Foundation of Cryptography, Lecture 10 Multiparty Computation

Benny Applebaum \& Iftach Haitner, Tel Aviv University

Tel Aviv University.

January 26, 2017

Section 1

The Model

Multiparty Computation

- Multiparty Computation - computing a functionality f

Multiparty Computation

- Multiparty Computation - computing a functionality f
- Secure Multiparty Computation: compute f in a "secure manner"

Multiparty Computation

- Multiparty Computation - computing a functionality f
- Secure Multiparty Computation: compute f in a "secure manner"
- Correctness

Multiparty Computation

- Multiparty Computation - computing a functionality f
- Secure Multiparty Computation: compute f in a "secure manner"
- Correctness
- Privacy

Multiparty Computation

- Multiparty Computation - computing a functionality f
- Secure Multiparty Computation: compute f in a "secure manner"
- Correctness
- Privacy
- Independence of inputs

Multiparty Computation

- Multiparty Computation - computing a functionality f
- Secure Multiparty Computation: compute f in a "secure manner"
- Correctness
- Privacy
- Independence of inputs
- Guaranteed output delivery

Multiparty Computation

- Multiparty Computation - computing a functionality f
- Secure Multiparty Computation: compute f in a "secure manner"
- Correctness
- Privacy
- Independence of inputs
- Guaranteed output delivery
- Fairness : corrupted parties should get their output iff the honest parties do

Multiparty Computation

- Multiparty Computation - computing a functionality f
- Secure Multiparty Computation: compute f in a "secure manner"
- Correctness
- Privacy
- Independence of inputs
- Guaranteed output delivery
- Fairness : corrupted parties should get their output iff the honest parties do
- and ...

Multiparty Computation

- Multiparty Computation - computing a functionality f
- Secure Multiparty Computation: compute f in a "secure manner"
- Correctness
- Privacy
- Independence of inputs
- Guaranteed output delivery
- Fairness : corrupted parties should get their output iff the honest parties do
- and ...
- Examples: coin-tossing, broadcast, electronic voting, electronic auctions

Multiparty Computation

- Multiparty Computation - computing a functionality f
- Secure Multiparty Computation: compute f in a "secure manner"
- Correctness
- Privacy
- Independence of inputs
- Guaranteed output delivery
- Fairness : corrupted parties should get their output iff the honest parties do
- and ...
- Examples: coin-tossing, broadcast, electronic voting, electronic auctions
- How should we model it?

Multiparty Computation

- Multiparty Computation - computing a functionality f
- Secure Multiparty Computation: compute f in a "secure manner"
- Correctness
- Privacy
- Independence of inputs
- Guaranteed output delivery
- Fairness : corrupted parties should get their output iff the honest parties do
- and ...
- Examples: coin-tossing, broadcast, electronic voting, electronic auctions
- How should we model it?
- Real Vs. Ideal paradigm

Real-model execution

For a a pair of algorithms $\overline{\mathrm{A}}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ and inputs $x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}$, let $\operatorname{REAL}_{\overline{\mathrm{A}}}\left(x_{c}, x_{1}, x_{2}\right)$ be the joint output of $\left(\mathrm{A}_{1}\left(x_{c}, x_{1}\right), \mathrm{A}_{2}\left(x_{c}, x_{2}\right)\right)$.

Real-model execution

For a a pair of algorithms $\overline{\mathrm{A}}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ and inputs $x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}$, let $\operatorname{REAL}_{\bar{A}}\left(x_{c}, x_{1}, x_{2}\right)$ be the joint output of $\left(\mathrm{A}_{1}\left(x_{c}, x_{1}\right), \mathrm{A}_{2}\left(x_{c}, x_{2}\right)\right)$.

Given a two-party protocol π, an algorithm taking the role of one of the parties in π is:

Real-model execution

For a a pair of algorithms $\overline{\mathrm{A}}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ and inputs $x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}$, let $\operatorname{REAL}_{\bar{A}}\left(x_{c}, x_{1}, x_{2}\right)$ be the joint output of $\left(\mathrm{A}_{1}\left(x_{c}, x_{1}\right), \mathrm{A}_{2}\left(x_{c}, x_{2}\right)\right)$.

Given a two-party protocol π, an algorithm taking the role of one of the parties in π is:

- Malicious - acts arbitrarily.

Real-model execution

For a a pair of algorithms $\overline{\mathrm{A}}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ and inputs $x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}$, let $\operatorname{REAL}_{\bar{A}}\left(x_{c}, x_{1}, x_{2}\right)$ be the joint output of $\left(\mathrm{A}_{1}\left(x_{c}, x_{1}\right), \mathrm{A}_{2}\left(x_{c}, x_{2}\right)\right)$.

Given a two-party protocol π, an algorithm taking the role of one of the parties in π is:

- Malicious - acts arbitrarily.
- Honest - acts exactly according to π.

Real-model execution

For a a pair of algorithms $\overline{\mathrm{A}}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ and inputs $x_{C}, x_{1}, x_{2} \in\{0,1\}^{*}$, let $\operatorname{REAL}_{\bar{A}}\left(x_{C}, x_{1}, x_{2}\right)$ be the joint output of $\left(\mathrm{A}_{1}\left(x_{c}, x_{1}\right), \mathrm{A}_{2}\left(x_{c}, x_{2}\right)\right)$.

Given a two-party protocol π, an algorithm taking the role of one of the parties in π is:

- Malicious - acts arbitrarily.
- Honest - acts exactly according to π.
- Semi-honest - acts according to π, but might output additional information.

Real-model execution

For a a pair of algorithms $\overline{\mathrm{A}}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ and inputs $x_{C}, x_{1}, x_{2} \in\{0,1\}^{*}$, let $\operatorname{REAL}_{\bar{A}}\left(x_{C}, x_{1}, x_{2}\right)$ be the joint output of $\left(\mathrm{A}_{1}\left(x_{c}, x_{1}\right), \mathrm{A}_{2}\left(x_{c}, x_{2}\right)\right)$.

Given a two-party protocol π, an algorithm taking the role of one of the parties in π is:

- Malicious - acts arbitrarily.
- Honest - acts exactly according to π.
- Semi-honest - acts according to π, but might output additional information.

Real-model execution

For a a pair of algorithms $\overline{\mathrm{A}}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ and inputs $x_{C}, x_{1}, x_{2} \in\{0,1\}^{*}$, let $\operatorname{REAL}_{\bar{A}}\left(x_{C}, x_{1}, x_{2}\right)$ be the joint output of $\left(\mathrm{A}_{1}\left(x_{c}, x_{1}\right), \mathrm{A}_{2}\left(x_{c}, x_{2}\right)\right)$.

Given a two-party protocol π, an algorithm taking the role of one of the parties in π is:

- Malicious - acts arbitrarily.
- Honest - acts exactly according to π.
- Semi-honest — acts according to π, but might output additional information.
$\overline{\mathrm{A}}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ is an admissible with respect to π, if at least one party is honest.

Ideal model execution

Ideal model execution

For a pair of oracle-aided algorithms $\overline{\mathrm{B}}=\left(\mathrm{B}_{1}, \mathrm{~B}_{2}\right)$, inputs $x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}$ and a function $f=\left(f_{1}, f_{2}\right)$, let $\operatorname{IDEAL} \frac{f}{\bar{B}}\left(x_{c}, x_{1}, x_{2}\right)$ be the joint output of the parties in the end of the following experiment:

Ideal model execution

For a pair of oracle-aided algorithms $\overline{\mathrm{B}}=\left(\mathrm{B}_{1}, \mathrm{~B}_{2}\right)$, inputs $x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}$ and a function $f=\left(f_{1}, f_{2}\right)$, let $\operatorname{IDEAL} \frac{f}{\bar{B}}\left(x_{c}, x_{1}, x_{2}\right)$ be the joint output of the parties in the end of the following experiment:
(1) The input of B_{i} is $\left(x_{c}, x_{i}\right)$.
(2) B_{i} sends value y_{i} to the trusted party .
(3) Trusted party sends $z_{i}=f_{i}\left(y_{0}, y_{1}\right)$ to B_{i} in an arbitrary order.
(4) Each party outputs some value.

Ideal model execution

For a pair of oracle-aided algorithms $\overline{\mathrm{B}}=\left(\mathrm{B}_{1}, \mathrm{~B}_{2}\right)$, inputs $x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}$ and a function $f=\left(f_{1}, f_{2}\right)$, let $\operatorname{IDEAL} \frac{f}{\bar{B}}\left(x_{c}, x_{1}, x_{2}\right)$ be the joint output of the parties in the end of the following experiment:
(1) The input of B_{i} is $\left(x_{c}, x_{i}\right)$.
(2) B_{i} sends value y_{i} to the trusted party .
(3) Trusted party sends $z_{i}=f_{i}\left(y_{0}, y_{1}\right)$ to B_{i} in an arbitrary order.
(4) Each party outputs some value.

The actual definition allows a party after receiving its output, to instruct f not to send the the output to the other party.

Ideal model execution

For a pair of oracle-aided algorithms $\overline{\mathrm{B}}=\left(\mathrm{B}_{1}, \mathrm{~B}_{2}\right)$, inputs $x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}$ and a function $f=\left(f_{1}, f_{2}\right)$, let $\operatorname{IDEAL} \frac{f}{\bar{B}}\left(x_{c}, x_{1}, x_{2}\right)$ be the joint output of the parties in the end of the following experiment:
(1) The input of B_{i} is $\left(x_{c}, x_{i}\right)$.
(2) B_{i} sends value y_{i} to the trusted party .
(3) Trusted party sends $z_{i}=f_{i}\left(y_{0}, y_{1}\right)$ to B_{i} in an arbitrary order.
(4) Each party outputs some value.

The actual definition allows a party after receiving its output, to instruct f not to send the the output to the other party.
An oracle-aided algorithm B taking the role of one of the parties is:

Ideal model execution

For a pair of oracle-aided algorithms $\overline{\mathrm{B}}=\left(\mathrm{B}_{1}, \mathrm{~B}_{2}\right)$, inputs $x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}$ and a function $f=\left(f_{1}, f_{2}\right)$, let $\operatorname{IDEAL} \frac{f}{\bar{B}}\left(x_{c}, x_{1}, x_{2}\right)$ be the joint output of the parties in the end of the following experiment:
(1) The input of B_{i} is $\left(x_{c}, x_{i}\right)$.
(2) B_{i} sends value y_{i} to the trusted party.
(3) Trusted party sends $z_{i}=f_{i}\left(y_{0}, y_{1}\right)$ to B_{i} in an arbitrary order.
(4) Each party outputs some value.

The actual definition allows a party after receiving its output, to instruct f not to send the the output to the other party.
An oracle-aided algorithm B taking the role of one of the parties is:

- Malicious - acts arbitrarily.

Ideal model execution

For a pair of oracle-aided algorithms $\overline{\mathrm{B}}=\left(\mathrm{B}_{1}, \mathrm{~B}_{2}\right)$, inputs $x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}$ and a function $f=\left(f_{1}, f_{2}\right)$, let $\operatorname{IDEAL} \frac{f}{\bar{B}}\left(x_{C}, x_{1}, x_{2}\right)$ be the joint output of the parties in the end of the following experiment:
(1) The input of B_{i} is $\left(x_{c}, x_{i}\right)$.
(2) B_{i} sends value y_{i} to the trusted party .
(3) Trusted party sends $z_{i}=f_{i}\left(y_{0}, y_{1}\right)$ to B_{i} in an arbitrary order.
(4) Each party outputs some value.

The actual definition allows a party after receiving its output, to instruct f not to send the the output to the other party.
An oracle-aided algorithm B taking the role of one of the parties is:

- Malicious - acts arbitrarily.
- Honest - sends its private input to the trusted party (i.e., sets $y_{i}=x_{i}$), and its only output is the value it gets from the trusted party (i.e., z_{i}).

Ideal model execution

For a pair of oracle-aided algorithms $\overline{\mathrm{B}}=\left(\mathrm{B}_{1}, \mathrm{~B}_{2}\right)$, inputs $x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}$ and a function $f=\left(f_{1}, f_{2}\right)$, let IDEAL $\frac{f}{\bar{B}}\left(x_{c}, x_{1}, x_{2}\right)$ be the joint output of the parties in the end of the following experiment:
(1) The input of B_{i} is $\left(x_{c}, x_{i}\right)$.
(2) B_{i} sends value y_{i} to the trusted party .
(3) Trusted party sends $z_{i}=f_{i}\left(y_{0}, y_{1}\right)$ to B_{i} in an arbitrary order.
(4) Each party outputs some value.

The actual definition allows a party after receiving its output, to instruct f not to send the the output to the other party.
An oracle-aided algorithm B taking the role of one of the parties is:

- Malicious - acts arbitrarily.
- Honest - sends its private input to the trusted party (i.e., sets $y_{i}=x_{i}$), and its only output is the value it gets from the trusted party (i.e., z_{i}).
- Semi-honest, sends its input to the trusted party, outputs z_{i} plus possibly additional information.

Ideal model execution

For a pair of oracle-aided algorithms $\overline{\mathrm{B}}=\left(\mathrm{B}_{1}, \mathrm{~B}_{2}\right)$, inputs $x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}$ and a function $f=\left(f_{1}, f_{2}\right)$, let IDEAL $\frac{f}{\bar{B}}\left(x_{c}, x_{1}, x_{2}\right)$ be the joint output of the parties in the end of the following experiment:
(1) The input of B_{i} is $\left(x_{c}, x_{i}\right)$.
(2) B_{i} sends value y_{i} to the trusted party .
(3) Trusted party sends $z_{i}=f_{i}\left(y_{0}, y_{1}\right)$ to B_{i} in an arbitrary order.
(4) Each party outputs some value.

The actual definition allows a party after receiving its output, to instruct f not to send the the output to the other party.
An oracle-aided algorithm B taking the role of one of the parties is:

- Malicious - acts arbitrarily.
- Honest - sends its private input to the trusted party (i.e., sets $y_{i}=x_{i}$), and its only output is the value it gets from the trusted party (i.e., z_{i}).
- Semi-honest, sends its input to the trusted party, outputs z_{i} plus possibly additional information.

Ideal model execution

For a pair of oracle-aided algorithms $\overline{\mathrm{B}}=\left(\mathrm{B}_{1}, \mathrm{~B}_{2}\right)$, inputs $x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}$ and a function $f=\left(f_{1}, f_{2}\right)$, let IDEAL $\frac{f}{\bar{B}}\left(x_{c}, x_{1}, x_{2}\right)$ be the joint output of the parties in the end of the following experiment:
(1) The input of B_{i} is $\left(x_{c}, x_{i}\right)$.
(2) B_{i} sends value y_{i} to the trusted party .
(3) Trusted party sends $z_{i}=f_{i}\left(y_{0}, y_{1}\right)$ to B_{i} in an arbitrary order.
(4) Each party outputs some value.

The actual definition allows a party after receiving its output, to instruct f not to send the the output to the other party.
An oracle-aided algorithm B taking the role of one of the parties is:

- Malicious - acts arbitrarily.
- Honest - sends its private input to the trusted party (i.e., sets $y_{i}=x_{i}$), and its only output is the value it gets from the trusted party (i.e., z_{i}).
- Semi-honest, sends its input to the trusted party, outputs z_{i} plus possibly additional information.
$\bar{B}=\left(B_{1}, B_{2}\right)$ is admissible, if at least one party is honest.

Secure computation

Definition 1 (secure computation)

A protocol π securely computes f, if \forall admissible PPT pair $\overline{\mathrm{A}}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ for π, exists admissible oracle-aided PPT pair $\bar{B}=\left(B_{1}, B_{2}\right)$, s.t.

$$
\left\{\operatorname{REAL}_{\bar{A}}\left(x_{c}, x_{1}, x_{2}\right)\right\}_{x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}} \approx_{c}\left\{\operatorname{IDEAL}_{\bar{B}}^{f}\left(x_{c}, x_{1}, x_{2}\right)\right\}_{x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}}
$$

In case \bar{A} is honest, we require that \bar{B} is honest, and the ensembles to be identical.

Secure computation

Definition 1 (secure computation)

A protocol π securely computes f, if \forall admissible PPT pair $\overline{\mathrm{A}}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ for π, exists admissible oracle-aided PPT pair $\bar{B}=\left(B_{1}, B_{2}\right)$, s.t.

$$
\left\{\operatorname{REAL}_{\bar{A}}\left(x_{c}, x_{1}, x_{2}\right)\right\}_{x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}} \approx_{c}\left\{\operatorname{IDEAL}_{\bar{B}}^{f}\left(x_{c}, x_{1}, x_{2}\right)\right\}_{x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}}
$$

In case \bar{A} is honest, we require that \bar{B} is honest, and the ensembles to be identical.

- Recall that the enumeration index (i.e., x_{c}, x_{1}, x_{2}) is given to the distinguisher.

Secure computation

Definition 1 (secure computation)

A protocol π securely computes f, if \forall admissible PPT pair $\overline{\mathrm{A}}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ for π, exists admissible oracle-aided PPT pair $\bar{B}=\left(B_{1}, B_{2}\right)$, s.t.

$$
\left\{\operatorname{REAL}_{\bar{A}}\left(x_{c}, x_{1}, x_{2}\right)\right\}_{x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}} \approx_{c}\left\{\operatorname{IDEAL}_{\bar{B}}^{f}\left(x_{c}, x_{1}, x_{2}\right)\right\}_{x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}}
$$

In case \bar{A} is honest, we require that \bar{B} is honest, and the ensembles to be identical.

- Recall that the enumeration index (i.e., x_{c}, x_{1}, x_{2}) is given to the distinguisher.
- π securely computes f implies that π computes f correctly.

Secure computation

Definition 1 (secure computation)

A protocol π securely computes f, if \forall admissible PPT pair $\overline{\mathrm{A}}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ for π, exists admissible oracle-aided PPT pair $\bar{B}=\left(B_{1}, B_{2}\right)$, s.t.

$$
\left\{\operatorname{REAL}_{\bar{A}}\left(x_{c}, x_{1}, x_{2}\right)\right\}_{x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}} \approx_{c}\left\{\operatorname{IDEAL}_{\bar{B}}^{f}\left(x_{c}, x_{1}, x_{2}\right)\right\}_{x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}}
$$

In case \bar{A} is honest, we require that \bar{B} is honest, and the ensembles to be identical.

- Recall that the enumeration index (i.e., x_{c}, x_{1}, x_{2}) is given to the distinguisher.
- π securely computes f implies that π computes f correctly.
- Security parameter

Secure computation

Definition 1 (secure computation)

A protocol π securely computes f, if \forall admissible PPT pair $\overline{\mathrm{A}}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ for π, exists admissible oracle-aided PPT pair $\bar{B}=\left(B_{1}, B_{2}\right)$, s.t.

$$
\left\{\operatorname{REAL}_{\bar{A}}\left(x_{c}, x_{1}, x_{2}\right)\right\}_{x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}} \approx_{c}\left\{\operatorname{IDEAL}_{\bar{B}}^{f}\left(x_{c}, x_{1}, x_{2}\right)\right\}_{x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}}
$$

In case \bar{A} is honest, we require that \bar{B} is honest, and the ensembles to be identical.

- Recall that the enumeration index (i.e., x_{c}, x_{1}, x_{2}) is given to the distinguisher.
- π securely computes f implies that π computes f correctly.
- Security parameter
- Auxiliary inputs

Secure computation

Definition 1 (secure computation)

A protocol π securely computes f, if \forall admissible PPT pair $\overline{\mathrm{A}}=\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ for π, exists admissible oracle-aided PPT pair $\bar{B}=\left(B_{1}, B_{2}\right)$, s.t.

$$
\left\{\operatorname{REAL}_{\bar{A}}\left(x_{c}, x_{1}, x_{2}\right)\right\}_{x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}} \approx_{c}\left\{\operatorname{IDEAL}_{\bar{B}}^{f}\left(x_{c}, x_{1}, x_{2}\right)\right\}_{x_{c}, x_{1}, x_{2} \in\{0,1\}^{*}}
$$

In case \bar{A} is honest, we require that \bar{B} is honest, and the ensembles to be identical.

- Recall that the enumeration index (i.e., x_{c}, x_{1}, x_{2}) is given to the distinguisher.
- π securely computes f implies that π computes f correctly.
- Security parameter
- Auxiliary inputs
- We focus on semi-honest adversaries.

Section 2

Oblivious Transfer

Oblivious transfer

An (one-out-of-two) OT protocol securely computes the functionality $\left.\mathrm{OT}=\left(\mathrm{OT}_{\mathrm{S}}, \mathrm{OT}_{\mathrm{R}}\right)\right)$ over $\left(\{0,1\}^{*} \times\{0,1\}^{*}\right) \times\{0,1\}$, where $\mathrm{OT}(\cdot)=\perp$ and $\mathrm{OT}_{\mathrm{R}}\left(\left(\sigma_{0}, \sigma_{1}\right), i\right)=\sigma_{i}$.

Oblivious transfer

An (one-out-of-two) OT protocol securely computes the functionality $\left.\mathrm{OT}=\left(\mathrm{OT}_{\mathrm{S}}, \mathrm{OT}_{\mathrm{R}}\right)\right)$ over $\left(\{0,1\}^{*} \times\{0,1\}^{*}\right) \times\{0,1\}$, where $\mathrm{OT}_{\mathrm{S}}(\cdot)=\perp$ and $\mathrm{OT}_{\mathrm{R}}\left(\left(\sigma_{0}, \sigma_{1}\right), i\right)=\sigma_{i}$.

- "Complete" for multiparty computation

Oblivious transfer

An (one-out-of-two) OT protocol securely computes the functionality $\left.\mathrm{OT}=\left(\mathrm{OT}_{\mathrm{S}}, \mathrm{OT}_{\mathrm{R}}\right)\right)$ over $\left(\{0,1\}^{*} \times\{0,1\}^{*}\right) \times\{0,1\}$, where $\mathrm{OT}(\cdot)=\perp$ and $\mathrm{OT}_{\mathrm{R}}\left(\left(\sigma_{0}, \sigma_{1}\right), i\right)=\sigma_{i}$.

- "Complete" for multiparty computation
- We show how to construct for bit inputs.

Oblivious transfer from trapdoor permutations

Let $(G, f, \operatorname{lnv})$ be a TDP and let b be an hardcore predicate for f.

Oblivious transfer from trapdoor permutations

Let $(G, f, \operatorname{lnv})$ be a TDP and let b be an hardcore predicate for f.

Protocol 2 ((S, R))

Common input: 1^{n}
S's input: $\sigma_{0}, \sigma_{1} \in\{0,1\}$.
R's input: $i \in\{0,1\}$.
(1) S chooses $(e, d) \leftarrow \mathrm{G}\left(1^{n}\right)$, and sends e to R.
(2) R chooses $x_{0}, x_{1} \leftarrow\{0,1\}^{n}$, sets $y_{i}=f_{e}\left(x_{i}\right)$ and $y_{1-i}=x_{1-i}$, and sends y_{0}, y_{1} to S .
(3) S sets $c_{j}=b\left(\operatorname{lnv}_{d}\left(y_{j}\right)\right) \oplus \sigma_{j}$, for $j \in\{0,1\}$, and sends $\left(c_{0}, c_{1}\right)$ to R.
(4) R outputs $c_{i} \oplus b\left(x_{i}\right)$.

Oblivious transfer from trapdoor permutations

Let (G, f, lnv) be a TDP and let b be an hardcore predicate for f.

Protocol $2((S, R))$

Common input: 1^{n}
S's input: $\sigma_{0}, \sigma_{1} \in\{0,1\}$.
R's input: $i \in\{0,1\}$.
(1) S chooses $(e, d) \leftarrow \mathrm{G}\left(1^{n}\right)$, and sends e to R.
(2) R chooses $x_{0}, x_{1} \leftarrow\{0,1\}^{n}$, sets $y_{i}=f_{e}\left(x_{i}\right)$ and $y_{1-i}=x_{1-i}$, and sends y_{0}, y_{1} to S.
(3) S sets $c_{j}=b\left(\operatorname{lnv}_{d}\left(y_{j}\right)\right) \oplus \sigma_{j}$, for $j \in\{0,1\}$, and sends $\left(c_{0}, c_{1}\right)$ to R.
(4) R outputs $c_{i} \oplus b\left(x_{i}\right)$.

Claim 3

Protocol 2 securely computes OT (in the semi-honest model).

Proving Claim 3

We need to prove that \forall semi-honest admissible PPT pair $\bar{A}=\left(A_{1}, A_{2}\right)$ for (S, R), exists admissible oracle-aided PPT pair $\bar{B}=\left(B_{1}, B_{2}\right)$ s.t.

$$
\begin{equation*}
\left\{\operatorname{REAL}_{\bar{A}}\left(1^{n},\left(\sigma_{0}, \sigma_{1}\right), i\right)\right\} \approx_{c}\left\{\operatorname{IDEAL}_{\overline{\mathrm{B}}}{ }^{\top}\left(1^{n},\left(\sigma_{0}, \sigma_{1}\right), i\right)\right\}, \tag{1}
\end{equation*}
$$

where the enumeration is over $n \in \mathbb{N}$ and $\sigma_{0}, \sigma_{1}, i \in\{0,1\}$.

R's security

For a semi-honest implementation S^{\prime} of S, define the oracle-aided semi-honest strategy $\mathrm{S}_{\mathcal{I}}^{\prime}$ as follows.

R's security

For a semi-honest implementation S^{\prime} of S, define the oracle-aided semi-honest strategy $S_{\mathcal{I}}^{\prime}$ as follows.

Algorithm 4 ($\mathrm{S}_{\mathcal{I}}^{\prime}$)

input: $1^{n}, \sigma_{0}, \sigma_{1}$
(1) Send $\left(\sigma_{0}, \sigma_{1}\right)$ to the trusted party.
(2) Emulate $\left(\mathrm{S}^{\prime}\left(1^{n}, \sigma_{0}, \sigma_{1}\right), \mathrm{R}\left(1^{n}, 0\right)\right)$.
(3) Output the output that S^{\prime} does.

R's security

For a semi-honest implementation S^{\prime} of S, define the oracle-aided semi-honest strategy $\mathrm{S}_{\mathcal{I}}^{\prime}$ as follows.

Algorithm 4 ($\mathrm{S}_{\mathcal{I}}^{\prime}$)

input: $1^{n}, \sigma_{0}, \sigma_{1}$
(1) Send $\left(\sigma_{0}, \sigma_{1}\right)$ to the trusted party.
(2) Emulate $\left(\mathrm{S}^{\prime}\left(1^{n}, \sigma_{0}, \sigma_{1}\right), \mathrm{R}\left(1^{n}, 0\right)\right)$.
(3) Output the output that S^{\prime} does.

Let $\bar{A}=\left(S^{\prime}, R\right)$ and $\bar{B}=\left(S_{\mathcal{I}}^{\prime}, R_{\mathcal{I}}\right)$, where $R_{\mathcal{I}}$ is honest.

R's security

For a semi-honest implementation S^{\prime} of S, define the oracle-aided semi-honest strategy $\mathrm{S}_{\mathcal{I}}^{\prime}$ as follows.

Algorithm 4 ($\mathrm{S}_{\mathcal{I}}^{\prime}$)

input: $1^{n}, \sigma_{0}, \sigma_{1}$
(1) Send $\left(\sigma_{0}, \sigma_{1}\right)$ to the trusted party.
(2) Emulate $\left(\mathrm{S}^{\prime}\left(1^{n}, \sigma_{0}, \sigma_{1}\right), \mathrm{R}\left(1^{n}, 0\right)\right)$.
(3) Output the output that S^{\prime} does.

Let $\bar{A}=\left(S^{\prime}, R\right)$ and $\bar{B}=\left(S_{\mathcal{I}}^{\prime}, R_{\mathcal{I}}\right)$, where $R_{\mathcal{I}}$ is honest.

Claim 5

$\left\{\operatorname{REAL}_{\overline{\mathrm{A}}}\left(1^{n},\left(\sigma_{0}, \sigma_{1}\right), i\right)\right\} \equiv\left\{\operatorname{IDEAL}_{\overline{\mathrm{B}}}{ }^{\top}\left(1^{n},\left(\sigma_{0}, \sigma_{1}\right), i\right)\right\}$.

R's security

For a semi-honest implementation S^{\prime} of S, define the oracle-aided semi-honest strategy $\mathrm{S}_{\mathcal{I}}^{\prime}$ as follows.

Algorithm 4 ($\mathrm{S}_{\mathcal{I}}^{\prime}$)

input: $1^{n}, \sigma_{0}, \sigma_{1}$
(1) Send $\left(\sigma_{0}, \sigma_{1}\right)$ to the trusted party.
(2) Emulate $\left(\mathrm{S}^{\prime}\left(1^{n}, \sigma_{0}, \sigma_{1}\right), \mathrm{R}\left(1^{n}, 0\right)\right)$.
(3) Output the output that S^{\prime} does.

Let $\bar{A}=\left(S^{\prime}, R\right)$ and $\bar{B}=\left(S_{\mathcal{I}}^{\prime}, R_{\mathcal{I}}\right)$, where $R_{\mathcal{I}}$ is honest.

Claim 5

$\left\{\operatorname{REAL}_{\overline{\mathrm{A}}}\left(1^{n},\left(\sigma_{0}, \sigma_{1}\right), i\right)\right\} \equiv\left\{\operatorname{IDEAL}_{\overline{\mathrm{B}}}{ }^{\top}\left(1^{n},\left(\sigma_{0}, \sigma_{1}\right), i\right)\right\}$.
Proof?

S's security

For a semi-honest implementation R^{\prime} of R , define the oracle-aided semi-honest strategy $R_{\mathcal{I}}^{\prime}$ as follows.

S's security

For a semi-honest implementation R^{\prime} of R, define the oracle-aided semi-honest strategy $R_{\mathcal{I}}^{\prime}$ as follows.

Algorithm $6\left(\mathrm{R}_{\mathcal{I}}^{\prime}\right)$

input: $1^{n}, i \in\{0,1\}$,
(1) Send i to the trusted party, and let σ be its answer.
(2) Emulate $\left(\mathrm{S}\left(1^{n}, \sigma_{0}, \sigma_{1}\right), \mathrm{R}^{\prime}\left(1^{n}, i\right)\right)$, for $\sigma_{i}=\sigma$ and $\sigma_{1-i}=0$.
(3) Output the output that R^{\prime} does.

S's security

For a semi-honest implementation R^{\prime} of R, define the oracle-aided semi-honest strategy $R_{\mathcal{I}}^{\prime}$ as follows.

Algorithm $6\left(\mathrm{R}_{\mathcal{I}}^{\prime}\right)$

input: $1^{n}, i \in\{0,1\}$,
(1) Send i to the trusted party, and let σ be its answer.
(2) Emulate $\left(\mathrm{S}\left(1^{n}, \sigma_{0}, \sigma_{1}\right), \mathrm{R}^{\prime}\left(1^{n}, i\right)\right)$, for $\sigma_{i}=\sigma$ and $\sigma_{1-i}=0$.
(3) Output the output that R^{\prime} does.

Let $\bar{A}=\left(S, R^{\prime}\right)$ and $\bar{B}=\left(S_{\mathcal{I}}, R_{\mathcal{I}}^{\prime}\right)$, where $S_{\mathcal{I}}$ is honest.

S's security

For a semi-honest implementation R^{\prime} of R, define the oracle-aided semi-honest strategy $R_{\mathcal{I}}^{\prime}$ as follows.

Algorithm $6\left(R_{\mathcal{I}}^{\prime}\right)$

input: $1^{n}, i \in\{0,1\}$,
(1) Send i to the trusted party, and let σ be its answer.
(2) Emulate $\left(\mathrm{S}\left(1^{n}, \sigma_{0}, \sigma_{1}\right), \mathrm{R}^{\prime}\left(1^{n}, i\right)\right)$, for $\sigma_{i}=\sigma$ and $\sigma_{1-i}=0$.
(3) Output the output that R^{\prime} does.

Let $\bar{A}=\left(S, R^{\prime}\right)$ and $\bar{B}=\left(S_{\mathcal{I}}, R_{\mathcal{I}}^{\prime}\right)$, where $S_{\mathcal{I}}$ is honest.

Claim 7

$\left\{\operatorname{REAL}_{\bar{A}}\left(1^{n},\left(\sigma_{0}, \sigma_{1}\right), i\right)\right\} \approx_{c}\left\{\operatorname{IDEAL}_{\bar{B}}{ }^{\top}\left(1^{n},\left(\sigma_{0}, \sigma_{1}\right), i\right)\right\}$.

S's security

For a semi-honest implementation R^{\prime} of R, define the oracle-aided semi-honest strategy $R_{\mathcal{I}}^{\prime}$ as follows.

Algorithm $6\left(\mathrm{R}_{\mathcal{I}}^{\prime}\right)$

input: $1^{n}, i \in\{0,1\}$,
(1) Send i to the trusted party, and let σ be its answer.
(2) Emulate $\left(\mathrm{S}\left(1^{n}, \sigma_{0}, \sigma_{1}\right), \mathrm{R}^{\prime}\left(1^{n}, i\right)\right)$, for $\sigma_{i}=\sigma$ and $\sigma_{1-i}=0$.
(3) Output the output that R^{\prime} does.

Let $\bar{A}=\left(S, R^{\prime}\right)$ and $\bar{B}=\left(S_{\mathcal{I}}, R_{\mathcal{I}}^{\prime}\right)$, where $S_{\mathcal{I}}$ is honest.

Claim 7

$\left\{\operatorname{REAL}_{\bar{A}}\left(1^{n},\left(\sigma_{0}, \sigma_{1}\right), i\right)\right\} \approx_{c}\left\{\operatorname{IDEAL}_{\bar{B}}{ }^{\top}\left(1^{n},\left(\sigma_{0}, \sigma_{1}\right), i\right)\right\}$.
Proof?

Section 3

Yao Garbled Circuit

Before we start

- Fix a (multiple message) semantically-secure private-key encryption scheme (G, E, D) with
(1) $\mathrm{G}\left(1^{n}\right)=U_{n}$.
(2) For any $m \in\{0,1\}^{*}$

$$
\operatorname{Pr}_{d, d^{\prime} \leftarrow\{0,1\}^{n}}\left[\mathrm{D}_{d}\left(\mathrm{E}_{d^{\prime}}(m)\right) \neq \perp\right]=\operatorname{neg}(n) .
$$

Before we start

- Fix a (multiple message) semantically-secure private-key encryption scheme (G, E, D) with
(1) $\mathrm{G}\left(1^{n}\right)=U_{n}$.
(2) For any $m \in\{0,1\}^{*}$

$$
\operatorname{Pr}_{d, d^{\prime} \leftarrow\{0,1\}^{n}}\left[\mathrm{D}_{d}\left(\mathrm{E}_{d^{\prime}}(m)\right) \neq \perp\right]=\operatorname{neg}(n) .
$$

Can we construct such a scheme? append 0^{n} at the end of the message...

- Boolean circuits: gates, wires, inputs, outputs, values, computation

The Garbled Circuit

The Garbled Circuit

Fix a Boolean circuit C and $n \in \mathbb{N}$.

The Garbled Circuit

Fix a Boolean circuit C and $n \in \mathbb{N}$.

- Let \mathcal{W} and \mathcal{G} be the (indices) of wires and gates of C, respectively.

The Garbled Circuit

Fix a Boolean circuit C and $n \in \mathbb{N}$.

- Let \mathcal{W} and \mathcal{G} be the (indices) of wires and gates of C, respectively.
- For $w \in \mathcal{W}$, associate a pair of random 'keys" $k_{w}=\left(k_{w}^{0}, k_{w}^{1}\right) \in\left(\{0,1\}^{n}\right)^{2}$.

The Garbled Circuit

Fix a Boolean circuit C and $n \in \mathbb{N}$.

- Let \mathcal{W} and \mathcal{G} be the (indices) of wires and gates of C, respectively.
- For $w \in \mathcal{W}$, associate a pair of random 'keys" $k_{w}=\left(k_{w}^{0}, k_{w}^{1}\right) \in\left(\{0,1\}^{n}\right)^{2}$.
- For $g \in \mathcal{G}$ with input wires i and j, and output wire h, let $T(g)$ be the following table:

The Garbled Circuit

Fix a Boolean circuit C and $n \in \mathbb{N}$.

- Let \mathcal{W} and \mathcal{G} be the (indices) of wires and gates of C, respectively.
- For $w \in \mathcal{W}$, associate a pair of random 'keys" $k_{w}=\left(k_{w}^{0}, k_{w}^{1}\right) \in\left(\{0,1\}^{n}\right)^{2}$.
- For $g \in \mathcal{G}$ with input wires i and j, and output wire h, let $T(g)$ be the following table:

The Garbled Circuit

Fix a Boolean circuit C and $n \in \mathbb{N}$.

- Let \mathcal{W} and \mathcal{G} be the (indices) of wires and gates of C, respectively.
- For $w \in \mathcal{W}$, associate a pair of random 'keys" $k_{w}=\left(k_{w}^{0}, k_{w}^{1}\right) \in\left(\{0,1\}^{n}\right)^{2}$.
- For $g \in \mathcal{G}$ with input wires i and j, and output wire h, let $T(g)$ be the following table:

input wire i	input wire j	output wire h	hidden output wire
k_{i}^{0}	k_{j}^{0}	$k_{h}^{g(0,0)}$	$E_{k_{i}^{0}}\left(E_{k_{j}^{0}}\left(k_{h}^{g(0,0)}\right)\right)$
k_{i}^{0}	k_{j}^{1}	$k_{h}^{g(0,1)}$	$E_{k_{i}^{0}}\left(E_{k_{j}^{\prime}}\left(k_{h}^{g(0,1)}\right)\right)$
k_{i}^{1}	k_{j}^{0}	$k_{h}^{g(1,0)}$	$E_{k_{i}^{\prime}}\left(E_{k_{j}^{0}}\left(k_{h}^{g(1,0)}\right)\right)$
k_{i}^{1}	k_{j}^{1}	$k_{h}^{g(1,1)}$	$E_{k_{i}^{\prime}}\left(E_{k_{j}^{\prime}}\left(k_{h}^{g(1,1)}\right)\right)$

Figure: Table for gate g, with input wires i and j, and output wire h.

The Garbled Circuit, cont.

input wire i	input wire j	output wire h	hidden output wire
k_{i}^{0}	k_{j}^{0}	$k_{h}^{g(0,0)}$	$E_{k_{i}^{0}}\left(E_{k_{j}^{0}}\left(k_{h}^{g(0,0)}\right)\right)$
k_{i}^{0}	k_{j}^{1}	$k_{h}^{g(0,1)}$	$E_{k_{i}^{0}}\left(E_{k_{j}^{1}}\left(k_{h}^{g(0,1)}\right)\right)$
k_{i}^{1}	k_{j}^{0}	$k_{h}^{g(1,0)}$	$E_{k_{i}^{1}}\left(E_{k_{j}^{0}}\left(k_{h}^{g(1,0)}\right)\right)$
k_{i}^{1}	k_{j}^{1}	$k_{h}^{g(1,1)}$	$E_{k_{i}^{1}}\left(E_{k_{j}^{1}}\left(k_{h}^{g(1,1)}\right)\right)$

The Garbled Circuit, cont.

input wire i	input wire j	output wire h	hidden output wire
k_{i}^{0}	k_{j}^{0}	$k_{h}^{g(0,0)}$	$E_{k_{i}^{0}}\left(E_{k_{j}^{0}}\left(k_{h}^{g(0,0)}\right)\right)$
k_{i}^{0}	k_{j}^{1}	$k_{h}^{g(0,1)}$	$E_{k_{i}^{0}}\left(E_{k_{j}^{1}}\left(k_{h}^{g(0,1)}\right)\right)$
k_{i}^{1}	k_{j}^{0}	$k_{h}^{g(1,0)}$	$E_{k_{i}^{1}}\left(E_{k_{j}^{0}}\left(k_{h}^{g(1,0)}\right)\right)$
k_{i}^{1}	k_{j}^{1}	$k_{h}^{g(1,1)}$	$E_{k_{i}^{1}}\left(E_{k_{j}^{1}}\left(k_{h}^{g(1,1)}\right)\right)$

Let \mathcal{I} and \mathcal{O} be the input and outputs wires of C.

The Garbled Circuit, cont.

input wire i	input wire j	output wire h	hidden output wire
k_{i}^{0}	k_{j}^{0}	$k_{h}^{g(0,0)}$	$E_{k_{i}^{0}}\left(E_{k_{j}^{0}}\left(k_{h}^{g(0,0)}\right)\right)$
k_{i}^{0}	k_{j}^{1}	$k_{h}^{g(0,1)}$	$E_{k_{i}^{0}}\left(E_{k_{j}^{1}}\left(k_{h}^{g(0,1)}\right)\right)$
k_{i}^{1}	k_{j}^{0}	$k_{h}^{g(1,0)}$	$E_{k_{i}^{1}}\left(E_{k_{j}^{0}}\left(k_{h}^{g(1,0)}\right)\right)$
k_{i}^{1}	k_{j}^{1}	$k_{h}^{g(1,1)}$	$E_{k_{i}^{1}}\left(E_{k_{j}^{1}}\left(k_{h}^{g(1,1)}\right)\right)$

Let \mathcal{I} and \mathcal{O} be the input and outputs wires of C.

- For $g \in \mathcal{G}$, let $\widetilde{T}(g)$ be a random permutation of the fourth column of $T(g)$.

The Garbled Circuit, cont.

input wire i	input wire j	output wire h	hidden output wire
k_{i}^{0}	k_{j}^{0}	$k_{h}^{g(0,0)}$	$E_{k_{i}^{0}}\left(E_{k_{j}^{0}}\left(k_{h}^{g(0,0)}\right)\right)$
k_{i}^{0}	k_{j}^{1}	$k_{h}^{g(0,1)}$	$E_{k_{i}^{0}}\left(E_{k_{j}^{1}}\left(k_{h}^{g(0,1)}\right)\right)$
k_{i}^{1}	k_{j}^{0}	$k_{h}^{g(1,0)}$	$E_{k_{i}^{1}}\left(E_{k_{j}^{0}}\left(k_{h}^{g(1,0)}\right)\right)$
k_{i}^{1}	k_{j}^{1}	$k_{h}^{g(1,1)}$	$E_{k_{i}^{1}}\left(E_{k_{j}^{1}}\left(k_{h}^{g(1,1)}\right)\right)$

Let \mathcal{I} and \mathcal{O} be the input and outputs wires of C.

- For $g \in \mathcal{G}$, let $\widetilde{T}(g)$ be a random permutation of the fourth column of $T(g)$.
- For $w \in \mathcal{W}$, let $C(x)_{w}$ be the bit-value computation of $C(x)$ assigns to w

The Garbled Circuit, cont.

input wire i	input wire j	output wire h	hidden output wire
k_{i}^{0}	k_{j}^{0}	$k_{h}^{g(0,0)}$	$E_{k_{i}^{0}}\left(E_{k_{j}^{0}}\left(k_{h}^{g(0,0)}\right)\right)$
k_{i}^{0}	k_{j}^{1}	$k_{h}^{g(0,1)}$	$E_{k_{i}^{0}}\left(E_{k_{j}^{1}}\left(k_{h}^{g(0,1)}\right)\right)$
k_{i}^{1}	k_{j}^{0}	$k_{h}^{g(1,0)}$	$E_{k_{i}^{1}}\left(E_{k_{j}^{0}}\left(k_{h}^{g(1,0)}\right)\right)$
k_{i}^{1}	k_{j}^{1}	$k_{h}^{g(1,1)}$	$E_{k_{i}^{1}}\left(E_{k_{j}^{1}}\left(k_{h}^{g(1,1)}\right)\right)$

Let \mathcal{I} and \mathcal{O} be the input and outputs wires of C.

- For $g \in \mathcal{G}$, let $\widetilde{T}(g)$ be a random permutation of the fourth column of $T(g)$.
- For $w \in \mathcal{W}$, let $C(x)_{w}$ be the bit-value computation of $C(x)$ assigns to w
- Given

The Garbled Circuit, cont.

input wire i	input wire j	output wire h	hidden output wire
k_{i}^{0}	k_{j}^{0}	$k_{h}^{g(0,0)}$	$E_{k_{i}^{0}}\left(E_{k_{j}^{0}}\left(k_{h}^{g(0,0)}\right)\right)$
k_{i}^{0}	k_{j}^{1}	$k_{h}^{g(0,1)}$	$E_{k_{i}^{0}}\left(E_{k_{j}^{1}}\left(k_{h}^{g(0,1)}\right)\right)$
k_{i}^{1}	k_{j}^{0}	$k_{h}^{g(1,0)}$	$E_{k_{i}^{1}}\left(E_{k_{j}^{0}}\left(k_{h}^{g(1,0)}\right)\right)$
k_{i}^{1}	k_{j}^{1}	$k_{h}^{g(1,1)}$	$E_{k_{i}^{1}}\left(E_{k_{j}^{1}}\left(k_{h}^{g(1,1)}\right)\right)$

Let \mathcal{I} and \mathcal{O} be the input and outputs wires of C.

- For $g \in \mathcal{G}$, let $\widetilde{T}(g)$ be a random permutation of the fourth column of $T(g)$.
- For $w \in \mathcal{W}$, let $C(x)_{w}$ be the bit-value computation of $C(x)$ assigns to w
- Given
(1) $\widetilde{T}=\{(g, \widetilde{T}(g))\}_{g \in \mathcal{G}}$.

The Garbled Circuit, cont.

input wire i	input wire j	output wire h	hidden output wire
k_{i}^{0}	k_{j}^{0}	$k_{h}^{g(0,0)}$	$E_{k_{i}^{0}}\left(E_{k_{j}^{0}}\left(k_{h}^{g(0,0)}\right)\right)$
k_{i}^{0}	k_{j}^{1}	$k_{h}^{g(0,1)}$	$E_{k_{i}^{0}}\left(E_{k_{j}^{1}}\left(k_{h}^{g(0,1)}\right)\right)$
k_{i}^{1}	k_{j}^{0}	$k_{h}^{g(1,0)}$	$E_{k_{i}^{1}}\left(E_{k_{j}^{0}}\left(k_{h}^{g(1,0)}\right)\right)$
k_{i}^{1}	k_{j}^{1}	$k_{h}^{g(1,1)}$	$E_{k_{i}^{1}}\left(E_{k_{j}^{1}}\left(k_{h}^{g(1,1)}\right)\right)$

Let \mathcal{I} and \mathcal{O} be the input and outputs wires of C.

- For $g \in \mathcal{G}$, let $\widetilde{T}(g)$ be a random permutation of the fourth column of $T(g)$.
- For $w \in \mathcal{W}$, let $C(x)_{w}$ be the bit-value computation of $C(x)$ assigns to w
- Given
(1) $\widetilde{T}=\{(g, \tilde{T}(g))\}_{g \in \mathcal{G}}$.
(2) $\left\{k_{w}^{C(x)_{w}}\right\}_{w \in \mathcal{I}}$ for some x.

The Garbled Circuit, cont.

input wire i	input wire j	output wire h	hidden output wire
k_{i}^{0}	k_{j}^{0}	$k_{h}^{g(0,0)}$	$E_{k_{i}^{0}}\left(E_{k_{j}^{0}}\left(k_{h}^{g(0,0)}\right)\right)$
k_{i}^{0}	k_{j}^{1}	$k_{h}^{g(0,1)}$	$E_{k_{i}^{0}}\left(E_{k_{j}^{1}}\left(k_{h}^{g(0,1)}\right)\right)$
k_{i}^{1}	k_{j}^{0}	$k_{h}^{g(1,0)}$	$E_{k_{i}^{1}}\left(E_{k_{j}^{0}}\left(k_{h}^{g(1,0)}\right)\right)$
k_{i}^{1}	k_{j}^{1}	$k_{h}^{g(1,1)}$	$E_{k_{i}^{1}}\left(E_{k_{j}^{1}}\left(k_{h}^{g(1,1)}\right)\right)$

Let \mathcal{I} and \mathcal{O} be the input and outputs wires of C.

- For $g \in \mathcal{G}$, let $\widetilde{T}(g)$ be a random permutation of the fourth column of $T(g)$.
- For $w \in \mathcal{W}$, let $C(x)_{w}$ be the bit-value computation of $C(x)$ assigns to w
- Given
(1) $\tilde{T}=\{(g, \tilde{T}(g))\}_{g \in \mathcal{G}}$.
(2) $\left\{k_{w}^{C(x)_{w}}\right\}_{w \in \mathcal{I}}$ for some x.
(3) $\left\{\left(w, k_{w}=\left(k_{w}^{0}, k_{w}^{1}\right)\right\}_{w \in \mathcal{O}}\right.$.

The Garbled Circuit, cont.

input wire i	input wire j	output wire h	hidden output wire
k_{i}^{0}	k_{j}^{0}	$k_{h}^{g(0,0)}$	$E_{k_{i}^{0}}\left(E_{k_{j}^{0}}\left(k_{h}^{g(0,0)}\right)\right)$
k_{i}^{0}	k_{j}^{1}	$k_{h}^{g(0,1)}$	$E_{k_{i}^{0}}\left(E_{k_{j}^{1}}\left(k_{h}^{g(0,1)}\right)\right)$
k_{i}^{1}	k_{j}^{0}	$k_{h}^{g(1,0)}$	$E_{k_{i}^{1}}\left(E_{k_{j}^{0}}\left(k_{h}^{g(1,0)}\right)\right)$
k_{i}^{1}	k_{j}^{1}	$k_{h}^{g(1,1)}$	$E_{k_{i}^{1}}\left(E_{k_{j}^{1}}\left(k_{h}^{g(1,1)}\right)\right)$

Let \mathcal{I} and \mathcal{O} be the input and outputs wires of C.

- For $g \in \mathcal{G}$, let $\widetilde{T}(g)$ be a random permutation of the fourth column of $T(g)$.
- For $w \in \mathcal{W}$, let $C(x)_{w}$ be the bit-value computation of $C(x)$ assigns to w
- Given
(1) $\tilde{T}=\{(g, \tilde{T}(g))\}_{g \in \mathcal{G}}$.
(2) $\left\{k_{w}^{C(x)_{w}}\right\}_{w \in \mathcal{I}}$ for some x.
(3) $\left\{\left(w, k_{w}=\left(k_{w}^{0}, k_{w}^{1}\right)\right\}_{w \in \mathcal{O}}\right.$.

The Garbled Circuit, cont.

input wire i	input wire j	output wire h	hidden output wire
k_{i}^{0}	k_{j}^{0}	$k_{h}^{g(0,0)}$	$E_{k_{i}^{0}}\left(E_{k_{j}^{0}}\left(k_{h}^{g(0,0)}\right)\right)$
k_{i}^{0}	k_{j}^{1}	$k_{h}^{g(0,1)}$	$E_{k_{i}^{0}}\left(E_{k_{j}^{1}}\left(k_{h}^{g(0,1)}\right)\right)$
k_{i}^{1}	k_{j}^{0}	$k_{h}^{g(1,0)}$	$E_{k_{i}^{1}}\left(E_{k_{j}^{0}}\left(k_{h}^{g(1,0)}\right)\right)$
k_{i}^{1}	k_{j}^{1}	$k_{h}^{g(1,1)}$	$E_{k_{i}^{1}}\left(E_{k_{j}^{1}}\left(k_{h}^{g(1,1)}\right)\right)$

Let \mathcal{I} and \mathcal{O} be the input and outputs wires of C.

- For $g \in \mathcal{G}$, let $\widetilde{T}(g)$ be a random permutation of the fourth column of $T(g)$.
- For $w \in \mathcal{W}$, let $C(x)_{w}$ be the bit-value computation of $C(x)$ assigns to w
- Given
(1) $\widetilde{T}=\{(g, \widetilde{T}(g))\}_{g \in \mathcal{G}}$.
(2) $\left\{k_{w}^{C(x)_{w}}\right\}_{w \in \mathcal{I}}$ for some x.
(3) $\left\{\left(w, k_{w}=\left(k_{w}^{0}, k_{w}^{1}\right)\right\}_{w \in \mathcal{O}}\right.$.

One can efficiently compute $C(x)$.

The Garbled Circuit, cont.

input wire i	input wire j	output wire h	hidden output wire
k_{i}^{0}	k_{j}^{0}	$k_{h}^{g(0,0)}$	$E_{k_{i}^{0}}\left(E_{k_{j}^{0}}\left(k_{h}^{g(0,0)}\right)\right)$
k_{i}^{0}	k_{j}^{1}	$k_{h}^{g(0,1)}$	$E_{k_{i}^{0}}\left(E_{k_{j}^{1}}\left(k_{h}^{g(0,1)}\right)\right)$
k_{i}^{1}	k_{j}^{0}	$k_{h}^{g(1,0)}$	$E_{k_{i}^{1}}\left(E_{k_{j}^{0}}\left(k_{h}^{g(1,0)}\right)\right)$
k_{i}^{1}	k_{j}^{1}	$k_{h}^{g(1,1)}$	$E_{k_{i}^{1}}\left(E_{k_{j}^{1}}\left(k_{h}^{g(1,1)}\right)\right)$

Let \mathcal{I} and \mathcal{O} be the input and outputs wires of C.

- For $g \in \mathcal{G}$, let $\widetilde{T}(g)$ be a random permutation of the fourth column of $T(g)$.
- For $w \in \mathcal{W}$, let $C(x)_{w}$ be the bit-value computation of $C(x)$ assigns to w
- Given
(1) $\widetilde{T}=\{(g, \widetilde{T}(g))\}_{g \in \mathcal{G}}$.
(2) $\left\{k_{w}^{C(x)_{w}}\right\}_{w \in \mathcal{I}}$ for some x.
(3) $\left\{\left(w, k_{w}=\left(k_{w}^{0}, k_{w}^{1}\right)\right\}_{w \in \mathcal{O}}\right.$.

One can efficiently compute $C(x)$.

- (essentially) The above leaks no additional information about x !

The protocol

- Let $f\left(x_{\mathrm{A}}, x_{\mathrm{B}}\right)=\left(f_{\mathrm{A}}\left(x_{\mathrm{A}}, x_{\mathrm{B}}\right), f_{\mathrm{B}}\left(x_{\mathrm{A}}, x_{\mathrm{B}}\right)\right)$ be a function, and let C be a circuit that computes f.

The protocol

- Let $f\left(x_{\mathrm{A}}, x_{\mathrm{B}}\right)=\left(f_{\mathrm{A}}\left(x_{\mathrm{A}}, x_{\mathrm{B}}\right), f_{\mathrm{B}}\left(x_{\mathrm{A}}, x_{\mathrm{B}}\right)\right)$ be a function, and let C be a circuit that computes f.
- Let \mathcal{I}_{A} and \mathcal{I}_{B} be the input wires corresponds to x_{A} and x_{B} respectively in C, and let \mathcal{O}_{A} and \mathcal{O}_{B} be the output wires corresponds to f_{A} and f_{B} outputs respectively in C.

The protocol

- Let $f\left(x_{\mathrm{A}}, x_{\mathrm{B}}\right)=\left(f_{\mathrm{A}}\left(x_{\mathrm{A}}, x_{\mathrm{B}}\right), f_{\mathrm{B}}\left(x_{\mathrm{A}}, x_{\mathrm{B}}\right)\right)$ be a function, and let C be a circuit that computes f.
- Let \mathcal{I}_{A} and \mathcal{I}_{B} be the input wires corresponds to x_{A} and x_{B} respectively in C, and let \mathcal{O}_{A} and \mathcal{O}_{B} be the output wires corresponds to f_{A} and f_{B} outputs respectively in C.
- Recall that $C(x)_{w}$ is the bit-value the computation of $C(x)$ assigns to w.

The protocol

- Let $f\left(x_{\mathrm{A}}, x_{\mathrm{B}}\right)=\left(f_{\mathrm{A}}\left(x_{\mathrm{A}}, x_{\mathrm{B}}\right), f_{\mathrm{B}}\left(x_{\mathrm{A}}, x_{\mathrm{B}}\right)\right)$ be a function, and let C be a circuit that computes f.
- Let \mathcal{I}_{A} and \mathcal{I}_{B} be the input wires corresponds to x_{A} and x_{B} respectively in C, and let \mathcal{O}_{A} and \mathcal{O}_{B} be the output wires corresponds to f_{A} and f_{B} outputs respectively in C.
- Recall that $C(x)_{w}$ is the bit-value the computation of $C(x)$ assigns to w.
- Let (S, R) be a secure protocol for OT.

The protocol

- Let $f\left(x_{\mathrm{A}}, x_{\mathrm{B}}\right)=\left(f_{\mathrm{A}}\left(x_{\mathrm{A}}, x_{\mathrm{B}}\right), f_{\mathrm{B}}\left(x_{\mathrm{A}}, x_{\mathrm{B}}\right)\right)$ be a function, and let C be a circuit that computes f.
- Let \mathcal{I}_{A} and \mathcal{I}_{B} be the input wires corresponds to x_{A} and x_{B} respectively in C, and let \mathcal{O}_{A} and \mathcal{O}_{B} be the output wires corresponds to f_{A} and f_{B} outputs respectively in C.
- Recall that $C(x)_{w}$ is the bit-value the computation of $C(x)$ assigns to w.
- Let (S, R) be a secure protocol for OT.

The protocol

- Let $f\left(x_{\mathrm{A}}, x_{\mathrm{B}}\right)=\left(f_{\mathrm{A}}\left(x_{\mathrm{A}}, x_{\mathrm{B}}\right), f_{\mathrm{B}}\left(x_{\mathrm{A}}, x_{\mathrm{B}}\right)\right)$ be a function, and let C be a circuit that computes f.
- Let \mathcal{I}_{A} and \mathcal{I}_{B} be the input wires corresponds to x_{A} and x_{B} respectively in C, and let \mathcal{O}_{A} and \mathcal{O}_{B} be the output wires corresponds to f_{A} and f_{B} outputs respectively in C.
- Recall that $C(x)_{w}$ is the bit-value the computation of $C(x)$ assigns to w.
- Let (S, R) be a secure protocol for OT.

Protocol 8 ((A, B))

Common input: 1^{n}. A/B's input: x_{A} / x_{B}
(1) A samples at random $\left\{k_{w}=\left(k_{w}^{0}, k_{w}^{1}\right)\right\}_{w \in \mathcal{W}}$, and generate \tilde{T}.
(2) A sends \widetilde{T} and $\left\{\left(w, k_{w}^{C\left(x_{1}, \cdot\right)_{w}}\right)\right\}_{w \in \mathcal{I}_{\mathrm{A}}}$ to B .
(3) $\forall w \in \mathcal{I}_{\mathrm{B}}, \mathrm{A}$ and B interact in $\left(\mathrm{S}\left(k_{w}\right), \mathrm{R}\left(C\left(\cdot, x_{2}\right)_{w}\right)\right)\left(1^{n}\right)$.
(4) B computes the (garbled) circuit, and sends $\left\{\left(w, k_{w}^{C\left(x_{1}, x_{2}\right)_{w}}\right)\right\}_{w \in \mathcal{O}_{\mathrm{A}}}$ to A .
(5) A sends $\left\{\left(w, k_{w}\right)\right\}_{w \in \mathcal{O}_{B}}$ to B.
(6) The parties compute $f_{\mathrm{A}}\left(x_{1}, x_{2}\right)$ and $f_{\mathrm{B}}\left(x_{1}, x_{2}\right)$ respectively.

Example, computing OR

Example, computing OR

On board...

Claim 9

Protocol 8 securely computes f (in the semi-honest model)

Claim 9

Protocol 8 securely computes f (in the semi-honest model)

Proof:

Claim 9

Protocol 8 securely computes f (in the semi-honest model)
Proof: We focus on the security of A.

Claim 9

Protocol 8 securely computes f (in the semi-honest model)
Proof: We focus on the security of A . For a semi-honest B^{\prime}, define

Algorithm $10\left(\mathrm{~B}_{\mathcal{I}}^{\prime}\right)$

input: 1^{n} and x_{B}.
(1) Send x_{B} to the trusted party, and let o_{B} be its answer.

Claim 9

Protocol 8 securely computes f (in the semi-honest model)
Proof: We focus on the security of A. For a semi-honest B^{\prime}, define

Algorithm $10\left(\mathrm{~B}_{\mathcal{I}}^{\prime}\right)$

input: 1^{n} and x_{B}.
(1) Send x_{B} to the trusted party, and let O_{B} be its answer.
(2) Emulate the first 4 steps of $\left(\mathrm{A}\left(1^{\left|x_{A}\right|}\right), \mathrm{B}^{\prime}\left(x_{\mathrm{B}}\right)\left(1^{n}\right)\right)$.

Claim 9

Protocol 8 securely computes f (in the semi-honest model)
Proof: We focus on the security of A. For a semi-honest B^{\prime}, define

Algorithm $10\left(\mathrm{~B}_{\mathcal{I}}^{\prime}\right)$

input: 1^{n} and x_{B}.
(1) Send x_{B} to the trusted party, and let o_{B} be its answer.
(2) Emulate the first 4 steps of $\left(\mathrm{A}\left(1^{\left|x_{A}\right|}\right), \mathrm{B}^{\prime}\left(x_{\mathrm{B}}\right)\left(1^{n}\right)\right)$.
(3) For each $w \in \mathcal{O}_{\mathrm{B}}$: permute the order of the pair k_{w} according to o_{B}, and the key of w computed in the emulation.

Claim 9

Protocol 8 securely computes f (in the semi-honest model)
Proof: We focus on the security of A . For a semi-honest B^{\prime}, define

Algorithm $10\left(\mathrm{~B}_{\mathcal{I}}^{\prime}\right)$

input: 1^{n} and x_{B}.
(1) Send x_{B} to the trusted party, and let o_{B} be its answer.
(2) Emulate the first 4 steps of $\left(\mathrm{A}\left(1^{\left|x_{A}\right|}\right), \mathrm{B}^{\prime}\left(x_{\mathrm{B}}\right)\left(1^{n}\right)\right)$.
(3) For each $w \in \mathcal{O}_{\mathrm{B}}$: permute the order of the pair k_{w} according to o_{B}, and the key of w computed in the emulation.
(4) Complete the emulation, and output the output that B^{\prime} does.

Claim 9

Protocol 8 securely computes f (in the semi-honest model)
Proof: We focus on the security of A . For a semi-honest B^{\prime}, define

Algorithm $10\left(\mathrm{~B}_{\mathcal{I}}^{\prime}\right)$

input: 1^{n} and x_{B}.
(1) Send x_{B} to the trusted party, and let o_{B} be its answer.
(2) Emulate the first 4 steps of $\left(\mathrm{A}\left(1^{\left|x_{A}\right|}\right), \mathrm{B}^{\prime}\left(x_{\mathrm{B}}\right)\left(1^{n}\right)\right)$.
(3) For each $w \in \mathcal{O}_{\mathrm{B}}$: permute the order of the pair k_{w} according to o_{B}, and the key of w computed in the emulation.
(4) Complete the emulation, and output the output that B^{\prime} does.

Claim 9

Protocol 8 securely computes f (in the semi-honest model)
Proof: We focus on the security of A . For a semi-honest B^{\prime}, define

Algorithm $10\left(\mathrm{~B}_{\mathcal{I}}^{\prime}\right)$

input: 1^{n} and x_{B}.
(1) Send x_{B} to the trusted party, and let o_{B} be its answer.
(2) Emulate the first 4 steps of $\left(\mathrm{A}\left(1^{\left|x_{A}\right|}\right), \mathrm{B}^{\prime}\left(x_{\mathrm{B}}\right)\left(1^{n}\right)\right)$.
(3) For each $w \in \mathcal{O}_{\mathrm{B}}$: permute the order of the pair k_{w} according to o_{B}, and the key of w computed in the emulation.
(4) Complete the emulation, and output the output that B^{\prime} does.

Claim: $\mathrm{B}_{\mathcal{I}}^{\prime}$ is a good "simulator" for B^{\prime}.

Claim 9

Protocol 8 securely computes f (in the semi-honest model)
Proof: We focus on the security of A . For a semi-honest B^{\prime}, define

Algorithm $10\left(\mathrm{~B}_{\mathcal{I}}^{\prime}\right)$

input: 1^{n} and x_{B}.
(1) Send x_{B} to the trusted party, and let o_{B} be its answer.
(2) Emulate the first 4 steps of $\left(\mathrm{A}\left(1^{\left|x_{A}\right|}\right), \mathrm{B}^{\prime}\left(x_{\mathrm{B}}\right)\left(1^{n}\right)\right)$.
(3) For each $w \in \mathcal{O}_{\mathrm{B}}$: permute the order of the pair k_{w} according to o_{B}, and the key of w computed in the emulation.
(4) Complete the emulation, and output the output that B^{\prime} does.

Claim: $\mathrm{B}_{\mathcal{I}}^{\prime}$ is a good "simulator" for B^{\prime}.
Security of A ?

Extensions

Extensions

- Efficiently computable f

Both parties first compute C_{f} - a circuit that compute f for inputs of the right length

Extensions

- Efficiently computable f

Both parties first compute C_{f} - a circuit that compute f for inputs of the right length

- Hiding C ?

Extensions

- Efficiently computable f

Both parties first compute C_{f} - a circuit that compute f for inputs of the right length

- Hiding C ?

Extensions

- Efficiently computable f

Both parties first compute C_{f} - a circuit that compute f for inputs of the right length

- Hiding C? All but its size

Malicious model

The parties prove that they act "honestly":

Malicious model

The parties prove that they act "honestly":
(1) Forces the parties to chose their random coin properly

Malicious model

The parties prove that they act "honestly":
(1) Forces the parties to chose their random coin properly
(2) Before each step, the parties prove in $\mathcal{Z K}$ that they followed the prescribed protocol (with respect to the random-coins chosen above)

Course summary

See diagram

What we did not cover

- "Few" reductions

What we did not cover

- "Few" reductions
- Environment security (e.g., UC)

What we did not cover

- "Few" reductions
- Environment security (e.g., UC)
- Information theoretic crypto

What we did not cover

- "Few" reductions
- Environment security (e.g., UC)
- Information theoretic crypto
- Non-generic constructions : number theory, lattices

What we did not cover

- "Few" reductions
- Environment security (e.g., UC)
- Information theoretic crypto
- Non-generic constructions : number theory, lattices
- Impossibility results

What we did not cover

- "Few" reductions
- Environment security (e.g., UC)
- Information theoretic crypto
- Non-generic constructions : number theory, lattices
- Impossibility results
- "Real life cryptography" (e.g., Random oracle model)

What we did not cover

- "Few" reductions
- Environment security (e.g., UC)
- Information theoretic crypto
- Non-generic constructions : number theory, lattices
- Impossibility results
- "Real life cryptography" (e.g., Random oracle model)
- Security

What we did not cover

- "Few" reductions
- Environment security (e.g., UC)
- Information theoretic crypto
- Non-generic constructions : number theory, lattices
- Impossibility results
- "Real life cryptography" (e.g., Random oracle model)
- Security
- Differential privacy (maybe it is still not too late to register to Barllan winter School...)

What we did not cover

- "Few" reductions
- Environment security (e.g., UC)
- Information theoretic crypto
- Non-generic constructions : number theory, lattices
- Impossibility results
- "Real life cryptography" (e.g., Random oracle model)
- Security
- Differential privacy
(maybe it is still not too late to register to Barllan winter School...)
- and....

Advanced course (next semester, same time)

- Cryptography in low depth
- Impossibility result
- Computation notion of entropy and their applications
- and more...

Students seminar on MPC, Tuesdays 10 - 12

The exam

