Foundation of Cryptography, Lecture 10 Multiparty Computation

Benny Applebaum & Iftach Haitner, Tel Aviv University

Tel Aviv University.

January 26, 2017

Section 1

The Model

• Multiparty Computation – computing a functionality f

- Multiparty Computation computing a functionality f
- Secure Multiparty Computation: compute *f* in a "secure manner"

- Multiparty Computation computing a functionality f
- Secure Multiparty Computation: compute *f* in a "secure manner"
 - Correctness

- Multiparty Computation computing a functionality f
- Secure Multiparty Computation: compute *f* in a "secure manner"
 - Correctness
 - Privacy

- Multiparty Computation computing a functionality f
- Secure Multiparty Computation: compute *f* in a "secure manner"
 - Correctness
 - Privacy
 - Independence of inputs

- Multiparty Computation computing a functionality f
- Secure Multiparty Computation: compute *f* in a "secure manner"
 - Correctness
 - Privacy
 - Independence of inputs
 - Guaranteed output delivery

- Multiparty Computation computing a functionality f
- Secure Multiparty Computation: compute *f* in a "secure manner"
 - Correctness
 - Privacy
 - Independence of inputs
 - Guaranteed output delivery
 - Fairness : corrupted parties should get their output iff the honest parties do

- Multiparty Computation computing a functionality f
- Secure Multiparty Computation: compute *f* in a "secure manner"
 - Correctness
 - Privacy
 - Independence of inputs
 - Guaranteed output delivery
 - Fairness : corrupted parties should get their output iff the honest parties do
 - and ...

- Multiparty Computation computing a functionality f
- Secure Multiparty Computation: compute *f* in a "secure manner"
 - Correctness
 - Privacy
 - Independence of inputs
 - Guaranteed output delivery
 - Fairness : corrupted parties should get their output iff the honest parties do
 - and ...

• Examples: coin-tossing, broadcast, electronic voting, electronic auctions

- Multiparty Computation computing a functionality f
- Secure Multiparty Computation: compute *f* in a "secure manner"
 - Correctness
 - Privacy
 - Independence of inputs
 - Guaranteed output delivery
 - Fairness : corrupted parties should get their output iff the honest parties do
 - and ...
- Examples: coin-tossing, broadcast, electronic voting, electronic auctions
- How should we model it?

- Multiparty Computation computing a functionality f
- Secure Multiparty Computation: compute *f* in a "secure manner"
 - Correctness
 - Privacy
 - Independence of inputs
 - Guaranteed output delivery
 - Fairness : corrupted parties should get their output iff the honest parties do
 - and ...
- Examples: coin-tossing, broadcast, electronic voting, electronic auctions
- How should we model it?
- Real Vs. Ideal paradigm

For a a pair of algorithms $\overline{A} = (A_1, A_2)$ and inputs $x_c, x_1, x_2 \in \{0, 1\}^*$, let REAL_{\overline{A}}(x_c, x_1, x_2) be the joint output of ($A_1(x_c, x_1), A_2(x_c, x_2)$).

For a a pair of algorithms $\overline{A} = (A_1, A_2)$ and inputs $x_c, x_1, x_2 \in \{0, 1\}^*$, let REAL_{\overline{A}}(x_c, x_1, x_2) be the joint output of (A₁(x_c, x_1), A₂(x_c, x_2)).

For a a pair of algorithms $\overline{A} = (A_1, A_2)$ and inputs $x_c, x_1, x_2 \in \{0, 1\}^*$, let REAL_{\overline{A}}(x_c, x_1, x_2) be the joint output of (A₁(x_c, x_1), A₂(x_c, x_2)).

Given a two-party protocol π , an algorithm taking the role of one of the parties in π is:

• Malicious — acts arbitrarily.

For a a pair of algorithms $\overline{A} = (A_1, A_2)$ and inputs $x_c, x_1, x_2 \in \{0, 1\}^*$, let REAL_{\overline{A}}(x_c, x_1, x_2) be the joint output of (A₁(x_c, x_1), A₂(x_c, x_2)).

- Malicious acts arbitrarily.
- Honest acts exactly according to π .

For a a pair of algorithms $\overline{A} = (A_1, A_2)$ and inputs $x_c, x_1, x_2 \in \{0, 1\}^*$, let REAL_{\overline{A}}(x_c, x_1, x_2) be the joint output of (A₁(x_c, x_1), A₂(x_c, x_2)).

- Malicious acts arbitrarily.
- Honest acts exactly according to π .
- Semi-honest acts according to π , but might output **additional** information.

For a a pair of algorithms $\overline{A} = (A_1, A_2)$ and inputs $x_c, x_1, x_2 \in \{0, 1\}^*$, let REAL_{\overline{A}}(x_c, x_1, x_2) be the joint output of (A₁(x_c, x_1), A₂(x_c, x_2)).

- Malicious acts arbitrarily.
- Honest acts exactly according to π .
- Semi-honest acts according to π , but might output **additional** information.

For a a pair of algorithms $\overline{A} = (A_1, A_2)$ and inputs $x_c, x_1, x_2 \in \{0, 1\}^*$, let REAL_{\overline{A}}(x_c, x_1, x_2) be the joint output of ($A_1(x_c, x_1), A_2(x_c, x_2)$).

Given a two-party protocol π , an algorithm taking the role of one of the parties in π is:

- Malicious acts arbitrarily.
- Honest acts exactly according to π .
- Semi-honest acts according to π , but might output **additional** information.

 $\overline{A} = (A_1, A_2)$ is an admissible with respect to π , if at least one party is honest.

For a pair of oracle-aided algorithms $\overline{B} = (B_1, B_2)$, inputs $x_c, x_1, x_2 \in \{0, 1\}^*$ and a function $f = (f_1, f_2)$, let IDEAL $\frac{f}{B}(x_c, x_1, x_2)$ be the joint output of the parties in the end of the following experiment:

For a pair of oracle-aided algorithms $\overline{B} = (B_1, B_2)$, inputs $x_c, x_1, x_2 \in \{0, 1\}^*$ and a function $f = (f_1, f_2)$, let IDEAL $\frac{f}{B}(x_c, x_1, x_2)$ be the joint output of the parties in the end of the following experiment:

- **1** The input of B_i is (x_c, x_i) .
- B_i sends value y_i to the trusted party.
- 3 Trusted party sends $z_i = f_i(y_0, y_1)$ to B_i in an arbitrary order.
- Each party outputs some value.

For a pair of oracle-aided algorithms $\overline{B} = (B_1, B_2)$, inputs $x_c, x_1, x_2 \in \{0, 1\}^*$ and a function $f = (f_1, f_2)$, let IDEAL $\frac{f}{B}(x_c, x_1, x_2)$ be the joint output of the parties in the end of the following experiment:

- **1** The input of B_i is (x_c, x_i) .
- B_i sends value y_i to the trusted party.
- 3 Trusted party sends $z_i = f_i(y_0, y_1)$ to B_i in an arbitrary order.
- Each party outputs some value.

The actual definition allows a party after receiving its output, to instruct f not to send the the output to the other party.

For a pair of oracle-aided algorithms $\overline{B} = (B_1, B_2)$, inputs $x_c, x_1, x_2 \in \{0, 1\}^*$ and a function $f = (f_1, f_2)$, let IDEAL $\frac{f}{B}(x_c, x_1, x_2)$ be the joint output of the parties in the end of the following experiment:

- **1** The input of B_i is (x_c, x_i) .
- **2** B_i sends value y_i to the trusted party.
- 3 Trusted party sends $z_i = f_i(y_0, y_1)$ to B_i in an arbitrary order.
- Each party outputs some value.

The actual definition allows a party after receiving its output, to instruct f not to send the the output to the other party.

For a pair of oracle-aided algorithms $\overline{B} = (B_1, B_2)$, inputs $x_c, x_1, x_2 \in \{0, 1\}^*$ and a function $f = (f_1, f_2)$, let IDEAL $\frac{f}{B}(x_c, x_1, x_2)$ be the joint output of the parties in the end of the following experiment:

- **1** The input of B_i is (x_c, x_i) .
- B_i sends value y_i to the trusted party.
- 3 Trusted party sends $z_i = f_i(y_0, y_1)$ to B_i in an arbitrary order.
- Each party outputs some value.

The actual definition allows a party after receiving its output, to instruct f not to send the the output to the other party.

An oracle-aided algorithm B taking the role of one of the parties is:

• Malicious — acts arbitrarily.

For a pair of oracle-aided algorithms $\overline{B} = (B_1, B_2)$, inputs $x_c, x_1, x_2 \in \{0, 1\}^*$ and a function $f = (f_1, f_2)$, let IDEAL $\frac{f}{B}(x_c, x_1, x_2)$ be the joint output of the parties in the end of the following experiment:

- **1** The input of B_i is (x_c, x_i) .
- **2** B_i sends value y_i to the trusted party.
- 3 Trusted party sends $z_i = f_i(y_0, y_1)$ to B_i in an arbitrary order.
- Each party outputs some value.

The actual definition allows a party after receiving its output, to instruct f not to send the the output to the other party.

- Malicious acts arbitrarily.
- Honest sends its private input to the trusted party (i.e., sets y_i = x_i), and its only output is the value it gets from the trusted party (i.e., z_i).

For a pair of oracle-aided algorithms $\overline{B} = (B_1, B_2)$, inputs $x_c, x_1, x_2 \in \{0, 1\}^*$ and a function $f = (f_1, f_2)$, let IDEAL $\frac{f}{B}(x_c, x_1, x_2)$ be the joint output of the parties in the end of the following experiment:

- **1** The input of B_i is (x_c, x_i) .
- **2** B_i sends value y_i to the trusted party.
- 3 Trusted party sends $z_i = f_i(y_0, y_1)$ to B_i in an arbitrary order.
- Each party outputs some value.

The actual definition allows a party after receiving its output, to instruct f not to send the the output to the other party.

- Malicious acts arbitrarily.
- Honest sends its private input to the trusted party (i.e., sets y_i = x_i), and its only output is the value it gets from the trusted party (i.e., z_i).
- Semi-honest, sends its input to the trusted party, outputs z_i plus possibly additional information.

For a pair of oracle-aided algorithms $\overline{B} = (B_1, B_2)$, inputs $x_c, x_1, x_2 \in \{0, 1\}^*$ and a function $f = (f_1, f_2)$, let IDEAL $\frac{f}{B}(x_c, x_1, x_2)$ be the joint output of the parties in the end of the following experiment:

- **1** The input of B_i is (x_c, x_i) .
- **2** B_i sends value y_i to the trusted party.
- 3 Trusted party sends $z_i = f_i(y_0, y_1)$ to B_i in an arbitrary order.
- Each party outputs some value.

The actual definition allows a party after receiving its output, to instruct f not to send the the output to the other party.

- Malicious acts arbitrarily.
- Honest sends its private input to the trusted party (i.e., sets y_i = x_i), and its only output is the value it gets from the trusted party (i.e., z_i).
- Semi-honest, sends its input to the trusted party, outputs z_i plus possibly additional information.

For a pair of oracle-aided algorithms $\overline{B} = (B_1, B_2)$, inputs $x_c, x_1, x_2 \in \{0, 1\}^*$ and a function $f = (f_1, f_2)$, let IDEAL $\frac{f}{B}(x_c, x_1, x_2)$ be the joint output of the parties in the end of the following experiment:

- **1** The input of B_i is (x_c, x_i) .
- **2** B_i sends value y_i to the trusted party.
- 3 Trusted party sends $z_i = f_i(y_0, y_1)$ to B_i in an arbitrary order.
- Each party outputs some value.

The actual definition allows a party after receiving its output, to instruct f not to send the the output to the other party.

- Malicious acts arbitrarily.
- Honest sends its private input to the trusted party (i.e., sets y_i = x_i), and its only output is the value it gets from the trusted party (i.e., z_i).
- Semi-honest, sends its input to the trusted party, outputs z_i plus possibly additional information.
- $\overline{B} = (B_1, B_2)$ is admissible, if at least one party is honest.

Definition 1 (secure computation)

A protocol π securely computes f, if \forall admissible PPT pair $\overline{A} = (A_1, A_2)$ for π , exists admissible oracle-aided PPT pair $\overline{B} = (B_1, B_2)$, s.t.

 $\{\mathsf{REAL}_{\overline{A}}(x_c, x_1, x_2)\}_{x_c, x_1, x_2 \in \{0, 1\}^*} \approx_c \{\mathsf{IDEAL}_{\overline{B}}^f(x_c, x_1, x_2)\}_{x_c, x_1, x_2 \in \{0, 1\}^*}$

Definition 1 (secure computation)

A protocol π securely computes f, if \forall admissible PPT pair $\overline{A} = (A_1, A_2)$ for π , exists admissible oracle-aided PPT pair $\overline{B} = (B_1, B_2)$, s.t.

 $\{\mathsf{REAL}_{\overline{A}}(x_c, x_1, x_2)\}_{x_c, x_1, x_2 \in \{0, 1\}^*} \approx_c \{\mathsf{IDEAL}_{\overline{B}}^f(x_c, x_1, x_2)\}_{x_c, x_1, x_2 \in \{0, 1\}^*}$

In case \overline{A} is honest, we require that \overline{B} is honest, and the ensembles to be identical.

Recall that the enumeration index (i.e., x_c, x₁, x₂) is given to the distinguisher.

Definition 1 (secure computation)

A protocol π securely computes f, if \forall admissible PPT pair $\overline{A} = (A_1, A_2)$ for π , exists admissible oracle-aided PPT pair $\overline{B} = (B_1, B_2)$, s.t.

 $\{\mathsf{REAL}_{\overline{A}}(x_c, x_1, x_2)\}_{x_c, x_1, x_2 \in \{0, 1\}^*} \approx_c \{\mathsf{IDEAL}_{\overline{B}}^f(x_c, x_1, x_2)\}_{x_c, x_1, x_2 \in \{0, 1\}^*}$

- Recall that the enumeration index (i.e., x_c, x₁, x₂) is given to the distinguisher.
- π securely computes *f* implies that π computes *f* correctly.

Definition 1 (secure computation)

A protocol π securely computes f, if \forall admissible PPT pair $\overline{A} = (A_1, A_2)$ for π , exists admissible oracle-aided PPT pair $\overline{B} = (B_1, B_2)$, s.t.

 $\{\mathsf{REAL}_{\overline{A}}(x_c, x_1, x_2)\}_{x_c, x_1, x_2 \in \{0, 1\}^*} \approx_c \{\mathsf{IDEAL}_{\overline{B}}^f(x_c, x_1, x_2)\}_{x_c, x_1, x_2 \in \{0, 1\}^*}$

- Recall that the enumeration index (i.e., x_c, x₁, x₂) is given to the distinguisher.
- π securely computes *f* implies that π computes *f* correctly.
- Security parameter

Definition 1 (secure computation)

A protocol π securely computes f, if \forall admissible PPT pair $\overline{A} = (A_1, A_2)$ for π , exists admissible oracle-aided PPT pair $\overline{B} = (B_1, B_2)$, s.t.

 $\{\mathsf{REAL}_{\overline{A}}(x_c, x_1, x_2)\}_{x_c, x_1, x_2 \in \{0, 1\}^*} \approx_c \{\mathsf{IDEAL}_{\overline{B}}^f(x_c, x_1, x_2)\}_{x_c, x_1, x_2 \in \{0, 1\}^*}$

- Recall that the enumeration index (i.e., x_c, x₁, x₂) is given to the distinguisher.
- π securely computes *f* implies that π computes *f* correctly.
- Security parameter
- Auxiliary inputs

Definition 1 (secure computation)

A protocol π securely computes f, if \forall admissible PPT pair $\overline{A} = (A_1, A_2)$ for π , exists admissible oracle-aided PPT pair $\overline{B} = (B_1, B_2)$, s.t.

 $\{\mathsf{REAL}_{\overline{A}}(x_c, x_1, x_2)\}_{x_c, x_1, x_2 \in \{0, 1\}^*} \approx_c \{\mathsf{IDEAL}_{\overline{B}}^f(x_c, x_1, x_2)\}_{x_c, x_1, x_2 \in \{0, 1\}^*}$

- Recall that the enumeration index (i.e., x_c, x₁, x₂) is given to the distinguisher.
- π securely computes *f* implies that π computes *f* correctly.
- Security parameter
- Auxiliary inputs
- We focus on semi-honest adversaries.

Section 2

Oblivious Transfer

Oblivious transfer

An (one-out-of-two) OT protocol securely computes the functionality $OT = (OT_S, OT_R)$) over $(\{0, 1\}^* \times \{0, 1\}^*) \times \{0, 1\}$, where $OT_S(\cdot) = \bot$ and $OT_R((\sigma_0, \sigma_1), i) = \sigma_i$.

Oblivious transfer

An (one-out-of-two) OT protocol securely computes the functionality $OT = (OT_S, OT_R))$ over $(\{0, 1\}^* \times \{0, 1\}^*) \times \{0, 1\}$, where $OT_S(\cdot) = \bot$ and $OT_R((\sigma_0, \sigma_1), i) = \sigma_i$.

• "Complete" for multiparty computation

Oblivious transfer

An (one-out-of-two) OT protocol securely computes the functionality $OT = (OT_S, OT_R))$ over $(\{0, 1\}^* \times \{0, 1\}^*) \times \{0, 1\}$, where $OT_S(\cdot) = \bot$ and $OT_R((\sigma_0, \sigma_1), i) = \sigma_i$.

- "Complete" for multiparty computation
- We show how to construct for bit inputs.

Oblivious transfer from trapdoor permutations

Let (G, f, Inv) be a TDP and let b be an hardcore predicate for f.

Oblivious transfer from trapdoor permutations

Let (G, f, Inv) be a TDP and let b be an hardcore predicate for f.

Protocol 2 ((S,R))

```
Common input: 1^n
S's input: \sigma_0, \sigma_1 \in \{0, 1\}.
R's input: i \in \{0, 1\}.
```

O S chooses $(e, d) \leftarrow G(1^n)$, and sends e to R.

② R chooses $x_0, x_1 \leftarrow \{0, 1\}^n$, sets $y_i = f_e(x_i)$ and $y_{1-i} = x_{1-i}$, and sends y_0, y_1 to S.

S sets $c_j = b(Inv_d(y_j)) \oplus \sigma_j$, for $j \in \{0, 1\}$, and sends (c_0, c_1) to R.

O R outputs $c_i \oplus b(x_i)$.

Oblivious transfer from trapdoor permutations

Let (G, f, Inv) be a TDP and let b be an hardcore predicate for f.

Protocol 2 ((S,R))

```
Common input: 1^n
S's input: \sigma_0, \sigma_1 \in \{0, 1\}.
R's input: i \in \{0, 1\}.
```

O S chooses $(e, d) \leftarrow G(1^n)$, and sends e to R.

② R chooses $x_0, x_1 \leftarrow \{0, 1\}^n$, sets $y_i = f_e(x_i)$ and $y_{1-i} = x_{1-i}$, and sends y_0, y_1 to S.

③ S sets $c_j = b(Inv_d(y_j)) \oplus \sigma_j$, for $j \in \{0, 1\}$, and sends (c_0, c_1) to R.

• R outputs $c_i \oplus b(x_i)$.

Claim 3

Protocol 2 securely computes OT (in the semi-honest model).

Proving Claim 3

We need to prove that \forall semi-honest admissible PPT pair $\overline{A} = (A_1, A_2)$ for (S, R), exists admissible oracle-aided PPT pair $\overline{B} = (B_1, B_2)$ s.t.

 $\{\mathsf{REAL}_{\overline{\mathsf{A}}}(1^n, (\sigma_0, \sigma_1), i)\} \approx_c \{\mathsf{IDEAL}_{\overline{\mathsf{B}}}^{\mathsf{OT}}(1^n, (\sigma_0, \sigma_1), i)\},\tag{1}$

where the enumeration is over $n \in \mathbb{N}$ and $\sigma_0, \sigma_1, i \in \{0, 1\}$.

For a semi-honest implementation S' of S, define the oracle-aided semi-honest strategy $S'_{\mathcal{I}}$ as follows.

For a semi-honest implementation S' of S, define the oracle-aided semi-honest strategy $S'_{\mathcal{I}}$ as follows.

Algorithm 4 (S'_{I})

input: $1^n, \sigma_0, \sigma_1$

- **1** Send (σ_0, σ_1) to the trusted party.
- 2 Emulate $(S'(1^n, \sigma_0, \sigma_1), R(1^n, 0))$.
- Output the output that S' does.

For a semi-honest implementation S' of S, define the oracle-aided semi-honest strategy $S'_{\mathcal{I}}$ as follows.

Algorithm 4 (S'_{I})

input: $1^n, \sigma_0, \sigma_1$

- **()** Send (σ_0, σ_1) to the trusted party.
- 2 Emulate $(S'(1^n, \sigma_0, \sigma_1), R(1^n, 0))$.

Output the output that S' does.

Let $\overline{A} = (S', R)$ and $\overline{B} = (S'_{\mathcal{I}}, R_{\mathcal{I}})$, where $R_{\mathcal{I}}$ is honest.

For a semi-honest implementation S' of S, define the oracle-aided semi-honest strategy $S'_{\mathcal{I}}$ as follows.

Algorithm 4 ($S'_{\mathcal{I}}$)

input: $1^n, \sigma_0, \sigma_1$

- **()** Send (σ_0, σ_1) to the trusted party.
- 2 Emulate $(S'(1^n, \sigma_0, \sigma_1), R(1^n, 0))$.
- Output the output that S' does.

Let $\overline{A} = (S', R)$ and $\overline{B} = (S'_{\mathcal{I}}, R_{\mathcal{I}})$, where $R_{\mathcal{I}}$ is honest.

Claim 5

 $\{\mathsf{REAL}_{\overline{\mathsf{A}}}(1^n, (\sigma_0, \sigma_1), i)\} \equiv \{\mathsf{IDEAL}_{\overline{\mathsf{B}}}^{\mathsf{OT}}(1^n, (\sigma_0, \sigma_1), i)\}.$

For a semi-honest implementation S' of S, define the oracle-aided semi-honest strategy $S'_{\mathcal{I}}$ as follows.

Algorithm 4 ($S'_{\mathcal{I}}$)

input: $1^n, \sigma_0, \sigma_1$

- **()** Send (σ_0, σ_1) to the trusted party.
- 2 Emulate $(S'(1^n, \sigma_0, \sigma_1), R(1^n, 0))$.

Output the output that S' does.

Let $\overline{A} = (S', R)$ and $\overline{B} = (S'_{\mathcal{I}}, R_{\mathcal{I}})$, where $R_{\mathcal{I}}$ is honest.

Claim 5

```
\{\mathsf{REAL}_{\overline{\mathsf{A}}}(1^n, (\sigma_0, \sigma_1), i)\} \equiv \{\mathsf{IDEAL}_{\overline{\mathsf{B}}}^{\mathsf{OT}}(1^n, (\sigma_0, \sigma_1), i)\}.
```

Proof?

For a semi-honest implementation R' of R, define the oracle-aided semi-honest strategy $R'_{\mathcal{I}}$ as follows.

For a semi-honest implementation R' of R, define the oracle-aided semi-honest strategy $R'_{\mathcal{I}}$ as follows.

Algorithm 6 (R'_{I})

input: $1^n, i \in \{0, 1\},\$

- **(**) Send *i* to the trusted party, and let σ be its answer.
- 2 Emulate (S(1^{*n*}, σ_0 , σ_1), R'(1^{*n*}, *i*)), for $\sigma_i = \sigma$ and $\sigma_{1-i} = 0$.
- Output the output that R' does.

For a semi-honest implementation R' of R, define the oracle-aided semi-honest strategy $R'_{\mathcal{I}}$ as follows.

Algorithm 6 (R'_{I})

input: $1^n, i \in \{0, 1\},\$

- **(**) Send *i* to the trusted party, and let σ be its answer.
- 2 Emulate (S(1^{*n*}, σ_0 , σ_1), R'(1^{*n*}, *i*)), for $\sigma_i = \sigma$ and $\sigma_{1-i} = 0$.
- Output the output that R' does.

Let $\overline{A} = (S, R')$ and $\overline{B} = (S_{\mathcal{I}}, R'_{\mathcal{I}})$, where $S_{\mathcal{I}}$ is honest.

For a semi-honest implementation R' of R, define the oracle-aided semi-honest strategy $R'_{\mathcal{I}}$ as follows.

Algorithm 6 (R'_{I})

input: $1^n, i \in \{0, 1\},\$

- **(**) Send *i* to the trusted party, and let σ be its answer.
- 2 Emulate (S(1^{*n*}, σ_0 , σ_1), R'(1^{*n*}, *i*)), for $\sigma_i = \sigma$ and $\sigma_{1-i} = 0$.
- Output the output that R' does.

Let $\overline{A} = (S, R')$ and $\overline{B} = (S_{\mathcal{I}}, R'_{\mathcal{I}})$, where $S_{\mathcal{I}}$ is honest.

Claim 7

 $\{\mathsf{REAL}_{\overline{\mathsf{A}}}(1^n,(\sigma_0,\sigma_1),i)\} \approx_c \{\mathsf{IDEAL}_{\overline{\mathsf{B}}}^{\mathsf{OT}}(1^n,(\sigma_0,\sigma_1),i)\}.$

For a semi-honest implementation R' of R, define the oracle-aided semi-honest strategy $R'_{\mathcal{I}}$ as follows.

Algorithm 6 (R'_{I})

input: $1^n, i \in \{0, 1\},\$

- **(**) Send *i* to the trusted party, and let σ be its answer.
- 2 Emulate $(S(1^n, \sigma_0, \sigma_1), R'(1^n, i))$, for $\sigma_i = \sigma$ and $\sigma_{1-i} = 0$.
- Output the output that R' does.

Let $\overline{A} = (S, R')$ and $\overline{B} = (S_{\mathcal{I}}, R'_{\mathcal{I}})$, where $S_{\mathcal{I}}$ is honest.

Claim 7

 $\{\mathsf{REAL}_{\overline{\mathsf{A}}}(1^n,(\sigma_0,\sigma_1),i)\} \approx_c \{\mathsf{IDEAL}_{\overline{\mathsf{B}}}^{\mathsf{OT}}(1^n,(\sigma_0,\sigma_1),i)\}.$

Proof?

Section 3

Yao Garbled Circuit

Before we start

 Fix a (multiple message) semantically-secure private-key encryption scheme (G, E, D) with

```
    G(1<sup>n</sup>) = U<sub>n</sub>.
    For any m ∈ {0, 1}*

Pr<sub>d,d'</sub> ← {0,1}<sup>n</sup> [D<sub>d</sub>(E<sub>d'</sub>(m)) ≠⊥] = neg(n).
```

Before we start

 Fix a (multiple message) semantically-secure private-key encryption scheme (G, E, D) with

```
    G(1<sup>n</sup>) = U<sub>n</sub>.
    For any m ∈ {0,1}*
Pr<sub>d,d'</sub> ← {0,1}<sup>n</sup> [D<sub>d</sub>(E<sub>d'</sub>(m)) ≠⊥] = neg(n).
```

Can we construct such a scheme?

append 0^n at the end of the message...

Boolean circuits: gates, wires, inputs, outputs, values, computation

Fix a Boolean circuit *C* and $n \in \mathbb{N}$.

• Let \mathcal{W} and \mathcal{G} be the (indices) of **wires** and **gates** of C, respectively.

- Let \mathcal{W} and \mathcal{G} be the (indices) of wires and gates of C, respectively.
- For $w \in W$, associate a pair of random 'keys" $k_w = (k_w^0, k_w^1) \in (\{0, 1\}^n)^2$.

- Let \mathcal{W} and \mathcal{G} be the (indices) of wires and gates of C, respectively.
- For $w \in W$, associate a pair of random 'keys" $k_w = (k_w^0, k_w^1) \in (\{0, 1\}^n)^2$.
- For g ∈ G with input wires i and j, and output wire h, let T(g) be the following table:

- Let \mathcal{W} and \mathcal{G} be the (indices) of wires and gates of C, respectively.
- For $w \in W$, associate a pair of random 'keys" $k_w = (k_w^0, k_w^1) \in (\{0, 1\}^n)^2$.
- For g ∈ G with input wires i and j, and output wire h, let T(g) be the following table:

Fix a Boolean circuit *C* and $n \in \mathbb{N}$.

- Let \mathcal{W} and \mathcal{G} be the (indices) of wires and gates of C, respectively.
- For $w \in W$, associate a pair of random 'keys" $k_w = (k_w^0, k_w^1) \in (\{0, 1\}^n)^2$.
- For g ∈ G with input wires i and j, and output wire h, let T(g) be the following table:

input wire <i>i</i>	input wire j	output wire h	hidden output wire
k_i^0	k_j^0	$k_h^{g(0,0)}$	$E_{k_i^0}(E_{k_i^0}(k_h^{g(0,0)}))$
k_i^0	k_j^1	$k_{h}^{g(0,1)}$	$E_{k_i^0}(E_{k_i^1}(k_h^{g(0,1)}))$
k_i^1	k_j^0	$k_{h}^{g(1,0)}$	$E_{k_i^1}(E_{k_i^0}(k_h^{g(1,0)}))$
k_i^1	k_j^1	$k_{h}^{g(1,1)}$	$E_{k_i^1}(E_{k_i^1}(k_h^{g(1,1)}))$

Figure: Table for gate *g*, with input wires *i* and *j*, and output wire *h*.

input wire i	input wire j	output wire h	hidden output wire
k ⁰	kj ⁰	$k_h^{g(0,0)}$	$E_{k_i^0}(E_{k_i^0}(k_h^{g(0,0)}))$
k ⁰ _i	k_j^1	$k_{h}^{g(0,1)}$	$E_{k_i^0}(E_{k_i^1}(k_h^{g(0,1)}))$
k _i 1	kj ⁰	$k_{h}^{g(1,0)}$	$E_{k_i^1}(E_{k_i^0}(k_h^{g(1,0)}))$
k _i 1	k_j^1	$k_{h}^{g(1,1)}$	$E_{k_i^1}(E_{k_j^1}(k_h^{g(1,1)}))$

input wire i	input wire j	output wire h	hidden output wire
k ⁰	kj ⁰	$k_{h}^{g(0,0)}$	$E_{k_i^0}(E_{k_i^0}(k_h^{g(0,0)}))$
k ⁰ _i	k_j^1	$k_{h}^{g(0,1)}$	$E_{k_i^0}(E_{k_i^1}(k_h^{g(0,1)}))$
<i>k</i> ¹ _i	k_j^0	$k_{h}^{g(1,0)}$	$E_{k_i^1}(E_{k_i^0}(k_h^{g(1,0)}))$
<i>k</i> ¹ _i	k_j^1	$k_{h}^{g(1,1)}$	$E_{k_i^1}(E_{k_j^1}(k_h^{g(1,1)}))$

Let \mathcal{I} and \mathcal{O} be the input and outputs wires of C.

input wire i	input wire j	output wire h	hidden output wire
k ⁰ _i	kj ⁰	$k_h^{g(0,0)}$	$E_{k_i^0}(E_{k_i^0}(k_h^{g(0,0)}))$
k ⁰ _i	k_j^1	$k_{h}^{g(0,1)}$	$E_{k_i^0}(E_{k_i^1}(k_h^{g(0,1)}))$
k _i 1	k_j^0	$k_{h}^{g(1,0)}$	$E_{k_i^1}(E_{k_i^0}(k_h^{g(1,0)}))$
<i>k</i> ¹ _i	k_j^1	$k_{h}^{g(1,1)}$	$E_{k_i^1}(E_{k_j^1}(k_h^{g(1,1)}))$

Let \mathcal{I} and \mathcal{O} be the input and outputs wires of C.

• For $g \in \mathcal{G}$, let $\widetilde{T}(g)$ be a random permutation of the fourth column of T(g).

input wire i	input wire j	output wire h	hidden output wire
k ⁰ _i	kj ⁰	$k_h^{g(0,0)}$	$E_{k_i^0}(E_{k_i^0}(k_h^{g(0,0)}))$
k ⁰ _i	k_j^1	$k_{h}^{g(0,1)}$	$E_{k_i^0}(E_{k_i^1}(k_h^{g(0,1)}))$
k _i 1	k_j^0	$k_{h}^{g(1,0)}$	$E_{k_i^1}(E_{k_i^0}(k_h^{g(1,0)}))$
<i>k</i> ¹ _i	k_j^1	$k_{h}^{g(1,1)}$	$E_{k_i^1}(E_{k_j^1}(k_h^{g(1,1)}))$

Let \mathcal{I} and \mathcal{O} be the input and outputs wires of C.

- For $g \in \mathcal{G}$, let $\tilde{T}(g)$ be a random permutation of the fourth column of T(g).
- For $w \in W$, let $C(x)_w$ be the **bit-value** computation of C(x) assigns to w

input wire i	input wire j	output wire h	hidden output wire
k ⁰ _i	kj ⁰	$k_h^{g(0,0)}$	$E_{k_i^0}(E_{k_i^0}(k_h^{g(0,0)}))$
k ⁰ _i	k_j^1	$k_{h}^{g(0,1)}$	$E_{k_i^0}(E_{k_i^1}(k_h^{g(0,1)}))$
k _i 1	k_j^0	$k_{h}^{g(1,0)}$	$E_{k_i^1}(E_{k_i^0}(k_h^{g(1,0)}))$
<i>k</i> ¹ _i	k_j^1	$k_{h}^{g(1,1)}$	$E_{k_i^1}(E_{k_j^1}(k_h^{g(1,1)}))$

Let \mathcal{I} and \mathcal{O} be the input and outputs wires of C.

- For $g \in \mathcal{G}$, let $\widetilde{T}(g)$ be a random permutation of the fourth column of T(g).
- For $w \in W$, let $C(x)_w$ be the **bit-value** computation of C(x) assigns to w
- Given

input wire i	input wire j	output wire h	hidden output wire
k ⁰	kj ⁰	$k_h^{g(0,0)}$	$E_{k_i^0}(E_{k_i^0}(k_h^{g(0,0)}))$
k ⁰	k_j^1	$k_{h}^{g(0,1)}$	$E_{k_i^0}(E_{k_i^1}(k_h^{g(0,1)}))$
k _i 1	kj ⁰	$k_{h}^{g(1,0)}$	$E_{k_i^1}(E_{k_i^0}(k_h^{g(1,0)}))$
k _i 1	k_j^1	$k_{h}^{g(1,1)}$	$E_{k_i^1}(E_{k_j^1}(k_h^{g(1,1)}))$

Let \mathcal{I} and \mathcal{O} be the input and outputs wires of C.

- For $g \in \mathcal{G}$, let $\widetilde{T}(g)$ be a random permutation of the fourth column of T(g).
- For $w \in W$, let $C(x)_w$ be the **bit-value** computation of C(x) assigns to w

Given

 $\ \, \widetilde{T} = \{(g,\widetilde{T}(g))\}_{g\in\mathcal{G}}.$

input wire i	input wire j	output wire h	hidden output wire
k ⁰	kj ⁰	$k_h^{g(0,0)}$	$E_{k_i^0}(E_{k_i^0}(k_h^{g(0,0)}))$
k ⁰	k_j^1	$k_{h}^{g(0,1)}$	$E_{k_i^0}(E_{k_i^1}(k_h^{g(0,1)}))$
k _i 1	kj ⁰	$k_{h}^{g(1,0)}$	$E_{k_i^1}(E_{k_i^0}(k_h^{g(1,0)}))$
k _i 1	k_j^1	$k_{h}^{g(1,1)}$	$E_{k_i^1}(E_{k_j^1}(k_h^{g(1,1)}))$

Let \mathcal{I} and \mathcal{O} be the input and outputs wires of C.

- For $g \in \mathcal{G}$, let $\widetilde{T}(g)$ be a random permutation of the fourth column of T(g).
- For $w \in W$, let $C(x)_w$ be the **bit-value** computation of C(x) assigns to w
- Given

1 $\widetilde{T} = \{(g, \widetilde{T}(g))\}_{g \in \mathcal{G}}.$ 2 $\{k_w^{C(x)_w}\}_{w \in \mathcal{I}}$ for some *x*.

input wire i	input wire j	output wire h	hidden output wire
k ⁰	kj ⁰	$k_h^{g(0,0)}$	$E_{k_i^0}(E_{k_i^0}(k_h^{g(0,0)}))$
k ⁰	k _j 1	$k_{h}^{g(0,1)}$	$E_{k_i^0}(E_{k_i^1}(k_h^{g(0,1)}))$
k _i 1	kj ⁰	$k_{h}^{g(1,0)}$	$E_{k_i^1}(E_{k_i^0}(k_h^{g(1,0)}))$
k _i 1	k_j^1	$k_{h}^{g(1,1)}$	$E_{k_i^1}(E_{k_j^1}(k_h^{g(1,1)}))$

Let \mathcal{I} and \mathcal{O} be the input and outputs wires of C.

- For $g \in \mathcal{G}$, let $\widetilde{T}(g)$ be a random permutation of the fourth column of T(g).
- For $w \in W$, let $C(x)_w$ be the **bit-value** computation of C(x) assigns to w
- Given

 T̃ = {(g, T̃(g))}_{g∈G}.
 {k_w^{C(x)}_w}_{w∈I} for some x.
 {(w, k_w = (k_w⁰, k_w¹)}_{w∈O}.

The Garbled Circuit, cont.

input wire i	input wire j	output wire h	hidden output wire
k ⁰	kj ⁰	$k_h^{g(0,0)}$	$E_{k_i^0}(E_{k_i^0}(k_h^{g(0,0)}))$
k ⁰	k _j 1	$k_{h}^{g(0,1)}$	$E_{k_i^0}(E_{k_i^1}(k_h^{g(0,1)}))$
k _i 1	kj ⁰	$k_{h}^{g(1,0)}$	$E_{k_i^1}(E_{k_i^0}(k_h^{g(1,0)}))$
k _i 1	k_j^1	$k_{h}^{g(1,1)}$	$E_{k_i^1}(E_{k_j^1}(k_h^{g(1,1)}))$

Let \mathcal{I} and \mathcal{O} be the input and outputs wires of C.

- For $g \in \mathcal{G}$, let $\widetilde{T}(g)$ be a random permutation of the fourth column of T(g).
- For $w \in W$, let $C(x)_w$ be the **bit-value** computation of C(x) assigns to w
- Given

 T̃ = {(g, T̃(g))}_{g∈G}.
 {k_w^{C(x)}_w}_{w∈I} for some x.
 {(w, k_w = (k_w⁰, k_w¹)}_{w∈O}.

The Garbled Circuit, cont.

input wire i	input wire j	output wire h	hidden output wire
k ⁰	kj ⁰	$k_h^{g(0,0)}$	$E_{k_i^0}(E_{k_i^0}(k_h^{g(0,0)}))$
k ⁰	k_j^1	$k_{h}^{g(0,1)}$	$E_{k_i^0}(E_{k_i^1}(k_h^{g(0,1)}))$
k _i 1	kj ⁰	$k_{h}^{g(1,0)}$	$E_{k_i^1}(E_{k_i^0}(k_h^{g(1,0)}))$
k _i 1	k_j^1	$k_{h}^{g(1,1)}$	$E_{k_i^1}(E_{k_j^1}(k_h^{g(1,1)}))$

Let \mathcal{I} and \mathcal{O} be the input and outputs wires of C.

- For $g \in \mathcal{G}$, let $\widetilde{T}(g)$ be a random permutation of the fourth column of T(g).
- For $w \in W$, let $C(x)_w$ be the **bit-value** computation of C(x) assigns to w

Given

1 $\widetilde{T} = \{(g, \widetilde{T}(g))\}_{g \in \mathcal{G}}.$ 2 $\{k_w^{C(x)_w}\}_{w \in \mathcal{I}}$ for some *x*. 3 $\{(w, k_w = (k_w^0, k_w^1)\}_{w \in \mathcal{O}}.$

One can efficiently compute C(x).

The Garbled Circuit, cont.

input wire i	input wire j	output wire h	hidden output wire
k ⁰	kj ⁰	$k_h^{g(0,0)}$	$E_{k_i^0}(E_{k_i^0}(k_h^{g(0,0)}))$
k ⁰	k_j^1	$k_{h}^{g(0,1)}$	$E_{k_i^0}(E_{k_i^1}(k_h^{g(0,1)}))$
k _i 1	kj ⁰	$k_{h}^{g(1,0)}$	$E_{k_i^1}(E_{k_i^0}(k_h^{g(1,0)}))$
k _i 1	k_j^1	$k_{h}^{g(1,1)}$	$E_{k_i^1}(E_{k_j^1}(k_h^{g(1,1)}))$

Let \mathcal{I} and \mathcal{O} be the input and outputs wires of C.

- For $g \in \mathcal{G}$, let $\widetilde{T}(g)$ be a random permutation of the fourth column of T(g).
- For $w \in W$, let $C(x)_w$ be the **bit-value** computation of C(x) assigns to w
- Given

T
 T = {(g, T(g))}_{g∈G}.
 {k_w^{C(x)}}_{w∈I} for some x.
 {(w, k_w = (k_w⁰, k_w¹)}_{w∈Q}.

One can efficiently compute C(x).

(essentially) The above leaks no additional information about x!

• Let $f(x_A, x_B) = (f_A(x_A, x_B), f_B(x_A, x_B))$ be a function, and let *C* be a circuit that computes *f*.

- Let f(x_A, x_B) = (f_A(x_A, x_B), f_B(x_A, x_B)) be a function, and let C be a circuit that computes f.
- Let \mathcal{I}_A and \mathcal{I}_B be the input wires corresponds to x_A and x_B respectively in C, and let \mathcal{O}_A and \mathcal{O}_B be the output wires corresponds to f_A and f_B outputs respectively in C.

- Let f(x_A, x_B) = (f_A(x_A, x_B), f_B(x_A, x_B)) be a function, and let C be a circuit that computes f.
- Let \mathcal{I}_A and \mathcal{I}_B be the input wires corresponds to x_A and x_B respectively in C, and let \mathcal{O}_A and \mathcal{O}_B be the output wires corresponds to f_A and f_B outputs respectively in C.
- Recall that $C(x)_w$ is the bit-value the computation of C(x) assigns to w.

- Let f(x_A, x_B) = (f_A(x_A, x_B), f_B(x_A, x_B)) be a function, and let C be a circuit that computes f.
- Let \mathcal{I}_A and \mathcal{I}_B be the input wires corresponds to x_A and x_B respectively in C, and let \mathcal{O}_A and \mathcal{O}_B be the output wires corresponds to f_A and f_B outputs respectively in C.
- Recall that $C(x)_w$ is the bit-value the computation of C(x) assigns to w.
- Let (S, R) be a secure protocol for OT.

- Let f(x_A, x_B) = (f_A(x_A, x_B), f_B(x_A, x_B)) be a function, and let C be a circuit that computes f.
- Let \mathcal{I}_A and \mathcal{I}_B be the input wires corresponds to x_A and x_B respectively in C, and let \mathcal{O}_A and \mathcal{O}_B be the output wires corresponds to f_A and f_B outputs respectively in C.
- Recall that $C(x)_w$ is the bit-value the computation of C(x) assigns to w.
- Let (S, R) be a secure protocol for OT.

- Let f(x_A, x_B) = (f_A(x_A, x_B), f_B(x_A, x_B)) be a function, and let C be a circuit that computes f.
- Let \mathcal{I}_A and \mathcal{I}_B be the input wires corresponds to x_A and x_B respectively in C, and let \mathcal{O}_A and \mathcal{O}_B be the output wires corresponds to f_A and f_B outputs respectively in C.
- Recall that $C(x)_w$ is the bit-value the computation of C(x) assigns to w.
- Let (S, R) be a secure protocol for OT.

Protocol 8 ((A, B))

Common input: 1^{*n*}. A/B's input: x_A/x_B

- A samples at random $\{k_w = (k_w^0, k_w^1)\}_{w \in \mathcal{W}}$, and generate \tilde{T} .
- **2** A sends \tilde{T} and $\{(w, k_w^{C(x_1, \cdot)_w})\}_{w \in \mathcal{I}_A}$ to B.
- **③** \forall *w* ∈ \mathcal{I}_{B} , A and B interact in $(\mathsf{S}(k_w), \mathsf{R}(\mathcal{C}(\cdot, x_2)_w))(1^n)$.
- B computes the (garbled) circuit, and sends $\{(w, k_w^{C(x_1, x_2)_w})\}_{w \in \mathcal{O}_A}$ to A.
- A sends $\{(w, k_w)\}_{w \in \mathcal{O}_B}$ to B.
- The parties compute $f_A(x_1, x_2)$ and $f_B(x_1, x_2)$ respectively.

Example, computing OR

Benny Applebaum & Iftach Haitner (TAU)

Example, computing OR

On board...

Protocol 8 securely computes *f* (in the semi-honest model)

Protocol 8 securely computes f (in the semi-honest model)

Proof:

Protocol 8 securely computes *f* (in the semi-honest model)

Proof: We focus on the security of A.

Protocol 8 securely computes f (in the semi-honest model)

Proof: We focus on the security of A. For a semi-honest B', define

Algorithm 10 (B'_{I})

Protocol 8 securely computes f (in the semi-honest model)

Proof: We focus on the security of A. For a semi-honest B', define

Algorithm 10 (B'_{I})

- Send x_B to the trusted party, and let o_B be its answer.
- 2 Emulate the first 4 steps of $(A(1^{|x_A|}), B'(x_B)(1^n))$.

Protocol 8 securely computes f (in the semi-honest model)

Proof: We focus on the security of A. For a semi-honest B', define

Algorithm 10 (B'_{I})

- **()** Send $x_{\rm B}$ to the trusted party, and let $o_{\rm B}$ be its answer.
- 2 Emulate the first 4 steps of $(A(1^{|x_A|}), B'(x_B)(1^n))$.
- So For each $w \in \mathcal{O}_B$: permute the order of the pair k_w according to o_B , and the key of w computed in the emulation.

Protocol 8 securely computes f (in the semi-honest model)

Proof: We focus on the security of A. For a semi-honest B', define

Algorithm 10 (B'_{I})

- **()** Send $x_{\rm B}$ to the trusted party, and let $o_{\rm B}$ be its answer.
- 2 Emulate the first 4 steps of $(A(1^{|x_A|}), B'(x_B)(1^n))$.
- So For each $w \in \mathcal{O}_B$: permute the order of the pair k_w according to o_B , and the key of w computed in the emulation.
- Omplete the emulation, and output the output that B' does.

Protocol 8 securely computes f (in the semi-honest model)

Proof: We focus on the security of A. For a semi-honest B', define

Algorithm 10 (B'_{I})

- **()** Send $x_{\rm B}$ to the trusted party, and let $o_{\rm B}$ be its answer.
- 2 Emulate the first 4 steps of $(A(1^{|x_A|}), B'(x_B)(1^n))$.
- So For each $w \in \mathcal{O}_B$: permute the order of the pair k_w according to o_B , and the key of w computed in the emulation.
- Omplete the emulation, and output the output that B' does.

Protocol 8 securely computes f (in the semi-honest model)

Proof: We focus on the security of A. For a semi-honest B', define

Algorithm 10 (B'_{I})

input: 1^n and x_B .

- **()** Send $x_{\rm B}$ to the trusted party, and let $o_{\rm B}$ be its answer.
- 2 Emulate the first 4 steps of $(A(1^{|x_A|}), B'(x_B)(1^n))$.
- So For each $w \in \mathcal{O}_B$: permute the order of the pair k_w according to o_B , and the key of w computed in the emulation.
- Omplete the emulation, and output the output that B' does.

Claim: $B'_{\mathcal{I}}$ is a good "simulator" for B'.

Protocol 8 securely computes f (in the semi-honest model)

Proof: We focus on the security of A. For a semi-honest B', define

Algorithm 10 (B'_{I})

input: 1^n and x_B .

- Send x_B to the trusted party, and let o_B be its answer.
- 2 Emulate the first 4 steps of $(A(1^{|x_A|}), B'(x_B)(1^n))$.
- So For each $w \in \mathcal{O}_B$: permute the order of the pair k_w according to o_B , and the key of w computed in the emulation.
- Complete the emulation, and output the output that B' does.

Claim: $B'_{\mathcal{I}}$ is a good "simulator" for B'.

Security of A ?

• Efficiently computable f

Both parties first compute C_f – a circuit that compute f for inputs of the right length

• Efficiently computable f

Both parties first compute C_f – a circuit that compute f for inputs of the right length

• Hiding C?

• Efficiently computable f

Both parties first compute C_f – a circuit that compute f for inputs of the right length

• Hiding C?

• Efficiently computable f

Both parties first compute C_f – a circuit that compute f for inputs of the right length

• Hiding C? All but its size

Malicious model

The parties prove that they act "honestly":

Malicious model

The parties prove that they act "honestly":

Forces the parties to chose their random coin properly

Malicious model

The parties prove that they act "honestly":

- Forces the parties to chose their random coin properly
- Before each step, the parties prove in *ZK* that they followed the prescribed protocol (with respect to the random-coins chosen above)

Course summary

See diagram

"Few" reductions

- "Few" reductions
- Environment security (e.g., UC)

- "Few" reductions
- Environment security (e.g., UC)
- Information theoretic crypto

- "Few" reductions
- Environment security (e.g., UC)
- Information theoretic crypto
- Non-generic constructions : number theory, lattices

- "Few" reductions
- Environment security (e.g., UC)
- Information theoretic crypto
- Non-generic constructions : number theory, lattices
- Impossibility results

- "Few" reductions
- Environment security (e.g., UC)
- Information theoretic crypto
- Non-generic constructions : number theory, lattices
- Impossibility results
- "Real life cryptography" (e.g., Random oracle model)

- "Few" reductions
- Environment security (e.g., UC)
- Information theoretic crypto
- Non-generic constructions : number theory, lattices
- Impossibility results
- "Real life cryptography" (e.g., Random oracle model)
- Security

- "Few" reductions
- Environment security (e.g., UC)
- Information theoretic crypto
- Non-generic constructions : number theory, lattices
- Impossibility results
- "Real life cryptography" (e.g., Random oracle model)
- Security
- Differential privacy

(maybe it is still not too late to register to Barllan winter School...)

- "Few" reductions
- Environment security (e.g., UC)
- Information theoretic crypto
- Non-generic constructions : number theory, lattices
- Impossibility results
- "Real life cryptography" (e.g., Random oracle model)
- Security
- Differential privacy (maybe it is still not too late to register to Barllan winter School...)
- and....

Advanced course (next semester, same time)

- Cryptography in low depth
- Impossibility result
- Computation notion of entropy and their applications
- and more...

Students seminar on MPC, Tuesdays 10 – 12

Benny Applebaum & Iftach Haitner (TAU)

The exam