Foundation of Cryptography, Lecture 2 Pseudorandom Generators

Benny Applebaum & Iftach Haitner, Tel Aviv University

Tel Aviv University.

November 10, 2016

Part I

Statistical Vs. Computational distance

Benny Applebaum & Iftach Haitner (TAU)

Foundation of Cryptography

November 10, 2016 2/25

Section 1

Distributions and Statistical Distance

Benny Applebaum & Iftach Haitner (TAU)

Foundation of Cryptography

November 10, 2016 3/25

Distributions and Statistical Distance

Let *P* and *Q* be two distributions over a finite set \mathcal{U} . Their statistical distance (also known as, variation distance) is defined as

$$\mathsf{SD}(P,Q) := \frac{1}{2} \sum_{x \in \mathcal{U}} |P(x) - Q(x)| = \max_{\mathcal{S} \subseteq \mathcal{U}} (P(\mathcal{S}) - Q(\mathcal{S}))$$

We will only consider finite distributions.

Distributions and Statistical Distance

Let *P* and *Q* be two distributions over a finite set \mathcal{U} . Their statistical distance (also known as, variation distance) is defined as

$$\mathrm{SD}(P,Q) := \frac{1}{2} \sum_{x \in \mathcal{U}} |P(x) - Q(x)| = \max_{\mathcal{S} \subseteq \mathcal{U}} (P(\mathcal{S}) - Q(\mathcal{S}))$$

We will only consider finite distributions.

Claim 1

For any pair of (finite) distribution *P* and *Q*, it holds that

$$\mathsf{SD}(P,Q) = \max_{\mathsf{D}} \{ \Pr_{x \leftarrow P}[\mathsf{D}(x) = 1] - \Pr_{x \leftarrow Q}[\mathsf{D}(x) = 1] \},$$

where D is any algorithm.

Distributions and Statistical Distance

Let *P* and *Q* be two distributions over a finite set \mathcal{U} . Their statistical distance (also known as, variation distance) is defined as

$$\mathsf{SD}(P, Q) := \frac{1}{2} \sum_{x \in \mathcal{U}} |P(x) - Q(x)| = \max_{\mathcal{S} \subseteq \mathcal{U}} (P(\mathcal{S}) - Q(\mathcal{S}))$$

We will only consider finite distributions.

Claim 1

For any pair of (finite) distribution *P* and *Q*, it holds that

$$\mathsf{SD}(P,Q) = \max_{\mathsf{D}} \{ \Pr_{x \leftarrow P}[\mathsf{D}(x) = 1] - \Pr_{x \leftarrow Q}[\mathsf{D}(x) = 1] \},$$

where D is any algorithm.

Interpretation?

Some useful facts

Let P, Q, R be finite distributions, then

Triangle inequality:

 $SD(P, R) \leq SD(P, Q) + SD(Q, R)$

Repeated sampling:

 $SD((P, P), (Q, Q)) \leq 2 \cdot SD(P, Q)$

Definition 2 (distribution ensembles)

 $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$ is a distribution ensemble, if P_n is a (finite) distribution for any $n \in \mathbb{N}$.

 \mathcal{P} is efficiently samplable (or just efficient), if \exists PPT Samp with Sam $(1^n) \equiv P_n$.

Definition 2 (distribution ensembles)

 $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$ is a distribution ensemble, if P_n is a (finite) distribution for any $n \in \mathbb{N}$.

 \mathcal{P} is efficiently samplable (or just efficient), if \exists PPT Samp with Sam $(1^n) \equiv P_n$.

Definition 3 (statistical indistinguishability)

Two distribution ensembles \mathcal{P} and \mathcal{Q} are statistically indistinguishable, if $SD(P_n, Q_n) = neg(n)$.

Definition 2 (distribution ensembles)

 $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$ is a distribution ensemble, if P_n is a (finite) distribution for any $n \in \mathbb{N}$.

 \mathcal{P} is efficiently samplable (or just efficient), if \exists PPT Samp with Sam $(1^n) \equiv P_n$.

Definition 3 (statistical indistinguishability)

Two distribution ensembles \mathcal{P} and \mathcal{Q} are statistically indistinguishable, if $SD(P_n, Q_n) = neg(n)$.

Alternatively, if $\left|\Delta_{(\mathcal{P},\mathcal{Q})}^{D}(n)\right| = \operatorname{neg}(n)$, for *any* algorithm D, where

$$\Delta^{\mathsf{D}}_{(\mathcal{P},\mathcal{Q})}(n) := \Pr_{x \leftarrow P_n}[\mathsf{D}(1^n, x) = 1] - \Pr_{x \leftarrow Q_n}[\mathsf{D}(1^n, x) = 1]$$
(1)

Definition 2 (distribution ensembles)

 $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$ is a distribution ensemble, if P_n is a (finite) distribution for any $n \in \mathbb{N}$.

 \mathcal{P} is efficiently samplable (or just efficient), if \exists PPT Samp with Sam $(1^n) \equiv P_n$.

Definition 3 (statistical indistinguishability)

Two distribution ensembles \mathcal{P} and \mathcal{Q} are statistically indistinguishable, if $SD(P_n, Q_n) = neg(n)$.

Alternatively, if $\left|\Delta_{(\mathcal{P},\mathcal{Q})}^{D}(n)\right| = \operatorname{neg}(n)$, for *any* algorithm D, where

$$\Delta^{\mathsf{D}}_{(\mathcal{P},\mathcal{Q})}(n) := \Pr_{x \leftarrow P_n}[\mathsf{D}(1^n, x) = 1] - \Pr_{x \leftarrow Q_n}[\mathsf{D}(1^n, x) = 1]$$
(1)

Section 2

Computational Indistinguishability

Benny Applebaum & Iftach Haitner (TAU)

Definition 4 (computational indistinguishability)

Two distribution ensembles \mathcal{P} and \mathcal{Q} are computationally indistinguishable, if $\left|\Delta_{(\mathcal{P},\mathcal{Q})}^{D}(n)\right| = \operatorname{neg}(n)$, for any PPT D.

Definition 4 (computational indistinguishability)

Two distribution ensembles \mathcal{P} and \mathcal{Q} are computationally indistinguishable, if $\left|\Delta_{(\mathcal{P},\mathcal{Q})}^{D}(n)\right| = \operatorname{neg}(n)$, for any PPT D.

Can it be different from the statistical case?

Definition 4 (computational indistinguishability)

Two distribution ensembles \mathcal{P} and \mathcal{Q} are computationally indistinguishable, if $\left|\Delta_{(\mathcal{P},\mathcal{Q})}^{D}(n)\right| = \operatorname{neg}(n)$, for any PPT D.

- Can it be different from the statistical case?
- Non uniform variant

Definition 4 (computational indistinguishability)

Two distribution ensembles \mathcal{P} and \mathcal{Q} are computationally indistinguishable, if $\left|\Delta_{(\mathcal{P},\mathcal{Q})}^{D}(n)\right| = \operatorname{neg}(n)$, for any PPT D.

- Can it be different from the statistical case?
- Non uniform variant
- Sometime behaves different then expected!

Question 5

Assume that \mathcal{P} and \mathcal{Q} are computationally indistinguishable, is it always true that $\mathcal{P}^2 = (\mathcal{P}, \mathcal{P})$ and $\mathcal{Q}^2 = (\mathcal{Q}, \mathcal{Q})$ are?

Question 5

Assume that \mathcal{P} and \mathcal{Q} are computationally indistinguishable, is it always true that $\mathcal{P}^2 = (\mathcal{P}, \mathcal{P})$ and $\mathcal{Q}^2 = (\mathcal{Q}, \mathcal{Q})$ are?

Let D be an algorithm and let $\delta(n) = \left| \Delta_{(\mathcal{P}^2, \mathcal{Q}^2)}^{D}(n) \right|$

δ

Question 5

Assume that \mathcal{P} and \mathcal{Q} are computationally indistinguishable, is it always true that $\mathcal{P}^2 = (\mathcal{P}, \mathcal{P})$ and $\mathcal{Q}^2 = (\mathcal{Q}, \mathcal{Q})$ are?

Let D be an algorithm and let $\delta(n) = \left| \Delta^{D}_{(\mathcal{P}^{2}, \mathcal{Q}^{2})}(n) \right|$

$$(n) = \left| \Pr_{x \leftarrow P_n^2} [\mathsf{D}(x) = 1] - \Pr_{x \leftarrow Q_n^2} [\mathsf{D}(x) = 1] \right|$$

$$\leq \left| \Pr_{x \leftarrow P_n^2} [\mathsf{D}(x) = 1] - \Pr_{x \leftarrow (P_n, Q_n)} [\mathsf{D}(x) = 1] \right|$$

$$+ \left| \Pr_{x \leftarrow (P_n, Q_n)} [\mathsf{D}(x) = 1] - \Pr_{x \leftarrow Q_n^2} [\mathsf{D}(x) = 1] \right|$$

δ

Question 5

Assume that \mathcal{P} and \mathcal{Q} are computationally indistinguishable, is it always true that $\mathcal{P}^2 = (\mathcal{P}, \mathcal{P})$ and $\mathcal{Q}^2 = (\mathcal{Q}, \mathcal{Q})$ are?

Let D be an algorithm and let $\delta(n) = \left| \Delta^{D}_{(\mathcal{P}^{2}, \mathcal{Q}^{2})}(n) \right|$

$$\begin{aligned} (n) &= |\Pr_{x \leftarrow P_n^2}[\mathsf{D}(x) = 1] - \Pr_{x \leftarrow Q_n^2}[\mathsf{D}(x) = 1]| \\ &\leq \left|\Pr_{x \leftarrow P_n^2}[\mathsf{D}(x) = 1] - \Pr_{x \leftarrow (P_n, Q_n)}[\mathsf{D}(x) = 1]\right| \\ &+ \left|\Pr_{x \leftarrow (P_n, Q_n)}[\mathsf{D}(x) = 1] - \Pr_{x \leftarrow Q_n^2}[\mathsf{D}(x) = 1]\right| \\ &= \left|\Delta_{(\mathcal{P}^2, (\mathcal{P}, \mathcal{Q})}^{\mathsf{D}}(n)\right| + \left|\Delta_{((\mathcal{P}, \mathcal{Q}), \mathcal{Q}^2)}^{\mathsf{D}}(n)\right| \end{aligned}$$

Question 5

Assume that \mathcal{P} and \mathcal{Q} are computationally indistinguishable, is it always true that $\mathcal{P}^2 = (\mathcal{P}, \mathcal{P})$ and $\mathcal{Q}^2 = (\mathcal{Q}, \mathcal{Q})$ are?

Let D be an algorithm and let $\delta(n) = \left| \Delta^{D}_{(\mathcal{P}^{2}, \mathcal{Q}^{2})}(n) \right|$

$$\delta(n) = \left| \Pr_{x \leftarrow P_n^2} [\mathsf{D}(x) = 1] - \Pr_{x \leftarrow Q_n^2} [\mathsf{D}(x) = 1] \right|$$

$$\leq \left| \Pr_{x \leftarrow P_n^2} [\mathsf{D}(x) = 1] - \Pr_{x \leftarrow (P_n, Q_n)} [\mathsf{D}(x) = 1] \right|$$

$$+ \left| \Pr_{x \leftarrow (P_n, Q_n)} [\mathsf{D}(x) = 1] - \Pr_{x \leftarrow Q_n^2} [\mathsf{D}(x) = 1] \right|$$

$$= \left| \Delta_{(\mathcal{P}^2, (\mathcal{P}, \mathcal{Q})}^{\mathsf{D}}(n) \right| + \left| \Delta_{((\mathcal{P}, \mathcal{Q}), \mathcal{Q}^2)}^{\mathsf{D}}(n) \right|$$

So either $|\Delta_{(\mathcal{P}^2,(\mathcal{P},\mathcal{Q})}^{\mathsf{D}}(n)| \ge \delta(n)/2$, or $|\Delta_{((\mathcal{P},\mathcal{Q}),\mathcal{Q}^2)}^{\mathsf{D}}(n)| \ge \delta(n)/2$

► Assume D is a PPT and that $\left|\Delta_{(\mathcal{P}^2, \mathcal{Q}^2)}^{D}(n)\right| \ge 1/p(n)$ for some $p \in \text{poly}$ and infinitely many *n*'s, and assume wlg. that $\left|\Delta_{\mathcal{P}^2, (\mathcal{P}, \mathcal{Q})}^{D}(n)\right| \ge 1/2p(n)$ for infinitely many *n*'s.

- ► Assume D is a PPT and that $\left|\Delta_{(\mathcal{P}^2, \mathcal{Q}^2)}^{D}(n)\right| \ge 1/p(n)$ for some $p \in \text{poly}$ and infinitely many *n*'s, and assume wlg. that $\left|\Delta_{\mathcal{P}^2, (\mathcal{P}, \mathcal{Q})}^{D}(n)\right| \ge 1/2p(n)$ for infinitely many *n*'s.
- Can we use D to contradict the fact that P and Q are computationally close?

- ► Assume D is a PPT and that $\left|\Delta_{(\mathcal{P}^2, \mathcal{Q}^2)}^{D}(n)\right| \ge 1/p(n)$ for some $p \in \text{poly}$ and infinitely many *n*'s, and assume wlg. that $\left|\Delta_{\mathcal{P}^2, (\mathcal{P}, \mathcal{Q})}^{D}(n)\right| \ge 1/2p(n)$ for infinitely many *n*'s.
- Can we use D to contradict the fact that P and Q are computationally close?
- Assuming that P and Q are efficiently samplable

- ► Assume D is a PPT and that $\left|\Delta_{(\mathcal{P}^2, \mathcal{Q}^2)}^{D}(n)\right| \ge 1/p(n)$ for some $p \in \text{poly}$ and infinitely many *n*'s, and assume wlg. that $\left|\Delta_{\mathcal{P}^2, (\mathcal{P}, \mathcal{Q})}^{D}(n)\right| \ge 1/2p(n)$ for infinitely many *n*'s.
- Can we use D to contradict the fact that P and Q are computationally close?
- Assuming that P and Q are efficiently samplable
- Non-uniform settings

Given $t = t(n) \in \mathbb{N}$ and a distribution ensemble $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$, let $\mathcal{P}^t = \{P_n^{t(n)}\}_{n \in \mathbb{N}}$.

Given $t = t(n) \in \mathbb{N}$ and a distribution ensemble $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$, let $\mathcal{P}^t = \{P_n^{t(n)}\}_{n \in \mathbb{N}}$.

Question 6

Let $t = t(n) \le poly(n)$ be an eff. computable integer function. Assume that \mathcal{P} and \mathcal{Q} are eff. samplable and computationally indistinguishable, does it mean that \mathcal{P}^t and \mathcal{Q}^t are?

Given $t = t(n) \in \mathbb{N}$ and a distribution ensemble $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$, let $\mathcal{P}^t = \{P_n^{t(n)}\}_{n \in \mathbb{N}}$.

Question 6

Let $t = t(n) \le poly(n)$ be an eff. computable integer function. Assume that \mathcal{P} and \mathcal{Q} are eff. samplable and computationally indistinguishable, does it mean that \mathcal{P}^t and \mathcal{Q}^t are?

Proof:

Given $t = t(n) \in \mathbb{N}$ and a distribution ensemble $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$, let $\mathcal{P}^t = \{P_n^{t(n)}\}_{n \in \mathbb{N}}$.

Question 6

Let $t = t(n) \le poly(n)$ be an eff. computable integer function. Assume that \mathcal{P} and \mathcal{Q} are eff. samplable and computationally indistinguishable, does it mean that \mathcal{P}^t and \mathcal{Q}^t are?

Proof:

Given $t = t(n) \in \mathbb{N}$ and a distribution ensemble $\mathcal{P} = \{P_n\}_{n \in \mathbb{N}}$, let $\mathcal{P}^t = \{P_n^{t(n)}\}_{n \in \mathbb{N}}$.

Question 6

Let $t = t(n) \le poly(n)$ be an eff. computable integer function. Assume that \mathcal{P} and \mathcal{Q} are eff. samplable and computationally indistinguishable, does it mean that \mathcal{P}^t and \mathcal{Q}^t are?

Proof:

- Induction?
- Hybrid

Hybrid argument

Let D be an algorithm and let $\delta(n) = \left| \Delta^{D}_{(\mathcal{P}^{t}, \mathcal{Q}^{t})}(n) \right|$.

Fix $n \in \mathbb{N}$, and for $i \in \{0, ..., t = t(n)\}$, let $H^i = (p_1, ..., p_i, q_{i+1}, ..., q_t)$, where the *p*'s [resp., *q*'s] are uniformly (and independently) chosen from P_n [resp., from Q_n].

Hybrid argument

Let D be an algorithm and let $\delta(n) = \left| \Delta_{(\mathcal{P}^t, \mathcal{Q}^t)}^{D}(n) \right|$.

- ▶ Fix $n \in \mathbb{N}$, and for $i \in \{0, ..., t = t(n)\}$, let $H^i = (p_1, ..., p_i, q_{i+1}, ..., q_t)$, where the *p*'s [resp., *q*'s] are uniformly (and independently) chosen from P_n [resp., from Q_n].
- ► Since $\delta(n) = \left| \Delta_{H^{i}, H^{0}}^{\mathsf{D}}(t) \right| = \left| \sum_{i \in [t]} \Delta_{H^{i}, H^{i-1}}^{\mathsf{D}}(t) \right|$, there exists $i \in [t]$ with $\left| \Delta_{H^{i}, H^{i-1}}^{\mathsf{D}}(t) \right| \ge \delta(n)/t(n)$.

Hybrid argument

Let D be an algorithm and let $\delta(n) = \left| \Delta^{D}_{(\mathcal{P}^{t}, \mathcal{Q}^{t})}(n) \right|$.

- ▶ Fix $n \in \mathbb{N}$, and for $i \in \{0, ..., t = t(n)\}$, let $H^i = (p_1, ..., p_i, q_{i+1}, ..., q_t)$, where the *p*'s [resp., *q*'s] are uniformly (and independently) chosen from P_n [resp., from Q_n].
- ► Since $\delta(n) = \left| \Delta_{H^{i}, H^{0}}^{\mathsf{D}}(t) \right| = \left| \sum_{i \in [t]} \Delta_{H^{i}, H^{i-1}}^{\mathsf{D}}(t) \right|$, there exists $i \in [t]$ with $\left| \Delta_{H^{i}, H^{i-1}}^{\mathsf{D}}(t) \right| \ge \delta(n)/t(n)$.
- How do we use it?

Using hybrid argument via estimation

Algorithm 7 (D')

Input: 1^{n} and $x \in \{0, 1\}^{*}$

- **1.** Find $i \in [t]$ with $\left|\Delta_{H^i, H^{i-1}}^{\mathsf{D}}(t)\right| \geq \delta(n)/2t(n)$
- **2.** Let $(p_1, \ldots, p_i, q_{i+1}, \ldots, q_t) \leftarrow H^i$
- **3.** Return $D(1^t, p_1, \ldots, p_{i-1}, x, q_{i+1}, \ldots, q_t)$, .

Using hybrid argument via estimation

Algorithm 7 (D')

Input: 1^{n} and $x \in \{0, 1\}^{*}$

- **1.** Find $i \in [t]$ with $\left| \Delta_{H^i, H^{i-1}}^{\mathsf{D}}(t) \right| \ge \delta(n)/2t(n)$
- **2.** Let $(p_1, \ldots, p_i, q_{i+1}, \ldots, q_t) \leftarrow H^i$
- **3.** Return $D(1^t, p_1, \ldots, p_{i-1}, x, q_{i+1}, \ldots, q_t)$, .
- **1.** how do we find *i*? why $\delta(n)/2t(n)$

Using hybrid argument via estimation

Algorithm 7 (D')

Input: 1^{n} and $x \in \{0, 1\}^{*}$

- **1.** Find $i \in [t]$ with $\left| \Delta_{H^{i}, H^{i-1}}^{\mathsf{D}}(t) \right| \geq \delta(n)/2t(n)$
- **2.** Let $(p_1, \ldots, p_i, q_{i+1}, \ldots, q_t) \leftarrow H^i$
- **3.** Return $D(1^t, p_1, \ldots, p_{i-1}, x, q_{i+1}, \ldots, q_t)$, .
- **1.** how do we find *i*? why $\delta(n)/2t(n)$
- 2. Easy in the non-uniform case
Algorithm 8 (D')

- **1.** Sample $i \leftarrow [t = t(n)]$
- **2.** Let $(p_1, \ldots, p_i, q_{i+1}, \ldots, q_t) \leftarrow H^i$
- **3.** Return $D(1^t, p_1, \ldots, p_{i-1}, x, q_{i+1}, \ldots, q_t)$.

Algorithm 8 (D')

- **1.** Sample $i \leftarrow [t = t(n)]$
- **2.** Let $(p_1, \ldots, p_i, q_{i+1}, \ldots, q_t) \leftarrow H^i$
- **3.** Return $D(1^t, p_1, \ldots, p_{i-1}, x, q_{i+1}, \ldots, q_t)$.

$$\left|\Delta^{\mathsf{D}'}_{(\mathcal{P},\mathcal{Q})}(n)\right| = \left|\Pr_{p\leftarrow P_n}[\mathsf{D}'(p)=1] - \Pr_{q\leftarrow Q_n}[\mathsf{D}'(q)=1]\right|$$

Algorithm 8 (D')

- **1.** Sample $i \leftarrow [t = t(n)]$
- **2.** Let $(p_1, \ldots, p_i, q_{i+1}, \ldots, q_t) \leftarrow H^i$
- **3.** Return $D(1^t, p_1, \ldots, p_{i-1}, x, q_{i+1}, \ldots, q_t)$.

$$\begin{aligned} \left| \Delta_{(\mathcal{P},\mathcal{Q})}^{\mathsf{D}'}(n) \right| &= \left| \Pr_{p \leftarrow \mathcal{P}_n} [\mathsf{D}'(p) = 1] - \Pr_{q \leftarrow \mathcal{Q}_n} [\mathsf{D}'(q) = 1] \right| \\ &= \left| \frac{1}{t} \sum_{i \in [t]} \Pr_{x \leftarrow \mathcal{H}_i} [\mathsf{D}(x) = 1] - \frac{1}{t} \sum_{i \in [t]} \Pr_{x \leftarrow \mathcal{H}_{i-1}} [\mathsf{D}(x) = 1] \right| \end{aligned}$$

Algorithm 8 (D')

- **1.** Sample $i \leftarrow [t = t(n)]$
- **2.** Let $(p_1, \ldots, p_i, q_{i+1}, \ldots, q_t) \leftarrow H^i$
- **3.** Return $D(1^t, p_1, \ldots, p_{i-1}, x, q_{i+1}, \ldots, q_t)$.

$$\begin{aligned} \left| \Delta_{(\mathcal{P},\mathcal{Q})}^{\mathsf{D}'}(n) \right| &= \left| \Pr_{p \leftarrow \mathcal{P}_n} [\mathsf{D}'(p) = 1] - \Pr_{q \leftarrow \mathcal{Q}_n} [\mathsf{D}'(q) = 1] \right| \\ &= \left| \frac{1}{t} \sum_{i \in [t]} \Pr_{x \leftarrow \mathcal{H}_i} [\mathsf{D}(x) = 1] - \frac{1}{t} \sum_{i \in [t]} \Pr_{x \leftarrow \mathcal{H}_{i-1}} [\mathsf{D}(x) = 1] \right| \\ &= \left| \frac{1}{t} \left(\Pr_{x \leftarrow \mathcal{H}_i} [\mathsf{D}(x) = 1] - \Pr_{x \leftarrow \mathcal{H}_0} [\mathsf{D}(x) = 1] \right) \right| \end{aligned}$$

Algorithm 8 (D')

- **1.** Sample $i \leftarrow [t = t(n)]$
- **2.** Let $(p_1, \ldots, p_i, q_{i+1}, \ldots, q_t) \leftarrow H^i$
- **3.** Return $D(1^t, p_1, \ldots, p_{i-1}, x, q_{i+1}, \ldots, q_t)$.

$$\begin{aligned} \left| \Delta_{(\mathcal{P},\mathcal{Q})}^{D'}(n) \right| &= \left| \Pr_{p \leftarrow P_n} [D'(p) = 1] - \Pr_{q \leftarrow Q_n} [D'(q) = 1] \right| \\ &= \left| \frac{1}{t} \sum_{i \in [t]} \Pr_{x \leftarrow H_i} [D(x) = 1] - \frac{1}{t} \sum_{i \in [t]} \Pr_{x \leftarrow H_{i-1}} [D(x) = 1] \right| \\ &= \left| \frac{1}{t} \left(\Pr_{x \leftarrow H_t} [D(x) = 1] - \Pr_{x \leftarrow H_0} [D(x) = 1] \right) \right| \\ &= \delta(n) / t(n) \end{aligned}$$

Part II

Pseudorandom Generators

Benny Applebaum & Iftach Haitner (TAU)

Foundation of Cryptography

November 10, 2016 15/25

Definition 9 (pseudorandom distributions)

A distribution ensemble \mathcal{P} over $\{\{0,1\}^{\ell(n)}\}_{n\in\mathbb{N}}$ is pseudorandom, if it is computationally indistinguishable from $\{U_{\ell(n)}\}_{n\in\mathbb{N}}$.

Definition 9 (pseudorandom distributions)

A distribution ensemble \mathcal{P} over $\{\{0,1\}^{\ell(n)}\}_{n\in\mathbb{N}}$ is pseudorandom, if it is computationally indistinguishable from $\{U_{\ell(n)}\}_{n\in\mathbb{N}}$.

Do such distributions exit?

Definition 9 (pseudorandom distributions)

A distribution ensemble \mathcal{P} over $\{\{0,1\}^{\ell(n)}\}_{n\in\mathbb{N}}$ is pseudorandom, if it is computationally indistinguishable from $\{U_{\ell(n)}\}_{n\in\mathbb{N}}$.

Do such distributions exit?

Definition 10 (pseudorandom generators (PRGs))

- g is length extending (i.e., $\ell(n) > n$ for any n)
- $g(U_n)$ is pseudorandom

Definition 9 (pseudorandom distributions)

A distribution ensemble \mathcal{P} over $\{\{0,1\}^{\ell(n)}\}_{n\in\mathbb{N}}$ is pseudorandom, if it is computationally indistinguishable from $\{U_{\ell(n)}\}_{n\in\mathbb{N}}$.

Do such distributions exit?

Definition 10 (pseudorandom generators (PRGs))

- g is length extending (i.e., $\ell(n) > n$ for any n)
- $g(U_n)$ is pseudorandom
- Do such generators exist?

Definition 9 (pseudorandom distributions)

A distribution ensemble \mathcal{P} over $\{\{0,1\}^{\ell(n)}\}_{n\in\mathbb{N}}$ is pseudorandom, if it is computationally indistinguishable from $\{U_{\ell(n)}\}_{n\in\mathbb{N}}$.

Do such distributions exit?

Definition 10 (pseudorandom generators (PRGs))

- g is length extending (i.e., $\ell(n) > n$ for any n)
- $g(U_n)$ is pseudorandom
- Do such generators exist?
- Imply one-way functions (homework)

Definition 9 (pseudorandom distributions)

A distribution ensemble \mathcal{P} over $\{\{0,1\}^{\ell(n)}\}_{n\in\mathbb{N}}$ is pseudorandom, if it is computationally indistinguishable from $\{U_{\ell(n)}\}_{n\in\mathbb{N}}$.

Do such distributions exit?

Definition 10 (pseudorandom generators (PRGs))

- g is length extending (i.e., $\ell(n) > n$ for any n)
- $g(U_n)$ is pseudorandom
- Do such generators exist?
- Imply one-way functions (homework)
- Do they have any use?

Section 3

Hardcore Predicates

Definition 11 (hardcore predicates)

An efficiently computable function $b : \{0, 1\}^n \mapsto \{0, 1\}$ is a hardcore predicate of $f : \{0, 1\}^n \mapsto \{0, 1\}^n$, if

$$\Pr_{x \leftarrow \{0,1\}^n} \left[P(f(x)) = b(x) \right] \le \frac{1}{2} + \operatorname{neg}(n),$$

for any PPT *P*.

Definition 11 (hardcore predicates)

An efficiently computable function $b : \{0, 1\}^n \mapsto \{0, 1\}$ is a hardcore predicate of $f : \{0, 1\}^n \mapsto \{0, 1\}^n$, if

$$\Pr_{x \leftarrow \{0,1\}^n} [P(f(x)) = b(x)] \le \frac{1}{2} + \operatorname{neg}(n),$$

for any PPT *P*.

Does the existence of a hardcore predicate for *f*, implies that *f* is one way?

Definition 11 (hardcore predicates)

An efficiently computable function $b : \{0, 1\}^n \mapsto \{0, 1\}$ is a hardcore predicate of $f : \{0, 1\}^n \mapsto \{0, 1\}^n$, if

$$\Pr_{x \leftarrow \{0,1\}^n} [P(f(x)) = b(x)] \le \frac{1}{2} + \operatorname{neg}(n),$$

for any PPT *P*.

Does the existence of a hardcore predicate for *f*, implies that *f* is one way?

Definition 11 (hardcore predicates)

An efficiently computable function $b : \{0, 1\}^n \mapsto \{0, 1\}$ is a hardcore predicate of $f : \{0, 1\}^n \mapsto \{0, 1\}^n$, if

$$\Pr_{x \leftarrow \{0,1\}^n} \left[P(f(x)) = b(x) \right] \le \frac{1}{2} + \operatorname{neg}(n),$$

for any PPT *P*.

Does the existence of a hardcore predicate for f, implies that f is one way? If f is injective?

Definition 11 (hardcore predicates)

An efficiently computable function $b : \{0, 1\}^n \mapsto \{0, 1\}$ is a hardcore predicate of $f : \{0, 1\}^n \mapsto \{0, 1\}^n$, if

$$\Pr_{x \leftarrow \{0,1\}^n} \left[P(f(x)) = b(x) \right] \le \frac{1}{2} + \operatorname{neg}(n),$$

for any PPT *P*.

- Does the existence of a hardcore predicate for f, implies that f is one way? If f is injective?
- Fact: any OWF has a hardcore predicate (next class)

Definition 11 (hardcore predicates)

An efficiently computable function $b : \{0, 1\}^n \mapsto \{0, 1\}$ is a hardcore predicate of $f : \{0, 1\}^n \mapsto \{0, 1\}^n$, if

$$\Pr_{x \leftarrow \{0,1\}^n} \left[P(f(x)) = b(x) \right] \le \frac{1}{2} + \operatorname{neg}(n),$$

for any PPT *P*.

- Does the existence of a hardcore predicate for f, implies that f is one way? If f is injective?
- Fact: any OWF has a hardcore predicate (next class)
- Building blocks in constructions of PRGS from OWF

Section 4

PRGs from OWPs

OWP to PRG

Claim 12

Let $f : \{0,1\}^n \mapsto \{0,1\}^n$ be an eff. permutation and let $b : \{0,1\}^n \mapsto \{0,1\}$ be a hardcore predicate for f, then g(x) = (f(x), b(x)) is a PRG.

OWP to PRG

Claim 12

Let $f : \{0,1\}^n \mapsto \{0,1\}^n$ be an eff. permutation and let $b : \{0,1\}^n \mapsto \{0,1\}$ be a hardcore predicate for f, then g(x) = (f(x), b(x)) is a PRG.

Proof: Assume \exists a PPT D, and infinite set $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly}$ with

$$\Delta_{g(U_n),U_{n+1}}^{\mathsf{D}} \Big| > \varepsilon(n) = 1/p(n)$$

for any $n \in \mathcal{I}$. We use D for breaking the hardness of b.

OWP to PRG

Claim 12

Let $f : \{0,1\}^n \mapsto \{0,1\}^n$ be an eff. permutation and let $b : \{0,1\}^n \mapsto \{0,1\}$ be a hardcore predicate for f, then g(x) = (f(x), b(x)) is a PRG.

Proof: Assume \exists a PPT D, and infinite set $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly}$ with

$$\Delta_{g(U_n),U_{n+1}}^{\mathsf{D}} \Big| > \varepsilon(n) = 1/\rho(n)$$

for any $n \in \mathcal{I}$. We use D for breaking the hardness of b.

▶ We assume wlg. that $\Pr[D(g(U_n)) = 1] - \Pr[D(U_{n+1}) = 1] \ge \varepsilon(n)$ for any $n \in \mathcal{I}$ (?), and fix $n \in \mathcal{I}$.

• Let $\delta(n) = \Pr[D(U_{n+1}) = 1]$ (note that $\Pr[D(g(U_n)) = 1] = \delta + \varepsilon$).

• Let $\delta(n) = \Pr[D(U_{n+1}) = 1]$ (note that $\Pr[D(g(U_n)) = 1] = \delta + \varepsilon$).

Compute

$$\delta = \Pr[D(f(U_n), U_1) = 1]$$

= $\Pr[U_1 = b(U_n)] \cdot \Pr[D(f(U_n), U_1) = 1 | U_1 = b(U_n)]$
+ $\Pr[U_1 = \overline{b(U_n)}] \cdot \Pr[D(f(U_n), U_1) = 1 | U_1 = \overline{b(U_n)}]$

• Let $\delta(n) = \Pr[D(U_{n+1}) = 1]$ (note that $\Pr[D(g(U_n)) = 1] = \delta + \varepsilon$).

Compute

$$\delta = \Pr[\mathsf{D}(f(U_n), U_1) = 1]$$

=
$$\Pr[U_1 = b(U_n)] \cdot \Pr[\mathsf{D}(f(U_n), U_1) = 1 \mid U_1 = b(U_n)]$$

+
$$\Pr[U_1 = \overline{b(U_n)}] \cdot \Pr[\mathsf{D}(f(U_n), U_1) = 1 \mid U_1 = \overline{b(U_n)}]$$

=
$$\frac{1}{2}(\delta + \varepsilon) + \frac{1}{2} \cdot \Pr[\mathsf{D}(f(U_n), U_1) = 1 \mid U_1 = \overline{b(U_n)}].$$

• Let $\delta(n) = \Pr[D(U_{n+1}) = 1]$ (note that $\Pr[D(g(U_n)) = 1] = \delta + \varepsilon$).

Compute

$$\delta = \Pr[D(f(U_n), U_1) = 1]$$

= $\Pr[U_1 = b(U_n)] \cdot \Pr[D(f(U_n), U_1) = 1 | U_1 = b(U_n)]$
+ $\Pr[U_1 = \overline{b(U_n)}] \cdot \Pr[D(f(U_n), U_1) = 1 | U_1 = \overline{b(U_n)}]$
= $\frac{1}{2}(\delta + \varepsilon) + \frac{1}{2} \cdot \Pr[D(f(U_n), U_1) = 1 | U_1 = \overline{b(U_n)}].$

Hence,

$$\Pr[\mathsf{D}(f(U_n), \overline{b(U_n)}) = 1] = \delta - \varepsilon$$

(2)

- $\Pr[D(f(U_n), b(U_n)) = 1] = \delta + \varepsilon$
- $\Pr[D(f(U_n), \overline{b(U_n)}) = 1] = \delta \varepsilon$

- $\Pr[D(f(U_n), b(U_n)) = 1] = \delta + \varepsilon$
- $\Pr[D(f(U_n), \overline{b(U_n)}) = 1] = \delta \varepsilon$
- Consider the following algorithm for predicting b:

Algorithm 13 (P)

```
Input: y ∈ {0, 1}<sup>n</sup>
```

- **1.** Flip a random coin $c \leftarrow \{0, 1\}$.
- **2.** If D(y, c) = 1 output *c*, otherwise, output \overline{c} .

- $\Pr[D(f(U_n), b(U_n)) = 1] = \delta + \varepsilon$
- $\Pr[D(f(U_n), \overline{b(U_n)}) = 1] = \delta \varepsilon$
- Consider the following algorithm for predicting b:

Algorithm 13 (P)

```
Input: y \in \{0, 1\}^n
```

1. Flip a random coin $c \leftarrow \{0, 1\}$.

2. If D(y, c) = 1 output *c*, otherwise, output \overline{c} .

It follows that

```
Pr[P(f(U_n)) = b(U_n)]
= Pr[c = b(U_n)] \cdot Pr[D(f(U_n), c) = 1 | c = b(U_n)]
+ Pr[c = \overline{b(U_n)}] \cdot Pr[D(f(U_n), c) = 0 | c = \overline{b(U_n)}]
```

- $\Pr[D(f(U_n), b(U_n)) = 1] = \delta + \varepsilon$
- $\Pr[D(f(U_n), \overline{b(U_n)}) = 1] = \delta \varepsilon$
- Consider the following algorithm for predicting b:

Algorithm 13 (P)

```
Input: y ∈ {0, 1}<sup>n</sup>
```

1. Flip a random coin $c \leftarrow \{0, 1\}$.

2. If D(y, c) = 1 output *c*, otherwise, output \overline{c} .

It follows that

$$\begin{aligned} \Pr[\mathsf{P}(f(U_n)) &= b(U_n)] \\ &= \Pr[c = b(U_n)] \cdot \Pr[\mathsf{D}(f(U_n), c) = 1 \mid c = b(U_n)] \\ &+ \Pr[c = \overline{b(U_n)}] \cdot \Pr[\mathsf{D}(f(U_n), c) = 0 \mid c = \overline{b(U_n)}] \\ &= \frac{1}{2} \cdot (\delta + \varepsilon) + \frac{1}{2}(1 - \delta + \varepsilon) = \frac{1}{2} + \varepsilon. \end{aligned}$$

Remark 14

Prediction to distinguishing (homework)

Remark 14

- Prediction to distinguishing (homework)
- PRG from any OWF: (1) Regular OWFs, first use pairwise hashing to convert into "almost" permutation. (2) Any OWF, harder

PRG Length Extension

Construction 15 (iterated function)

Given $g: \{0,1\}^n \mapsto \{0,1\}^{n+1}$ and $i \in \mathbb{N}$, define $g^i: \{0,1\}^n \mapsto \{0,1\}^{n+i}$ as $g^i(x) = g(x)_1, g^{i-1}(g(x)_{2,...,n+1}),$ where $g^0(x) = x$.

PRG Length Extension

Construction 15 (iterated function)

Given $g: \{0,1\}^n \mapsto \{0,1\}^{n+1}$ and $i \in \mathbb{N}$, define $g^i: \{0,1\}^n \mapsto \{0,1\}^{n+i}$ as $g^i(x) = g(x)_1, g^{i-1}(g(x)_{2,...,n+1}),$ where $g^0(x) = x$.

Claim 16

Let $g: \{0, 1\}^n \mapsto \{0, 1\}^{n+1}$ be a PRG, then $g^{t(n)}: \{0, 1\}^n \mapsto \{0, 1\}^{n+t(n)}$ is a PRG, for any $t \in \text{poly}$.

PRG Length Extension

Construction 15 (iterated function)

Given $g: \{0,1\}^n \mapsto \{0,1\}^{n+1}$ and $i \in \mathbb{N}$, define $g^i: \{0,1\}^n \mapsto \{0,1\}^{n+i}$ as $g^i(x) = g(x)_1, g^{i-1}(g(x)_{2,...,n+1}),$ where $g^0(x) = x$.

Claim 16

Let $g: \{0,1\}^n \mapsto \{0,1\}^{n+1}$ be a PRG, then $g^{t(n)}: \{0,1\}^n \mapsto \{0,1\}^{n+t(n)}$ is a PRG, for any $t \in poly$.

Proof: Assume \exists a PPT D, an infinite set $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly}$ with

$$\left|\Delta_{g^t(U_n),U_{n+t(n)}}^{\mathsf{D}}\right| > \varepsilon(n) = 1/\rho(n),$$

for any $n \in \mathcal{I}$. We use D for breaking the hardness of g.
► Fix $n \in \mathbb{N}$, for $i \in \{0, ..., t = t(n)\}$, let $H^i = U_{t-i}, g^i(U_n)$ (i.e., the distribution of H^i is $(x, g^i(x'))_{x \leftarrow \{0,1\}^{t-i}, x' \leftarrow \{0,1\}^n}$)

- ► Fix $n \in \mathbb{N}$, for $i \in \{0, ..., t = t(n)\}$, let $H^i = U_{t-i}, g^i(U_n)$ (i.e., the distribution of H^i is $(x, g^i(x'))_{x \leftarrow \{0,1\}^{t-i}, x' \leftarrow \{0,1\}^n}$)
- Note that $H^0 \equiv U_{n+t}$ and $H^t \equiv g^t(U_n)$.

- ► Fix $n \in \mathbb{N}$, for $i \in \{0, ..., t = t(n)\}$, let $H^i = U_{t-i}, g^i(U_n)$ (i.e., the distribution of H^i is $(x, g^i(x'))_{x \leftarrow \{0,1\}^{t-i}, x' \leftarrow \{0,1\}^n}$)
- Note that $H^0 \equiv U_{n+t}$ and $H^t \equiv g^t(U_n)$.

Algorithm 17 (D')

Input: 1^{n} and $y \in \{0, 1\}^{n+1}$

- **1.** Sample $i \leftarrow [t]$
- **2.** Return $D(1^n, U_{t-i}, y_1, g^{i-1}(y_{2,...,n+1}))$.

- ► Fix $n \in \mathbb{N}$, for $i \in \{0, ..., t = t(n)\}$, let $H^i = U_{t-i}, g^i(U_n)$ (i.e., the distribution of H^i is $(x, g^i(x'))_{x \leftarrow \{0,1\}^{t-i}, x' \leftarrow \{0,1\}^n}$)
- Note that $H^0 \equiv U_{n+t}$ and $H^t \equiv g^t(U_n)$.

Algorithm 17 (D')

Input: 1^{n} and $y \in \{0, 1\}^{n+1}$

- **1.** Sample $i \leftarrow [t]$
- **2.** Return $D(1^n, U_{t-i}, y_1, g^{i-1}(y_{2,...,n+1}))$.

Claim 18

It holds that $\left|\Delta_{g(U_n),U_{n+1}}^{D'}\right| > \varepsilon(n)/t(n)$

- ► Fix $n \in \mathbb{N}$, for $i \in \{0, ..., t = t(n)\}$, let $H^i = U_{t-i}, g^i(U_n)$ (i.e., the distribution of H^i is $(x, g^i(x'))_{x \leftarrow \{0,1\}^{t-i}, x' \leftarrow \{0,1\}^n}$)
- Note that $H^0 \equiv U_{n+t}$ and $H^t \equiv g^t(U_n)$.

Algorithm 17 (D')

Input: 1^{n} and $y \in \{0, 1\}^{n+1}$

- **1.** Sample $i \leftarrow [t]$
- **2.** Return $D(1^n, U_{t-i}, y_1, g^{i-1}(y_{2,...,n+1}))$.

Claim 18

It holds that $\left|\Delta_{g(U_n),U_{n+1}}^{\mathsf{D}'}\right| > \varepsilon(n)/t(n)$

Proof: ...