake of clarity we’ll assume that each vertex has an index i(1 ≤ i ≤ n), meaning
the vertices have some order.Therefore V = {v1, v2 . . . vn }.
We also define

• Vi = {v1 . . . vi} , the set of vertices which have already been visited after the ith
iteration.

• Ci ⊆ Vi , the set of vertices which have been chosen to be in C by the i iteration.
• Ci = Vi\Ci

• Vi = {vi+1 . . . vn} ,

We can view the algorithm which creates a random cut C in the graph G = (V,E) as a
binary tree, where each node is a choice point and each path from the root to a leaf in
the tree corresponds to a sequence of choices which determines a particular outcome of
the random experiment. The root node corresponds to not having any choice yet, the
vertices at level 1 corresponds to putting v1 in C or not, and in general the nodes at
level i corresponds to the ways of choosing the sides for Vi in the original graph.
Let Y = # of edges crossing the resulting cut .
We’ll define E

[
Y |Ci, Ci

]
to be the expected value of Y conditioned on the event that

Ci ⊆ C and Ci ∩ C = ∅.
We label each node at level i in the tree with the E

[
Y |Ci, Ci

]
. (Obviously for each node

at level i there is a different sequence of choices made in order to reach it, meaning that
for every node, Ci is a different set of vertices). According to the proof on previous section
the root should be labelled with |E| /2, beacuse no choices have been done, yet. We call
a node in the tree good, if its label E

[
Y |Ci, Ci

]
≥ |E| /2. Our goal is to find a path

from the root to a leaf using only good nodes, and thus we’ll reach E
[
Y |Cn, Cn

]
≥ |E| /2

meaning a cut in the original graph with the desired size.
We should notice that

E
[
Y |Ci−1, Ci−1

]
= Pr[vi ∈ Ci]·E

[
Y |Ci−1 ∪ {vi}, Ci−1

]
+Pr

[
vi ∈ Ci

]
·E

[
Y |Ci−1, Ci−1 ∪ {vi}

]
=

1
2
·E

[
Y |Ci−1 ∪ {vi}, Ci−1

]
+

1
2
·E

[
Y |Ci−1, Ci−1 ∪ {vi}

]
From the above expression we can conclude that one of the following happens:

E
[
Y |Ci−1, Ci−1

]
≤ E

[
Y |Ci−1 ∪ {vi}, Ci−1

]
or

E
[
Y |Ci−1, Ci−1

]
≤ E

[
Y |Ci−1, Ci−1 ∪ {vi}

]
That means that every node has a child which is a good node.

2

In order to identify the good child, we have to evaluate E
[
Y |Ci−1, Ci−1 ∪ {vi}

]
, and

E
[
Y |Ci−1 ∪ {vi}, Ci−1

]
.

To do that we define Pr
[
Xvs,vt = 1|Ci, Ci

]
to be the probability of the edge (vs, vt)

crossing the cut conditioned on the event of Ci ⊆ C.
E

[
Y |Ci, Ci

]
=

∑
(vs,vt)∈E Pr

[
Xvs,vt = 1|Ci, Ci

]
The probability calculation over the edges is as follows:

Pr
[
Xvs,vt = 1|Ci, Ci

]
=



1 if vs ∈ Ci, vt ∈ Ci

1 if vs ∈ Ci, vt ∈ Ci

0 if vs ∈ Ci, vt ∈ Ci

0 if vs ∈ Ci, vt ∈ Ci

1
2 if vs ∈ Ci, vt ∈ Vi

1
2 if vs ∈ Ci, vt ∈ Vi

1
2 if vs ∈ Vi, vt ∈ Ci

1
2 if vs ∈ Vi, vt ∈ Ci

1
2 if vs ∈ Vi, vt ∈ Vi

The algorithm is as follows:
Input: A graph G = (V,E)
Output: A cut Cn such that Size(Cn) ≥ |E| /2
C0 = ∅, C0 = ∅
For i = 1 to n
{

let e1 = E
[
Y |Ci−1, Ci−1 ∪ {vi}

]
let e2 = E

[
Y |Ci−1 ∪ {vi}, Ci−1

]
if e2 ≥ e1
{

Ci = Ci−1

Ci = Ci−1 ∪ {vi}
}
else
{

Ci = Ci−1 ∪ {vi}
Ci = Ci−1

}
}

Theorem 2 The algorithm produces a cut C such that Size(C) ≥ |E| /2

Proof: According to the detailed description above we get that
E

[
Y |Cn, Cn

]
≥ E

[
Y |Cn−1, Cn−1

]
≥ . . . ≥ E

[
Y |C0, C0

]
≥ |E| /2

This means that there is a cut Cn where Size(Cn) ≥ |E| /2

3

2. Let i ∈ {0, 1}n , i is of the form a◦b,where a contains exactly k ones, and b = 0n/2. Generally
we’re looking for a permutation σ such that σ(a ◦ b) = b ◦ a. That means that we have 2k
bits that we have to change, and |S| = 2k. On a general random permutation π, the π(`) bit
is flipped on the `th step. Since there are 2k bits to be changed then there are (2k)! possible
random permutations σ.
Specifically we’re looking for permutations which pass the packets through 0n/2 ◦ 0n/2. To
satisfy this restriction, all k ones of a must be changed to zeroes before the corresponding
bits of b are changed to ones.

The number of sub-permutation which for step 1 ≤ ` ≤ k 1 ≤ π(`) ≤ k, is k!. The number of
sub-permutations which for step k < ` ≤ 2k, n/2 ≤ π(`) ≤ n/2 + k, is k!.

Therefore, for a given node i of the form a ◦ 0n/2 , the probability that the permutation
σ(a ◦ 0n/2) = 0n/2 ◦ a will pass through 0n/2 ◦ 0n/2 is:

k! · k!
(2k)!

=
1(
2k
k

)
We are intereseted with the expected number of such nodes i as described above. Since a
contains k ones in its first n/2 bits ,then the number of such nodes is

(n/2
k

)
.

For every node i of the form a◦0n/2, where a contains exactly k ones, we’ll define the random
variable Xi such that:

Xi =

{
1 if σ(a ◦ 0n/2) = 0n/2 ◦ a , and i sends its packet through 0n/2 ◦ 0n/2

0 otherwise

Then the number of such nodes is X =
(n/2

k)∑
i=1

Xi.

E[X] = E

(n/2
k)∑

i=1

Xi

 =
(n/2

k)∑
i=1

E[Xi] , by linearity of expectation.

Since Xi is indicator the E[Xi] = 1 ·Pr[Xi = 1] = 1

(2k
k) . Therfore we can say:

E[X] =
(n/2

k)∑
i=1

Pr[Xi = 1] =
(

n/2
k

)
· 1(

2k
k

) ≥
(

n/2
k

)k

· 1
(2k·e

k)k
=

(n

4k · e

)k

Since k = n/8e we can say that E[X] ≥
(

n
4e·n/8e

)n/8e
= 2

n
8e = 2Ω(n) That means that there

exist a packet which needs 2Ω(n) steps to get to its destination. We want to know that this
would happen with probabilty at least 3/4 .

Since all Xi are independenet 0/1 variables and X =
∑

i Xi we can use Chernoff’s inequality
to determine how much X can get far from its expected value. According to Chernoff’s
inequality:

Pr[X < (1− δ)E[X]] ≤ 2−
δ2E[X]

6

4

If δ = 1
2 we would get the probability that half of the expected packets won’t pass through

0n/2 ◦ 0n/2.

Pr
[
X < 2

n
8e /2

]
≤ 2−

2
n
8e
24 ≤ 1/4

And from this result we can conclude:

Pr
[
X ≥ 2

n
8e /2

]
= 1−Pr

[
X < 2

n
8e /2

]
≥ 1− 2−

2
n
8e
24 ≥ 3/4

5

3. (a) Finding an independent set.
We’ll set an order on the set of vertices, so that V = {v1, v2 . . . vn}.
For each vertex vj(1 ≤ j ≤ n), we’ll define its set of adjacent vertices , which determines
its incident edges. Ê(vj) = {vi|(vi, vj) ∈ E ∧ (j > i)}
[IS] the independent-set algorithm:
Input: A graph G = (V,E)
Output: A set S ⊆ V such for every v1, v2 ∈ S, v1 and v2 are not connected by an edge
S = V
for each v ∈ S
if Ê(v) ∩ S 6= ∅
S = S\{v} return S

Theorem 3 The IS algorithm produces a independent set of size at least |V | − |E|

Proof: By the construction of the algorithm we visit every vj ∈ V and remove it from
S if there was some vi (i < j) such that (vi vj) forms an edge. Removing vj is actually
removing the edges (vi, vj) (for i < j). By defining Ê(vj) in the above way we ensure
every edge to occur only once. That means that there is only one way to remove (vi, vj),
(i < j) which is removing vj . We can remove at most |E| vertices since there are |E|
edges and therefore we get an independent set S, where |S| = |V | − |E|.

(b) For each vi ∈ V we’ll define a random variable Xi :

Xi =

{
1 if vi is not deleted
0 otherwise

Since the each vertex is deleted independently we can say that Pr[Xi = 1] = 1/d. The
number of remaining vertices is X =

∑n
i=1 Xi and therefore E[X] = E[

∑n
i=1 Xi]. By

linearity of expectation,we get E[X] =
∑n

i=1 E[Xi] =
∑n

i=1 1 ·Pr[Xi = 1] = n/d

For each ej ∈ E we’ll define a random variable Yj :

Yj =

{
1 if ej is not deleted
0 otherwise

An edge ej is not deleted iff both vertices which form it were not deleted. There-
fore if ej = (vk, vm) then Pr[Yj = 1] = Pr[(vk is not deleted) ∧ (vm is not deleted)] =
Pr[vk is not deleted] · Pr[vm is not deleted]. The last equality is due to the indepen-
dence in vertex deleting. Therefore Pr[Yj = 1] = 1/d · 1/d = 1/d2. The number of

remaining edges is Y =
∑nd/2

j=1 Yj and therefore E[Y] = E
[∑nd/2

j=1 Yj

]
. By linearity of

expectation,we get E[Y] =
∑nd/2

j=1 E[Yj] =
∑nd/2

j=1 1 ·Pr[Yj = 1] = nd
2 · 1

d2 = n
2d

6

(c) [PIS] the probabilisic independent-set algorithm:
Input: A graph G = (V,E) |V | = n, |E| = nd/2 (d > 1)
Output: An independent-set S ⊆ V ,|S| = n/2d

for each v ∈ V ′

{

roll a d sided die.
if the result 6= 1 then
{

delete every (v, w) ∈ E′.
delete v from V ′.

}

}
let r = |V ′|
let S = {v1, v2 . . . vr} .(each vi ∈ V ′ after the deletion phase and S sets order on the
vertices of V ′)
For each vertex vj(1 ≤ j ≤ r), we’ll define its set of adjacent vertices , which determines
its incident edges. Ê(vj) = {vi|(vi, vj) ∈ E ∧ (j > i)}
for j = 1 to r

if Ê(vj) ∩ S 6= ∅
S = S\{vj}

return S

On the first part of the algorithm (till the end of the first loop) we apply the algorithm
from section 3(b), on the graph G′ = (V ′, E′). When this part ends then according to
the proof in 3(b) |V ′| = n/d and |E′| = n/2d.
On the second part of the algorithm, we apply the algorithm from section 3(a), on the
graph G′′ = (V ′, E′). This algorithm creates an independent set ,S, which expected size
is (according to the proof on section 3(a)) at least |V ′| − |E′| = n/d− n/2d = n/2d

(d) Let V = {v1 . . . vn}. We’ll view the algorithm as a binary tree where in the ith step we
choose whether to pick vi to be in S or not , dependent on our sequnce of choices for
{v1 . . . vi−1}.
We’ll define the following.

• Vi = {v1 . . . vi} , the set of vertices which have already been visited after the ith
iteration.

• Si ⊆ Vi , the set of vertices which have been chosen to be in S by the i iteration.
• Si = Vi\Si

• Vi = {vi+1 . . . vn} ,

In order to know the expected size of the independent set we have to calculate the dif-
ference between expected number of vertices and the expected number of edges in our
sample.
Let Z = # of vertices remained in the independent set.

7

On section 3(b) we have definded:
X - number of vertices remained after the deleting method.
Y - number of edges remained after the deleting method.
Thus E[Z] = E[X − Y]. We’ll define E

[
Z|Si, Si

]
,E

[
X|Si, Si

]
,E

[
Y |Si, Si

]
to be the ex-

pected values of Z,X,Y respectively, conditioned on the event that Si ⊆ S. E
[
Z|Si, Si

]
=

E
[
X − Y |Si, Si

]
= E

[
X|Si, Si

]
−E

[
Y |Si, Si

]
by linearity of expectation.
We label each node at level i in the tree with the E

[
Z|Si, Si

]
. According to the proof

on previous section the root should be labelled with n/2d, beacuse no choices have been
done, yet. We call a node in the tree good, if its label E

[
Z|Si, Si

]
≥ n/2d. We find a

path from the root to a leaf using only good nodes, and thus we’ll reach E
[
Z|Sn, Sn

]
≥

meaning an independent-set in the original graph with the desired size.

E
[
Z|Si−1, Si−1

]
= Pr[vi ∈ Si]·E

[
S|Ci−1 ∪ {vi}, Si−1

]
+Pr

[
vi ∈ Si

]
·E

[
Z|Ci−1, Si−1 ∪ {vi}

]
=

1
d
·E

[
Z|Si−1 ∪ {vi}, Si−1

]
+ (1− 1

d
) ·E

[
Z|Si−1, Si−1 ∪ {vi}

]
From the above expression we can conclude that one of the following happens:

E
[
Z|Si−1, Si−1

]
≤ E

[
Z|Si−1 ∪ {vi}, Ci−1

]
or

E
[
Z|Si−1, Si−1

]
≤ E

[
Z|Si−1, Si−1 ∪ {vi}

]
That means that every node has a child which is a good node.
In order to identify the good child, we have to evaluate E

[
Z|Si−1, Si−1 ∪ {vi}

]
, and

E
[
Z|Si−1 ∪ {vi}, Si−1

]
.

That means we have to evaluate E
[
X|Si−1, Si−1 ∪ {vi}

]
− E

[
Y |Si−1, Si−1 ∪ {vi}

]
, and

E
[
Y |Si−1, Si−1 ∪ {vi}

]
−E

[
Y |Si−1 ∪ {vi}, Si−1

]
.

To do that we define Pr
[
Xvk

= 1|Si, Si

]
to be the probability of the vertex vk wasn’t

deleted conditioned on the event of Si ⊆ S.
we also define Pr

[
Yvs,vt = 1|Si, Si

]
to be the probability of the edge (vs, vt) wasn’t deleted

conditioned on the same event.
E

[
X|Si, Si

]
=

∑n
k=1 Pr

[
Xvk

= 1|Si, Si

]
E

[
Y |Si, Si

]
=

∑
(vs,vt)∈E Pr

[
Xvs,vt = 1|Si, Si

]
The probability over the vertices is as follows

Pr
[
Xvk

= 1|Si, Si

]
=


1 if vk ∈ Si

0 if vk ∈ Si

1
d if vk ∈ Vi

8

The probability calculation over the edges is as follows:

Pr
[
Yvs,vt = 1|Si, Si

]
=



1 if vs ∈ Si, vt ∈ Si

0 if vs ∈ Si, vt ∈ Si

0 if vs ∈ Si, vt ∈ Si

0 if vs ∈ Si, vt ∈ Vi

1
d if vs ∈ Si, vt ∈ Vi

1
d2 if vs ∈ Vi, vt ∈ Vi

The algorithm is as follows:
Input: A graph G = (V,E)
Output: Independent-Set Sn ∈ V such that |Sn| ≥ n/2d
S0 = ∅, S0 = ∅
For i = 1 to n
{

let e1 = (1− 1
d) ·E

[
Z|Si−1, Si−1 ∪ {vi}

]
let e2 = 1

d ·E
[
Z|Si−1 ∪ {vi}, Si−1

]
if e2 ≥ e1
{

Si = Si−1

Si = Si−1 ∪ {vi}
}
else
{

Si = Si−1 ∪ {vi}
Si = Si−1

}
}

For each vj ∈ Sn, vk ∈ Sn such that k > j

if (vj , vk) ∈ E
Sn = Sn\{vj}

Theorem 4 The algorithm produces a cut Sn such that Sn ≥ n/2d

Proof: According to the description above we get that
E

[
Z|Sn, Sn

]
≥ E

[
Z|Sn−1, Sn−1

]
≥ . . . ≥ E

[
Z|S0, S0

]
≥ n/2d

Since E
[
Z|Sn, Sn

]
= E

[
X|Sn, Sn

]
− E

[
Y |Sn, Sn

]
It means that the expected difference

between number of vertices (X) and number of edges (Y) is at least n/2d, and the last
part of the algorithm just deletes one vertex of each remaining edge. That means that
we got ,deterministically, an independent-set Sn where |Sn| ≥ n/2d

9

