
Prob. Algorithms – Home Assignment #1

December 13, 2004

1. • Need to show: RP ⊆ NP . We show that any language RP is also in NP .

Let L be a language and let A be a randomized algorithm such that for every x

– ProbΩ

[

T imeA(x) ≤ p(|x|)
]

= 1

– If x ∈ L then ProbΩ

[

A(x) = 1L(x)
]

≥ 1 − 1/3.

– If x /∈ L then ProbΩ

[

A(x) = 1L(x)
]

= 1.

where Ω is the set of all possible coin tosses’ results.

We define the following nondeterminsitc algorithm A′: A′ simulates A except that
for any coin flipped by A, A′ makes a nondeterministic choice from the set {0, 1}.
If the nondeterministic choice is 0 then the simulation of A proceeds as if a coin
toss has been resulted with “tails”. If the nondeterministic choice is 1 then the
simultation of A proceeds as if a coin toss has been resulted with “heads”. The
simulation of A continues and A′ accepts an input iff A accepts it.

We have to show that all computational paths of A′ are of polynomial length and
that the following two statements hold:

(a) x ∈ L implies some computational path of A′ accepts x.

(b) x /∈ L implies all computational path of A′ rejects x.

Since A runs in time polynomial in the input length, with probability 1, it follows
that for all possible coin tosses, A runs in time polynomial in the input’s length,
and this implies that all computational paths of A′ (each of which corresponds to
a series of coin tosses,) are of length polynomial in the input’s length.

To see that the two other statements are valid, first notice that for all coin tosses,
A always reject x /∈ L. That means that for every possible coins tosses, A rejects
x /∈ L. This in turn implies that all computational paths of A′ rejects x, if x /∈ L.

Lastly, note that if x ∈ L then there exists a series of coin tosses which makes A
accept x. In fact, most (a fraction of (1 − ε)) such coin tosses leads A to accept
x. Hence, since every series of coin tosses in A is a nondeterministic path in A′,
we have that most computational paths of A′ accepts x, and in particular, there
exists a computational path for A′ which accepts x, for every x ∈ L.

• Need to show: ZPP ⊆ RP ⊆ BPP .

1

– We show: ZPP ⊆ RP . We show that every language L ∈ ZPP is in RP .
Let L be a language in ZPP . Let A be an algorithm deciding L within
expected time p(|x|) and with no errors. We devise an algorithm A′, as follows.
Let t = 3. Given an input x, the algorithm A′ simulates A on the input x,
except that whenever the simulation takes time more than tp(|x|), A′ stops
the simulation and enters a rejecting state (i.e., says x is not in L.) If the
simulation returns some answer before the time limit is reached, then A′

reports that answer which was reported by A.
By construction of A′, A′ always runs in time at most 3p(|x|).
The only possibility for A′ to make an error is if x ∈ L and the simulation of A

took more than 3p(|x|) time. By Markov’s inequality, Pr
[

time more than 3p(|x|)
]

≤
1/3 Hence, for x ∈ L, A′ returns the right answer with probability at least
1 − 1/3.

– We show: RP ⊆ BPP . This follows from definition.

• Need to show: RP1−1/|x| = RP1/e|x|

Note: clearly showing the above is enough as RP1/3 is covered by that case.

Let A be an algorithm deciding L. Assume A has the following properties:

(a) Pr
[

T imeA(x) ≤ p(|x|)
]

= 1.

(b) If x ∈ L then Pr
[

A(x) = 1L(x)
]

≥ 1 − (1 − 1/|x|) = 1/|x|.

(c) If x /∈ L then Pr
[

A(x) = 1L(x)
]

= 1.

We give an algorithm A′ deciding L, with the following properties:

(a) Pr
[

T imeA(x) ≤ |x|2p(|x|)
]

= 1.

(b) If x ∈ L then Pr
[

A(x) = 1L(x)
]

≥ 1 − 1/e|x|.

(c) If x /∈ L then Pr
[

A(x) = 1L(x)
]

= 1.

The algorithm A′, given an input x, simulates A on x for |x|2 times. If for some
simulation of A on x, A accepts x then A′ accepts x. Otherwise, A′ rejects x.

We next show that indeed Pr
[

A(x) = 1L(x)
]

≥ 1 − 1/e|x|. If x ∈ L then any one

simulation of A on x is bound to give an error answer with probability at most
1 − 1/|x|. The probability that all |x|2 simulations will give the wrong answer on
an input x ∈ L is at most

Pr
[

A errors on x ∈ L for t times
]

≤ (1 − 1/|x|)|x|2 .

Since
(1 − 1/|x|)|x|2 ≤ e−|x|,

the probability that A rejects an input x ∈ L is at most e−|x|. In other words, if
A′ simulates A for |x|2 times and if x ∈ L then with probability at least 1−1/e|x|,
one of the t = |x|2 simulations of A by A′ will accept the input x.

2

Note the obvious: if x /∈ L then A rejects x with probability 1, since so does A′.

Since A′ has the property that Pr
[

A(x) = 1L(x)
]

≥ 1−1/e|x|, and it runs in time

|x|2p(|x|), we have showed that RP1−1/|x| ⊆ RP1/e|x| .

• Need to show: BPP1/2−1/|x| = BPP1/2|x|

Let L be a language and let A be an algorithm deciding L having the following
properties:

(a) Pr
[

T imeA(x) ≤ p(|x|)
]

= 1.

(b) Pr
[

A(x) = 1L(x)
]

≥ 1 − 1/2 + 1/|x|.
We devise an algorithm A′ deciding L with the following properties:

(a) Pr
[

T imeA′(x) ≤ |x|3p(|x|)
]

= 1

(b) Pr
[

A′(x) = 1L(x)
]

≥ 1 − 1/2|x|.

Given an instance x, A′ simulates A on x for |x|3 times. If the majority of the
answers yielded by simulations of A on x resulted with accepting x, then A′ accepts
x. Otherwise, A′ rejects x.

We first claim that
Pr

[

A′(x) = 1L(x)
]

≥ 1 − 1/2|x|.

We show this claim is valid. A′ makes an “error” if

– x /∈ L and the number of accepts by the |x|3 simulations of A on x is more
than |x|3/2.

– x ∈ L and the number of rejects by the |x|3 simulations of A on x is more
than |x|3/2.

Given x ∈ L, the expected number of accepts by simulations of A on x is |x|3(1/2+
1/|x|) = |x|3/2 + |x|2. Let E = |x|3/2 + |x|2.
Hence, the probability that A′ does not accept x ∈ L is the probability that the
number of simulations of A on x accepting x is less than |x|3/2. By Chernoff, this
is at most

Pr
[

accepts of A at most |x|3/2
]

=

Pr
[

|# accepts of A − E| ≥ |x|2
]

≤

2
− |x|2

|x|3/2+|x|2
|x|3/2+|x|2

6 ≈
2−|x|

The analyzis for x /∈ L is similiar. Hence, we have shown that A′ accepts x ∈ L
with probability at least 1 − 2−|x|.

It is also clear that
Pr

[

T imeA′(x) ≤ |x|3p(|x|)
]

= 1.

Hence: BPP1/2−1/|x| = BPP1/2|x| .

3

• Need to show: ZPP = RP ∩ coRP .

Let L be a language in RP ∩ coRP . Then there are two algorithms deciding L:
a first one, A1, in RP and a second, A2, in coRP . The first algorithm has the
property that if it accepts an instance then surely the instance is in L. The second
algorithm on the other hand, has the property that if it rejects an instance then
that instance is not in L with probability 1.

Given two such algorithms, A1 and A2, we build an algorithm A which decides
L with probability 1 and in expected polynomial (in |x|) time. The algorithm A,
given an input x, simulates both A1 and A2, independantly, each for an unbounded
number of times – until either A1 accepts or A2 rejects. With high probability
(approaching exponentialy fast to 1,) since x is either in L or not, one of the
simulations – either the one of A1 or the one of A2 will accept, or reject x after
only a polynomial number of simulations. Hence, the expected time algorithm A
has in polynomial.

Conversly, let A be an algorithm deciding a language Lin expected poylnomial
time and with probability of success 1. We’ve already showed above that this
implies L is in RP . A symmetric argument also shows that L is in coRP .

2. Let A be an array of length n. Denote the sorted elements of A by a1, a2, . . . , an.
Given an integers a, t, k, we are interested in finding an ak′ such that |k− k′| ≤ an/

√
t.

Consider the following randomized algorithm:

(a) Pick uniformly at random t elements b1, b2, . . . , bt from the array.

(b) Sort the elements b1, . . . , bt. Assume w.l.o.g., bi < bj ⇔ i < j.

(c) Return bk (simply by indexing the sorted array of b1, . . . , bt.)

Claim 1 Let bk = a′
k. Then with probability larger than 1− 2−Ω(a2), |k− k′| ≤ an/

√
t.

Proof: Let δn = k. We have to show that with probability larger than 2−Ω(a2), we
have that bk = ak′ and |k′ − k| ≤ an/

√
t.

Let Xi be the indicator (0/1) random variable that the i-th element (i ∈ [t]) we choose
is one of the first δn − an√

t
elements in the array. Let Yi be the indicator (0/1) random

variable that the i-th element we choose is one of the last δn+ an√
t

elements in the array.

Fix X =
∑

i Xi and Y =
∑

i Yi.

Clearly, the algorithm fails if either X ≥ δn = k, or if Y ≥ t − We show that the
probability of the union of the above two events is small.

We have

P [Xi] =
δn − an/

√
t

n
= δ − a/

√
t.

Hence,
E[X] = δt − a

√
t.

4

We now bound from above, using Chernoff’s inequality, the probability that X ≥ δn.

Pr
[

X ≥ δt
]

= Pr
[

|X − E[X]| ≥ a
√

t
]

= Pr
[

|X − E[X]| ≥
(a

δ
√

t

)

δt
]

≤ 2−
a2

δ2t
δt
6

= 2−Ω(a2)

The same analysis leads to a similiar upper bound on the event Y ≥ Hence, we
conclude that with probability greater than

1 − 2−Ω(a2),

bk = ak′ with |k′ − k| ≤ an/
√

t.

�

3. (a) Let x = x1, x2, . . . , xn, y = y1, y2, . . . , yn, where xi, yi are chosen uniformly and
independantly of each other, in random from {0, 1}. Let zi be the random variable
which equals 1 if xi = yi, and equals 0 otherwise. Clearly, since the xi’s are
independant of each other (and so does the yi’s), the zi’s are independant. Let
Z =

∑n
i=1 zi. Clearly, Z = dH(x, y). We have that E[Z] = n/2, as the probability

of zi to be 1 is exactly half (as xi, yi are uniform.) Since the zi’s are independant
0/1 variables, we apply Chernoff’s inequlity to obtain

ProbΩ

[

dH(x, y) < n/4
]

= ProbΩ

[

Z < n/4
]

= ProbΩ

[

|Z − n/2| ≥ 1

2
n/2

]

≤ 2−
0.52(n/2)

6

= 2−Ω(n)

(b) Let c be the constant in the upper bound 2−Ω(n) we proved above. We choose
uniformly at random l = 2cn/2 strings in {0, 1}n.

From what we’ve proved above, we know that any two strings x, y of the l strings
we chose, satisfy dH(x, y) < n/4 with probability at most 2−cn,

Those, the expected number of strings in l which satisfy dH(x, y) < n/4 is

2cn/22−cn < 1.

Hence, by the pigeon hole property of the expectation, there exist a set of l = 2cn/2

strings in {0, 1}n such that no two satisfy dH (x, y) < n/4.

5

