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Statistical Vs. Computational
distance
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Distributions and Statistical Distance
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Distributions and Statistical Distance

Let P and Q be two distributions over a finite set U . Their statistical distance
(also known as, variation distance) is defined as

SD(P,Q) :=
1
2

∑
x∈U
|P(x)−Q(x)| = max

S⊆U
(P(S)−Q(S))

We will only consider finite distributions.

Claim 1
For any pair of (finite) distribution P and Q, it holds that

SD(P,Q) = max
D
{ Pr

x←P
[D(x) = 1]− Pr

x←Q
[D(x) = 1]},

where D is any algorithm.

Interpretation?
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Some useful facts

Let P,Q,R be finite distributions, then

Triangle inequality:
SD(P,R) ≤ SD(P,Q) + SD(Q,R)

Repeated sampling:
SD((P,P), (Q,Q)) ≤ 2 · SD(P,Q)
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Distribution ensembles and statistical indistinguishability

Definition 2 (distribution ensembles)

P = {Pn}n∈N is a distribution ensemble, if Pn is a (finite) distribution for any
n ∈ N.
P is efficiently samplable (or just efficient), if ∃ PPT Samp with Sam(1n) ≡ Pn.

Definition 3 (statistical indistinguishability)

Two distribution ensembles P and Q are statistically indistinguishable, if
SD(Pn,Qn) = neg(n).

Alternatively, if
∣∣∣∆D

(P,Q)(n)
∣∣∣ = neg(n), for any algorithm D, where

∆D
(P,Q)(n) := Pr

x←Pn
[D(1n, x) = 1]− Pr

x←Qn

[D(1n, x) = 1] (1)
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Section 2

Computational Indistinguishability
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Computational Indistinguishability

Definition 4 (computational indistinguishability)

Two distribution ensembles P and Q are computationally indistinguishable, if∣∣∣∆D
(P,Q)(n)

∣∣∣ = neg(n), for any PPT D.

I Can it be different from the statistical case?

I Non uniform variant

I Sometime behaves different then expected!
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Repeated sampling

Question 5
Assume that P and Q are computationally indistinguishable, is it always true
that P2 = (P,P) and Q2 = (Q,Q) are?

Let D be an algorithm and let δ(n) =
∣∣∣∆D

(P2,Q2)(n)
∣∣∣

δ(n) = | Pr
x←P2

n

[D(x) = 1]− Pr
x←Q2

n

[D(x) = 1]|

≤
∣∣∣∣ Pr
x←P2

n

[D(x) = 1]− Pr
x←(Pn,Qn)

[D(x) = 1]

∣∣∣∣
+

∣∣∣∣ Pr
x←(Pn,Qn)

[D(x) = 1]− Pr
x←Q2

n

[D(x) = 1]

∣∣∣∣
=

∣∣∣∆D
(P2,(P,Q)(n)

∣∣∣+
∣∣∣∆D

((P,Q),Q2)(n)
∣∣∣

So either |∆D
(P2,(P,Q)(n)| ≥ δ(n)/2, or |∆D

((P,Q),Q2)(n)| ≥ δ(n)/2
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I Assume D is a PPT and that
∣∣∣∆D

(P2,Q2)(n)
∣∣∣ ≥ 1/p(n) for some p ∈ poly

and infinitely many n’s, and assume wlg. that
∣∣∣∆D
P2,(P,Q)(n)

∣∣∣ ≥ 1/2p(n)

for infinitely many n’s.

I Can we use D to contradict the fact that P and Q are computationally
close?

I Assuming that P and Q are efficiently samplable

I Non-uniform settings
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Repeated sampling cont.

Given t = t(n) ∈ N and a distribution ensemble P = {Pn}n∈N, let
P t = {P t(n)

n }n∈N.

Question 6
Let t = t(n) ≤ poly(n) be an eff. computable integer function. Assume that P
and Q are eff. samplable and computationally indistinguishable, does it mean
that P t and Qt are?

Proof:

I Induction?

I Hybrid
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Hybrid argument

Let D be an algorithm and let δ(n) =
∣∣∣∆D

(P t ,Qt )(n)
∣∣∣.

I Fix n ∈ N, and for i ∈ {0, . . . , t = t(n)}, let H i = (p1, . . . ,pi ,qi+1, . . . ,qt ),
where the p’s [resp., q’s] are uniformly (and independently) chosen from
Pn [resp., from Qn].

I Since δ(n) =
∣∣∣∆D

H t ,H0 (t)
∣∣∣ =

∣∣∣∑i∈[t] ∆D
H i ,H i−1 (t)

∣∣∣, there exists i ∈ [t ] with∣∣∣∆D
H i ,H i−1 (t)

∣∣∣ ≥ δ(n)/t(n).

I How do we use it?
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Using hybrid argument via estimation

Algorithm 7 (D′)

Input: 1n and x ∈ {0,1}∗

1. Find i ∈ [t ] with
∣∣∣∆D

H i ,H i−1 (t)
∣∣∣ ≥ δ(n)/2t(n)

2. Let (p1, . . . ,pi ,qi+1, . . . ,qt )← H i

3. Return D(1t ,p1, . . . ,pi−1, x ,qi+1, . . . ,qt ), .

1. how do we find i? why δ(n)/2t(n)

2. Easy in the non-uniform case
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Using hybrid argument via sampling

Algorithm 8 (D′)

Input: 1n and x ∈ {0,1}∗

1. Sample i ← [t = t(n)]

2. Let (p1, . . . ,pi ,qi+1, . . . ,qt )← H i

3. Return D(1t ,p1, . . . ,pi−1, x ,qi+1, . . . ,qt ).

∣∣∣∆D′
(P,Q)(n)

∣∣∣ =

∣∣∣∣ Pr
p←Pn

[D′(p) = 1]− Pr
q←Qn

[D′(q) = 1]

∣∣∣∣
=

∣∣∣∣∣∣1t
∑
i∈[t]

Pr
x←Hi

[D(x) = 1]− 1
t

∑
i∈[t]

Pr
x←Hi−1

[D(x) = 1]

∣∣∣∣∣∣
=

∣∣∣∣1t
(

Pr
x←Ht

[D(x) = 1]− Pr
x←H0

[D(x) = 1]

)∣∣∣∣
= δ(n)/t(n)
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Part II

Pseudorandom Generators

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography November 10, 2016 15 / 25



Pseudorandom generator

Definition 9 (pseudorandom distributions)

A distribution ensemble P over {{0,1}`(n)}n∈N is pseudorandom, if it is
computationally indistinguishable from {U`(n)}n∈N.

I Do such distributions exit?

Definition 10 (pseudorandom generators (PRGs))

An efficiently computable function g : {0,1}n 7→ {0,1}`(n) is a pseudorandom
generator, if

I g is length extending (i.e., `(n) > n for any n)

I g(Un) is pseudorandom

I Do such generators exist?

I Imply one-way functions (homework)

I Do they have any use?
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Section 3

Hardcore Predicates
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Hardcore predicates

Definition 11 (hardcore predicates)

An efficiently computable function b : {0,1}n 7→ {0,1} is a hardcore predicate
of f : {0,1}n 7→ {0,1}n, if

Pr
x←{0,1}n

[P(f (x)) = b(x)] ≤ 1
2

+ neg(n),

for any PPT P.

I Does the existence of a hardcore predicate for f , implies that f is one
way?

If f is injective?

I Fact: any OWF has a hardcore predicate (next class)

I Building blocks in constructions of PRGS from OWF
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Section 4

PRGs from OWPs
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OWP to PRG

Claim 12
Let f : {0,1}n 7→ {0,1}n be an eff. permutation and let b : {0,1}n 7→ {0,1} be
a hardcore predicate for f , then g(x) = (f (x),b(x)) is a PRG.

Proof: Assume ∃ a PPT D, and infinite set I ⊆ N and p ∈ poly with∣∣∣∆D
g(Un),Un+1

∣∣∣ > ε(n) = 1/p(n)

for any n ∈ I. We use D for breaking the hardness of b.

I We assume wlg. that Pr[D(g(Un)) = 1]− Pr[D(Un+1) = 1] ≥ ε(n) for any
n ∈ I (?), and fix n ∈ I.
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OWP to PRG cont.

I Let δ(n) = Pr[D(Un+1) = 1] (note that Pr[D(g(Un)) = 1] = δ + ε).

I Compute

δ = Pr[D(f (Un),U1) = 1]

= Pr[U1 = b(Un)] · Pr[D(f (Un),U1) = 1 | U1 = b(Un)]

+ Pr[U1 = b(Un)] · Pr[D(f (Un),U1) = 1 | U1 = b(Un)]

=
1
2

(δ + ε) +
1
2
· Pr[D(f (Un),U1) = 1 | U1 = b(Un)].

Hence,

Pr[D(f (Un),b(Un)) = 1] = δ − ε (2)
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OWP to PRG cont.

I Pr[D(f (Un),b(Un)) = 1] = δ + ε

I Pr[D(f (Un),b(Un)) = 1] = δ − ε

I Consider the following algorithm for predicting b:

Algorithm 13 (P)

Input: y ∈ {0,1}n

1. Flip a random coin c ← {0,1}.

2. If D(y , c) = 1 output c, otherwise, output c.

I It follows that

Pr[P(f (Un)) = b(Un)]

= Pr[c = b(Un)] · Pr[D(f (Un), c) = 1 | c = b(Un)]

+ Pr[c = b(Un)] · Pr[D(f (Un), c) = 0 | c = b(Un)]

=
1
2
· (δ + ε) +

1
2

(1− δ + ε) =
1
2

+ ε.
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OWP to PRG cont.

Remark 14

I Prediction to distinguishing (homework)

I PRG from any OWF: (1) Regular OWFs, first use pairwise hashing to
convert into “almost" permutation. (2) Any OWF, harder
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PRG Length Extension

Construction 15 (iterated function)

Given g : {0,1}n 7→ {0,1}n+1 and i ∈ N, define g i : {0,1}n 7→ {0,1}n+i as
g i (x) = g(x)1,g i−1(g(x)2,...,n+1),

where g0(x) = x .

Claim 16

Let g : {0,1}n 7→ {0,1}n+1 be a PRG, then gt(n) : {0,1}n 7→ {0,1}n+t(n) is a
PRG, for any t ∈ poly.

Proof: Assume ∃ a PPT D, an infinite set I ⊆ N and p ∈ poly with∣∣∣∆D
gt (Un),Un+t(n)

∣∣∣ > ε(n) = 1/p(n),

for any n ∈ I. We use D for breaking the hardness of g.
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PRG Length Extension cont.

I Fix n ∈ N, for i ∈ {0, . . . , t = t(n)}, let H i = Ut−i ,g i (Un) (i.e., the
distribution of H i is

(
x ,g i (x ′)

)
x←{0,1}t−i ,x ′←{0,1}n )

I Note that H0 ≡ Un+t and H t ≡ gt (Un).

Algorithm 17 (D′)

Input: 1n and y ∈ {0,1}n+1

1. Sample i ← [t ]

2. Return D(1n,Ut−i , y1,g i−1(y2,...,n+1)).

Claim 18

It holds that
∣∣∣∆D′

g(Un),Un+1

∣∣∣ > ε(n)/t(n)

Proof: ...
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