Foundation of Cryptography, Lecture 2 Pseudorandom Generators

Benny Applebaum \& Iftach Haitner, Tel Aviv University

Tel Aviv University.
November 10, 2016

Part I

Statistical Vs. Computational distance

Section 1

Distributions and Statistical Distance

Distributions and Statistical Distance

Let P and Q be two distributions over a finite set \mathcal{U}. Their statistical distance (also known as, variation distance) is defined as

$$
\mathrm{SD}(P, Q):=\frac{1}{2} \sum_{x \in \mathcal{U}}|P(x)-Q(x)|=\max _{\mathcal{S} \subseteq \mathcal{U}}(P(\mathcal{S})-Q(\mathcal{S}))
$$

We will only consider finite distributions.

Distributions and Statistical Distance

Let P and Q be two distributions over a finite set \mathcal{U}. Their statistical distance (also known as, variation distance) is defined as

$$
\mathrm{SD}(P, Q):=\frac{1}{2} \sum_{x \in \mathcal{U}}|P(x)-Q(x)|=\max _{\mathcal{S} \subseteq \mathcal{U}}(P(\mathcal{S})-Q(\mathcal{S}))
$$

We will only consider finite distributions.

Claim 1

For any pair of (finite) distribution P and Q, it holds that

$$
\operatorname{SD}(P, Q)=\max _{D}\left\{\operatorname{Pr}_{x \leftarrow P}[\mathrm{D}(x)=1]-\operatorname{Pr}_{x \leftarrow Q}[\mathrm{D}(x)=1]\right\},
$$

where D is any algorithm.

Distributions and Statistical Distance

Let P and Q be two distributions over a finite set \mathcal{U}. Their statistical distance (also known as, variation distance) is defined as

$$
\mathrm{SD}(P, Q):=\frac{1}{2} \sum_{x \in \mathcal{U}}|P(x)-Q(x)|=\max _{\mathcal{S} \subseteq \mathcal{U}}(P(\mathcal{S})-Q(\mathcal{S}))
$$

We will only consider finite distributions.

Claim 1

For any pair of (finite) distribution P and Q, it holds that

$$
\operatorname{SD}(P, Q)=\max _{D}\left\{\operatorname{Pr}_{x \leftarrow P}[\mathrm{D}(x)=1]-\operatorname{Pr}_{x \leftarrow Q}[\mathrm{D}(x)=1]\right\},
$$

where D is any algorithm.
Interpretation?

Some useful facts

Let P, Q, R be finite distributions, then
Triangle inequality:

$$
\mathrm{SD}(P, R) \leq \mathrm{SD}(P, Q)+\mathrm{SD}(Q, R)
$$

Repeated sampling:

$$
\mathrm{SD}((P, P),(Q, Q)) \leq 2 \cdot \mathrm{SD}(P, Q)
$$

Distribution ensembles and statistical indistinguishability

Definition 2 (distribution ensembles)

$\mathcal{P}=\left\{P_{n}\right\}_{n \in \mathbb{N}}$ is a distribution ensemble, if P_{n} is a (finite) distribution for any $n \in \mathbb{N}$.
\mathcal{P} is efficiently samplable (or just efficient), if \exists PPT Samp with $\operatorname{Sam}\left(1^{n}\right) \equiv P_{n}$.

Distribution ensembles and statistical indistinguishability

Definition 2 (distribution ensembles)

$\mathcal{P}=\left\{P_{n}\right\}_{n \in \mathbb{N}}$ is a distribution ensemble, if P_{n} is a (finite) distribution for any $n \in \mathbb{N}$.
\mathcal{P} is efficiently samplable (or just efficient), if \exists PPT Samp with $\operatorname{Sam}\left(1^{n}\right) \equiv P_{n}$.

Definition 3 (statistical indistinguishability)

Two distribution ensembles \mathcal{P} and \mathcal{Q} are statistically indistinguishable, if $\mathrm{SD}\left(P_{n}, Q_{n}\right)=\operatorname{neg}(n)$.

Distribution ensembles and statistical indistinguishability

Definition 2 (distribution ensembles)

$\mathcal{P}=\left\{P_{n}\right\}_{n \in \mathbb{N}}$ is a distribution ensemble, if P_{n} is a (finite) distribution for any $n \in \mathbb{N}$.
\mathcal{P} is efficiently samplable (or just efficient), if \exists PPT Samp with $\operatorname{Sam}\left(1^{n}\right) \equiv P_{n}$.

Definition 3 (statistical indistinguishability)

Two distribution ensembles \mathcal{P} and \mathcal{Q} are statistically indistinguishable, if $\mathrm{SD}\left(P_{n}, Q_{n}\right)=\operatorname{neg}(n)$.

Alternatively, if $\left|\Delta_{(\mathcal{P}, \mathcal{Q})}^{\mathrm{D}}(n)\right|=\operatorname{neg}(n)$, for any algorithm D , where

$$
\begin{equation*}
\Delta_{(\mathcal{P}, \mathcal{Q})}^{\mathrm{D}}(n):=\operatorname{Pr}_{x \leftarrow P_{n}}\left[\mathrm{D}\left(1^{n}, x\right)=1\right]-\operatorname{Pr}_{x \leftarrow Q_{n}}\left[\mathrm{D}\left(1^{n}, x\right)=1\right] \tag{1}
\end{equation*}
$$

Distribution ensembles and statistical indistinguishability

Definition 2 (distribution ensembles)

$\mathcal{P}=\left\{P_{n}\right\}_{n \in \mathbb{N}}$ is a distribution ensemble, if P_{n} is a (finite) distribution for any $n \in \mathbb{N}$.
\mathcal{P} is efficiently samplable (or just efficient), if \exists PPT Samp with $\operatorname{Sam}\left(1^{n}\right) \equiv P_{n}$.

Definition 3 (statistical indistinguishability)

Two distribution ensembles \mathcal{P} and \mathcal{Q} are statistically indistinguishable, if $\mathrm{SD}\left(P_{n}, Q_{n}\right)=\operatorname{neg}(n)$.

Alternatively, if $\left|\Delta_{(\mathcal{P}, \mathcal{Q})}^{\mathrm{D}}(n)\right|=\operatorname{neg}(n)$, for any algorithm D , where

$$
\begin{equation*}
\Delta_{(\mathcal{P}, \mathcal{Q})}^{\mathrm{D}}(n):=\operatorname{Pr}_{x \leftarrow P_{n}}\left[\mathrm{D}\left(1^{n}, x\right)=1\right]-\operatorname{Pr}_{x \leftarrow Q_{n}}\left[\mathrm{D}\left(1^{n}, x\right)=1\right] \tag{1}
\end{equation*}
$$

Section 2

Computational Indistinguishability

Computational Indistinguishability

Definition 4 (computational indistinguishability)

Two distribution ensembles \mathcal{P} and \mathcal{Q} are computationally indistinguishable, if $\left|\Delta_{(\mathcal{P}, \mathcal{Q})}^{\mathrm{D}}(n)\right|=\operatorname{neg}(n)$, for any PPT D.

Computational Indistinguishability

Definition 4 (computational indistinguishability)

Two distribution ensembles \mathcal{P} and \mathcal{Q} are computationally indistinguishable, if $\left|\Delta_{(\mathcal{P}, \mathcal{Q})}^{\mathrm{D}}(n)\right|=\operatorname{neg}(n)$, for any PPT D.

- Can it be different from the statistical case?

Computational Indistinguishability

Definition 4 (computational indistinguishability)

Two distribution ensembles \mathcal{P} and \mathcal{Q} are computationally indistinguishable, if $\left|\Delta_{(\mathcal{P}, \mathcal{Q})}^{\mathrm{D}}(n)\right|=\operatorname{neg}(n)$, for any PPT D.

- Can it be different from the statistical case?
- Non uniform variant

Computational Indistinguishability

Definition 4 (computational indistinguishability)

Two distribution ensembles \mathcal{P} and \mathcal{Q} are computationally indistinguishable, if $\left|\Delta_{(\mathcal{P}, \mathcal{Q})}^{\mathrm{D}}(n)\right|=\operatorname{neg}(n)$, for any PPT D.

- Can it be different from the statistical case?
- Non uniform variant
- Sometime behaves different then expected!

Repeated sampling

Question 5

Assume that \mathcal{P} and \mathcal{Q} are computationally indistinguishable, is it always true that $\mathcal{P}^{2}=(\mathcal{P}, \mathcal{P})$ and $\mathcal{Q}^{2}=(\mathcal{Q}, \mathcal{Q})$ are?

Repeated sampling

Question 5

Assume that \mathcal{P} and \mathcal{Q} are computationally indistinguishable, is it always true that $\mathcal{P}^{2}=(\mathcal{P}, \mathcal{P})$ and $\mathcal{Q}^{2}=(\mathcal{Q}, \mathcal{Q})$ are ?

Let D be an algorithm and let $\delta(n)=\left|\Delta_{\left(\mathcal{P}^{2}, \mathcal{Q}^{2}\right)}^{\mathrm{D}}(n)\right|$

Repeated sampling

Question 5

Assume that \mathcal{P} and \mathcal{Q} are computationally indistinguishable, is it always true that $\mathcal{P}^{2}=(\mathcal{P}, \mathcal{P})$ and $\mathcal{Q}^{2}=(\mathcal{Q}, \mathcal{Q})$ are ?

Let D be an algorithm and let $\delta(n)=\left|\Delta_{\left(\mathcal{P}^{2}, \mathcal{Q}^{2}\right)}^{\mathrm{D}}(n)\right|$

$$
\begin{aligned}
\delta(n)= & \left|\operatorname{Pr}_{x \leftarrow P_{n}^{2}}[\mathrm{D}(x)=1]-\operatorname{Pr}_{x \leftarrow Q_{n}^{2}}[\mathrm{D}(x)=1]\right| \\
\leq & \left|\operatorname{Pr}_{x \leftarrow P_{n}^{2}}^{\operatorname{Pr}}[\mathrm{D}(x)=1]-\operatorname{Pr}_{x \leftarrow\left(P_{n}, Q_{n}\right)}[\mathrm{D}(x)=1]\right| \\
& +\left|\operatorname{Pr}_{x \leftarrow\left(P_{n}, Q_{n}\right)}[\mathrm{D}(x)=1]-\operatorname{Pr}_{x \leftarrow Q_{n}^{2}}[\mathrm{D}(x)=1]\right|
\end{aligned}
$$

Repeated sampling

Question 5

Assume that \mathcal{P} and \mathcal{Q} are computationally indistinguishable, is it always true that $\mathcal{P}^{2}=(\mathcal{P}, \mathcal{P})$ and $\mathcal{Q}^{2}=(\mathcal{Q}, \mathcal{Q})$ are ?

Let D be an algorithm and let $\delta(n)=\left|\Delta_{\left(\mathcal{P}^{2}, \mathcal{Q}^{2}\right)}^{\mathrm{D}}(n)\right|$

$$
\begin{aligned}
\delta(n)= & \left|\operatorname{Pr}_{x \leftarrow P_{n}^{2}}[\mathrm{D}(x)=1]-\underset{x \leftarrow Q_{n}^{2}}{\operatorname{Pr}}[\mathrm{D}(x)=1]\right| \\
\leq & \left|\operatorname{Pr}_{x \leftarrow P_{n}^{2}}[\mathrm{D}(x)=1]-\underset{x \leftarrow\left(P_{n}, Q_{n}\right)}{\operatorname{Pr}}[\mathrm{D}(x)=1]\right| \\
& +\left|\operatorname{Pr}_{x \leftarrow\left(P_{n}, Q_{n}\right)}[\mathrm{D}(x)=1]-\operatorname{Pr}_{x \leftarrow Q_{n}^{2}}[\mathrm{D}(x)=1]\right| \\
= & \left|\Delta_{\left(\mathcal{P}^{2},(\mathcal{P}, \mathcal{Q})\right.}^{\mathrm{D}}(n)\right|+\left|\Delta_{\left((\mathcal{P}, \mathcal{Q}), \mathcal{Q}^{2}\right)}^{\mathrm{D}}(n)\right|
\end{aligned}
$$

Repeated sampling

Question 5

Assume that \mathcal{P} and \mathcal{Q} are computationally indistinguishable, is it always true that $\mathcal{P}^{2}=(\mathcal{P}, \mathcal{P})$ and $\mathcal{Q}^{2}=(\mathcal{Q}, \mathcal{Q})$ are ?

Let D be an algorithm and let $\delta(n)=\left|\Delta_{\left(\mathcal{P}^{2}, \mathcal{Q}^{2}\right)}^{\mathrm{D}}(n)\right|$

$$
\begin{aligned}
\delta(n)= & \left|\operatorname{Pr}_{x \leftarrow P_{n}^{2}}[\mathrm{D}(x)=1]-\underset{x \leftarrow Q_{n}^{2}}{\operatorname{Pr}}[\mathrm{D}(x)=1]\right| \\
\leq & \left|\operatorname{Pr}_{x \leftarrow P_{n}^{2}}[\mathrm{D}(x)=1]-\underset{x \leftarrow\left(P_{n}, Q_{n}\right)}{\operatorname{Pr}}[\mathrm{D}(x)=1]\right| \\
& +\left|\operatorname{Pr}_{x \leftarrow\left(P_{n}, Q_{n}\right)}[\mathrm{D}(x)=1]-\operatorname{Pr}_{x \leftarrow Q_{n}^{2}}[\mathrm{D}(x)=1]\right| \\
= & \left|\Delta_{\left(\mathcal{P}^{2},(\mathcal{P}, \mathcal{Q})\right.}^{\mathrm{D}}(n)\right|+\left|\Delta_{\left((\mathcal{P}, \mathcal{Q}), \mathcal{Q}^{2}\right)}^{\mathrm{D}}(n)\right|
\end{aligned}
$$

So either $\left|\Delta_{\left(\mathcal{P}^{2},(\mathcal{P}, \mathcal{Q})\right.}^{\mathrm{D}}(n)\right| \geq \delta(n) / 2$, or $\left|\Delta_{\left((\mathcal{P}, \mathcal{Q}), \mathcal{Q}^{2}\right)}^{\mathrm{D}}(n)\right| \geq \delta(n) / 2$

- Assume D is a PPT and that $\left|\Delta_{\left(\mathcal{P}^{2}, \mathcal{Q}^{2}\right)}^{\mathrm{D}}(n)\right| \geq 1 / p(n)$ for some $p \in$ poly and infinitely many n 's, and assume wig. that $\left|\Delta_{\mathcal{P}^{2},(\mathcal{P}, \mathcal{Q})}^{\mathrm{D}}(n)\right| \geq 1 / 2 p(n)$ for infinitely many n 's.
- Assume D is a PPT and that $\left|\Delta_{\left(\mathcal{P}^{2}, \mathcal{Q}^{2}\right)}^{\mathrm{D}}(n)\right| \geq 1 / p(n)$ for some $p \in$ poly and infinitely many n 's, and assume wlg. that $\left|\Delta_{\mathcal{P}^{2},(\mathcal{P}, \mathcal{Q})}^{\mathrm{D}}(n)\right| \geq 1 / 2 p(n)$ for infinitely many n 's.
- Can we use D to contradict the fact that \mathcal{P} and \mathcal{Q} are computationally close?
- Assume D is a PPT and that $\left|\Delta_{\left(\mathcal{P}^{2}, \mathcal{Q}^{2}\right)}^{\mathrm{D}}(n)\right| \geq 1 / p(n)$ for some $p \in$ poly and infinitely many n 's, and assume wlg. that $\left|\Delta_{\mathcal{P}^{2},(\mathcal{P}, \mathcal{Q})}^{\mathrm{D}}(n)\right| \geq 1 / 2 p(n)$ for infinitely many n 's.
- Can we use D to contradict the fact that \mathcal{P} and \mathcal{Q} are computationally close?
- Assuming that \mathcal{P} and \mathcal{Q} are efficiently samplable
- Assume D is a PPT and that $\left|\Delta_{\left(\mathcal{P}^{2}, \mathcal{Q}^{2}\right)}^{\mathrm{D}}(n)\right| \geq 1 / p(n)$ for some $p \in$ poly and infinitely many n 's, and assume wlg. that $\left|\Delta_{\mathcal{P}^{2},(\mathcal{P}, \mathcal{Q})}^{\mathrm{D}}(n)\right| \geq 1 / 2 p(n)$ for infinitely many n 's.
- Can we use D to contradict the fact that \mathcal{P} and \mathcal{Q} are computationally close?
- Assuming that \mathcal{P} and \mathcal{Q} are efficiently samplable
- Non-uniform settings

Repeated sampling cont.

Given $t=t(n) \in \mathbb{N}$ and a distribution ensemble $\mathcal{P}=\left\{P_{n}\right\}_{n \in \mathbb{N}}$, let $\mathcal{P}^{t}=\left\{P_{n}^{t(n)}\right\}_{n \in \mathbb{N}}$.

Repeated sampling cont.

Given $t=t(n) \in \mathbb{N}$ and a distribution ensemble $\mathcal{P}=\left\{P_{n}\right\}_{n \in \mathbb{N}}$, let $\mathcal{P}^{t}=\left\{P_{n}^{t(n)}\right\}_{n \in \mathbb{N}}$.

Question 6

Let $t=t(n) \leq \operatorname{poly}(n)$ be an eff. computable integer function. Assume that \mathcal{P} and \mathcal{Q} are eff. samplable and computationally indistinguishable, does it mean that \mathcal{P}^{t} and \mathcal{Q}^{t} are?

Repeated sampling cont.

Given $t=t(n) \in \mathbb{N}$ and a distribution ensemble $\mathcal{P}=\left\{P_{n}\right\}_{n \in \mathbb{N}}$, let $\mathcal{P}^{t}=\left\{P_{n}^{t(n)}\right\}_{n \in \mathbb{N}}$.

Question 6

Let $t=t(n) \leq \operatorname{poly}(n)$ be an eff. computable integer function. Assume that \mathcal{P} and \mathcal{Q} are eff. samplable and computationally indistinguishable, does it mean that \mathcal{P}^{t} and \mathcal{Q}^{t} are?

Proof:

Repeated sampling cont.

Given $t=t(n) \in \mathbb{N}$ and a distribution ensemble $\mathcal{P}=\left\{P_{n}\right\}_{n \in \mathbb{N}}$, let $\mathcal{P}^{t}=\left\{P_{n}^{t(n)}\right\}_{n \in \mathbb{N}}$.

Question 6

Let $t=t(n) \leq \operatorname{poly}(n)$ be an eff. computable integer function. Assume that \mathcal{P} and \mathcal{Q} are eff. samplable and computationally indistinguishable, does it mean that \mathcal{P}^{t} and \mathcal{Q}^{t} are?

Proof:

- Induction?

Repeated sampling cont.

Given $t=t(n) \in \mathbb{N}$ and a distribution ensemble $\mathcal{P}=\left\{P_{n}\right\}_{n \in \mathbb{N}}$, let $\mathcal{P}^{t}=\left\{P_{n}^{t(n)}\right\}_{n \in \mathbb{N}}$.

Question 6

Let $t=t(n) \leq \operatorname{poly}(n)$ be an eff. computable integer function. Assume that \mathcal{P} and \mathcal{Q} are eff. samplable and computationally indistinguishable, does it mean that \mathcal{P}^{t} and \mathcal{Q}^{t} are?

Proof:

- Induction?
- Hybrid

Hybrid argument

Let D be an algorithm and let $\delta(n)=\left|\Delta_{\left(\mathcal{P}^{t}, \mathcal{Q}^{t}\right)}^{\mathrm{D}}(n)\right|$.

- Fix $n \in \mathbb{N}$, and for $i \in\{0, \ldots, t=t(n)\}$, let $H^{i}=\left(p_{1}, \ldots, p_{i}, q_{i+1}, \ldots, q_{t}\right)$, where the p 's [resp., q's] are uniformly (and independently) chosen from P_{n} [resp., from $\left.Q_{n}\right]$.

Hybrid argument

Let D be an algorithm and let $\delta(n)=\left|\Delta_{\left(\mathcal{P}^{t}, \mathcal{Q}^{t}\right)}^{\mathrm{D}}(n)\right|$.

- Fix $n \in \mathbb{N}$, and for $i \in\{0, \ldots, t=t(n)\}$, let $H^{i}=\left(p_{1}, \ldots, p_{i}, q_{i+1}, \ldots, q_{t}\right)$, where the p 's [resp., q's] are uniformly (and independently) chosen from P_{n} [resp., from $\left.Q_{n}\right]$.
- Since $\delta(n)=\left|\Delta_{H^{+}, H^{0}}^{\mathrm{D}}(t)\right|=\left|\sum_{i \in[t]} \Delta_{H^{i}, H^{i-1}}^{\mathrm{D}}(t)\right|$, there exists $i \in[t]$ with $\left|\Delta_{H^{i}, H^{i-1}}^{\mathrm{D}}(t)\right| \geq \delta(n) / t(n)$.

Hybrid argument

Let D be an algorithm and let $\delta(n)=\left|\Delta_{\left(\mathcal{P}^{t}, \mathcal{Q}^{t}\right)}^{\mathrm{D}}(n)\right|$.

- Fix $n \in \mathbb{N}$, and for $i \in\{0, \ldots, t=t(n)\}$, let $H^{i}=\left(p_{1}, \ldots, p_{i}, q_{i+1}, \ldots, q_{t}\right)$, where the p 's [resp., q's] are uniformly (and independently) chosen from $P_{n}\left[\right.$ resp., from $\left.Q_{n}\right]$.
- Since $\delta(n)=\left|\Delta_{H^{t}, H^{0}}^{\mathrm{D}}(t)\right|=\left|\sum_{i \in[t]} \Delta_{H^{i}, H^{i-1}}^{\mathrm{D}}(t)\right|$, there exists $i \in[t]$ with $\left|\Delta_{H^{i}, H^{i-1}}^{\mathrm{D}}(t)\right| \geq \delta(n) / t(n)$.
- How do we use it?

Using hybrid argument via estimation

Algorithm 7 (D^{\prime})

Input: 1^{n} and $x \in\{0,1\}^{*}$

1. Find $i \in[t]$ with $\left|\Delta_{H^{i}, H^{i-1}}^{\mathrm{D}}(t)\right| \geq \delta(n) / 2 t(n)$
2. Let $\left(p_{1}, \ldots, p_{i}, q_{i+1}, \ldots, q_{t}\right) \leftarrow H^{i}$
3. Return $\mathrm{D}\left(1^{t}, p_{1}, \ldots, p_{i-1}, x, q_{i+1}, \ldots, q_{t}\right)$,

Using hybrid argument via estimation

Algorithm 7 (D^{\prime})

Input: 1^{n} and $x \in\{0,1\}^{*}$

1. Find $i \in[t]$ with $\left|\Delta_{H^{i}, H^{i-1}}^{\mathrm{D}}(t)\right| \geq \delta(n) / 2 t(n)$
2. Let $\left(p_{1}, \ldots, p_{i}, q_{i+1}, \ldots, q_{t}\right) \leftarrow H^{i}$
3. Return $\mathrm{D}\left(1^{t}, p_{1}, \ldots, p_{i-1}, x, q_{i+1}, \ldots, q_{t}\right)$,
4. how do we find i ? why $\delta(n) / 2 t(n)$

Using hybrid argument via estimation

Algorithm 7 (D^{\prime})

Input: 1^{n} and $x \in\{0,1\}^{*}$

1. Find $i \in[t]$ with $\left|\Delta_{H^{i}, H^{i-1}}^{\mathrm{D}}(t)\right| \geq \delta(n) / 2 t(n)$
2. Let $\left(p_{1}, \ldots, p_{i}, q_{i+1}, \ldots, q_{t}\right) \leftarrow H^{i}$
3. Return $\mathrm{D}\left(1^{t}, p_{1}, \ldots, p_{i-1}, x, q_{i+1}, \ldots, q_{t}\right)$,
4. how do we find i ? why $\delta(n) / 2 t(n)$
5. Easy in the non-uniform case

Using hybrid argument via sampling

```
Algorithm 8 (D')
Input: 1n and x\in{0,1}*
    1. Sample i}\leftarrow[t=t(n)
    2. Let }(\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{i}{},\mp@subsup{q}{i+1}{},\ldots,\mp@subsup{q}{t}{})\leftarrow\mp@subsup{H}{}{i
    3. Return D(1 }\mp@subsup{}{}{t},\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{i-1}{},x,\mp@subsup{q}{i+1}{},\ldots,\mp@subsup{q}{t}{})\mathrm{ .
```


Using hybrid argument via sampling

Algorithm 8 (D^{\prime})

Input: 1^{n} and $x \in\{0,1\}^{*}$

1. Sample $i \leftarrow[t=t(n)]$
2. Let $\left(p_{1}, \ldots, p_{i}, q_{i+1}, \ldots, q_{t}\right) \leftarrow H^{i}$
3. Return $\mathrm{D}\left(1^{t}, p_{1}, \ldots, p_{i-1}, x, q_{i+1}, \ldots, q_{t}\right)$.

$$
\left|\Delta_{(\mathcal{P}, \mathcal{Q})}^{\mathrm{D}^{\prime}}(n)\right|=\left|\underset{p \leftarrow P_{n}}{\operatorname{Pr}^{\prime}}\left[\mathrm{D}^{\prime}(p)=1\right]-\underset{q \leftarrow Q_{n}}{\operatorname{Pr}}\left[\mathrm{D}^{\prime}(q)=1\right]\right|
$$

Using hybrid argument via sampling

Algorithm 8 (D^{\prime})

Input: 1^{n} and $x \in\{0,1\}^{*}$

1. Sample $i \leftarrow[t=t(n)]$
2. Let $\left(p_{1}, \ldots, p_{i}, q_{i+1}, \ldots, q_{t}\right) \leftarrow H^{i}$
3. Return $\mathrm{D}\left(1^{t}, p_{1}, \ldots, p_{i-1}, x, q_{i+1}, \ldots, q_{t}\right)$.

$$
\begin{aligned}
\left|\Delta_{(\mathcal{P}, \mathcal{Q})}^{\mathrm{D}^{\prime}}(n)\right| & =\left|\operatorname{Pr}_{p \leftarrow P_{n}}\left[\mathrm{D}^{\prime}(p)=1\right]-\operatorname{Pr}_{q \leftarrow Q_{n}}\left[\mathrm{D}^{\prime}(q)=1\right]\right| \\
& =\left|\frac{1}{t} \sum_{i \in[t]} \operatorname{Pr}_{x \leftarrow H_{i}}[\mathrm{D}(x)=1]-\frac{1}{t} \sum_{i \in[t]} \operatorname{Pr}_{\substack{ \\
H_{i-1}}}[\mathrm{D}(x)=1]\right|
\end{aligned}
$$

Using hybrid argument via sampling

Algorithm 8 (D^{\prime})

 Input: 1^{n} and $x \in\{0,1\}^{*}$1. Sample $i \leftarrow[t=t(n)]$
2. Let $\left(p_{1}, \ldots, p_{i}, q_{i+1}, \ldots, q_{t}\right) \leftarrow H^{i}$
3. Return $\mathrm{D}\left(1^{t}, p_{1}, \ldots, p_{i-1}, x, q_{i+1}, \ldots, q_{t}\right)$.

$$
\begin{aligned}
\left|\Delta_{(\mathcal{P}, \mathcal{Q})}^{\mathrm{D}^{\prime}}(n)\right| & =\left|\underset{p \leftarrow P_{n}}{\operatorname{Pr}_{r}}\left[\mathrm{D}^{\prime}(p)=1\right]-\underset{q \leftarrow Q_{n}}{\operatorname{Pr}}\left[\mathrm{D}^{\prime}(q)=1\right]\right| \\
& =\left|\frac{1}{t} \sum_{i \in[t]} \operatorname{Pr}_{x+H_{t}}[\mathrm{D}(x)=1]-\frac{1}{t} \sum_{i \in[t]} \operatorname{Pr}_{x \leftarrow H_{t-1}}[\mathrm{P}(x)=1]\right| \\
& =\left|\frac{1}{t}\left(\operatorname{Pr}_{x \leftarrow H_{t}}[\mathrm{P}(x)=1]-\underset{x \leftarrow H_{0}}{\operatorname{Pr}}[\mathrm{D}(x)=1]\right)\right|
\end{aligned}
$$

Using hybrid argument via sampling

Algorithm 8 (D^{\prime})

 Input: 1^{n} and $x \in\{0,1\}^{*}$1. Sample $i \leftarrow[t=t(n)]$
2. Let $\left(p_{1}, \ldots, p_{i}, q_{i+1}, \ldots, q_{t}\right) \leftarrow H^{i}$
3. Return $\mathrm{D}\left(1^{t}, p_{1}, \ldots, p_{i-1}, x, q_{i+1}, \ldots, q_{t}\right)$.

$$
\begin{aligned}
\left|\Delta_{(\mathcal{P}, \mathcal{Q})}^{\mathrm{D}^{\prime}}(n)\right| & =\left|\operatorname{Pr}_{p \leftarrow P_{n}}\left[\mathrm{D}^{\prime}(p)=1\right]-\underset{q \leftarrow Q_{n}}{\operatorname{Pr}}\left[\mathrm{D}^{\prime}(q)=1\right]\right| \\
& =\left|\frac{1}{t} \sum_{i \in[t]} \operatorname{Pr}_{x+H_{t}}[\mathrm{D}(x)=1]-\frac{1}{t} \sum_{i \in[t]} \operatorname{Pr}_{x \leftarrow H_{i-1}}[\mathrm{P}(x)=1]\right| \\
& =\left|\frac{1}{t}\left(\operatorname{Pr}_{x \leftarrow H_{t}}[\mathrm{D}(x)=1]-\operatorname{Pr}_{x \leftarrow H_{0}}[\mathrm{D}(x)=1]\right)\right| \\
& =\delta(n) / t(n)
\end{aligned}
$$

Part II

Pseudorandom Generators

Pseudorandom generator

Definition 9 (pseudorandom distributions)

A distribution ensemble \mathcal{P} over $\left\{\{0,1\}^{\ell(n)}\right\}_{n \in \mathbb{N}}$ is pseudorandom, if it is computationally indistinguishable from $\left\{U_{\ell(n)}\right\}_{n \in \mathbb{N}}$.

Pseudorandom generator

Definition 9 (pseudorandom distributions)

A distribution ensemble \mathcal{P} over $\left\{\{0,1\}^{\ell(n)}\right\}_{n \in \mathbb{N}}$ is pseudorandom, if it is computationally indistinguishable from $\left\{U_{\ell(n)}\right\}_{n \in \mathbb{N}}$.

- Do such distributions exit?

Pseudorandom generator

Definition 9 (pseudorandom distributions)

A distribution ensemble \mathcal{P} over $\left\{\{0,1\}^{\ell(n)}\right\}_{n \in \mathbb{N}}$ is pseudorandom, if it is computationally indistinguishable from $\left\{U_{\ell(n)}\right\}_{n \in \mathbb{N}}$.

- Do such distributions exit?

Definition 10 (pseudorandom generators (PRGs))

An efficiently computable function $g:\{0,1\}^{n} \mapsto\{0,1\}^{\ell(n)}$ is a pseudorandom generator, if

- g is length extending (i.e., $\ell(n)>n$ for any n)
- $g\left(U_{n}\right)$ is pseudorandom

Pseudorandom generator

Definition 9 (pseudorandom distributions)

A distribution ensemble \mathcal{P} over $\left\{\{0,1\}^{\ell(n)}\right\}_{n \in \mathbb{N}}$ is pseudorandom, if it is computationally indistinguishable from $\left\{U_{\ell(n)}\right\}_{n \in \mathbb{N}}$.

- Do such distributions exit?

Definition 10 (pseudorandom generators (PRGs))

An efficiently computable function $g:\{0,1\}^{n} \mapsto\{0,1\}^{\ell(n)}$ is a pseudorandom generator, if

- g is length extending (i.e., $\ell(n)>n$ for any n)
- $g\left(U_{n}\right)$ is pseudorandom
- Do such generators exist?

Pseudorandom generator

Definition 9 (pseudorandom distributions)

A distribution ensemble \mathcal{P} over $\left\{\{0,1\}^{\ell(n)}\right\}_{n \in \mathbb{N}}$ is pseudorandom, if it is computationally indistinguishable from $\left\{U_{\ell(n)}\right\}_{n \in \mathbb{N}}$.

- Do such distributions exit?

Definition 10 (pseudorandom generators (PRGs))

An efficiently computable function $g:\{0,1\}^{n} \mapsto\{0,1\}^{\ell(n)}$ is a pseudorandom generator, if

- g is length extending (i.e., $\ell(n)>n$ for any n)
- $g\left(U_{n}\right)$ is pseudorandom
- Do such generators exist?
- Imply one-way functions (homework)

Pseudorandom generator

Definition 9 (pseudorandom distributions)

A distribution ensemble \mathcal{P} over $\left\{\{0,1\}^{\ell(n)}\right\}_{n \in \mathbb{N}}$ is pseudorandom, if it is computationally indistinguishable from $\left\{U_{\ell(n)}\right\}_{n \in \mathbb{N}}$.

- Do such distributions exit?

Definition 10 (pseudorandom generators (PRGs))

An efficiently computable function $g:\{0,1\}^{n} \mapsto\{0,1\}^{\ell(n)}$ is a pseudorandom generator, if

- g is length extending (i.e., $\ell(n)>n$ for any n)
- $g\left(U_{n}\right)$ is pseudorandom
- Do such generators exist?
- Imply one-way functions (homework)
- Do they have any use?

Section 3

Hardcore Predicates

Hardcore predicates

Definition 11 (hardcore predicates)

An efficiently computable function $b:\{0,1\}^{n} \mapsto\{0,1\}$ is a hardcore predicate of $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, if

$$
\operatorname{Pr}_{x \leftarrow\{0,1\}^{n}}[P(f(x))=b(x)] \leq \frac{1}{2}+\operatorname{neg}(n),
$$

for any PPT P.

Hardcore predicates

Definition 11 (hardcore predicates)

An efficiently computable function $b:\{0,1\}^{n} \mapsto\{0,1\}$ is a hardcore predicate of $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, if

$$
\operatorname{Pr}_{x \leftarrow\{0,1\}^{n}}[P(f(x))=b(x)] \leq \frac{1}{2}+\operatorname{neg}(n),
$$

for any PPT P.

- Does the existence of a hardcore predicate for f, implies that f is one way?

Hardcore predicates

Definition 11 (hardcore predicates)

An efficiently computable function $b:\{0,1\}^{n} \mapsto\{0,1\}$ is a hardcore predicate of $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, if

$$
\operatorname{Pr}_{x \leftarrow\{0,1\}^{n}}[P(f(x))=b(x)] \leq \frac{1}{2}+\operatorname{neg}(n),
$$

for any PPT P.

- Does the existence of a hardcore predicate for f, implies that f is one way?

Hardcore predicates

Definition 11 (hardcore predicates)

An efficiently computable function $b:\{0,1\}^{n} \mapsto\{0,1\}$ is a hardcore predicate of $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, if

$$
\operatorname{Pr}_{x \leftarrow\{0,1\}^{n}}[P(f(x))=b(x)] \leq \frac{1}{2}+\operatorname{neg}(n),
$$

for any PPT P.

- Does the existence of a hardcore predicate for f, implies that f is one way? If f is injective?

Hardcore predicates

Definition 11 (hardcore predicates)

An efficiently computable function $b:\{0,1\}^{n} \mapsto\{0,1\}$ is a hardcore predicate of $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, if

$$
\operatorname{Pr}_{x \leftarrow\{0,1\}^{n}}[P(f(x))=b(x)] \leq \frac{1}{2}+\operatorname{neg}(n),
$$

for any PPT P.

- Does the existence of a hardcore predicate for f, implies that f is one way? If f is injective?
- Fact: any OWF has a hardcore predicate (next class)

Hardcore predicates

Definition 11 (hardcore predicates)

An efficiently computable function $b:\{0,1\}^{n} \mapsto\{0,1\}$ is a hardcore predicate of $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, if

$$
\operatorname{Pr}_{x \leftarrow\{0,1\}^{n}}[P(f(x))=b(x)] \leq \frac{1}{2}+\operatorname{neg}(n),
$$

for any PPT P.

- Does the existence of a hardcore predicate for f, implies that f is one way? If f is injective?
- Fact: any OWF has a hardcore predicate (next class)
- Building blocks in constructions of PRGS from OWF

Section 4

PRGs from OWPs

OWP to PRG

Claim 12

Let $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$ be an eff. permutation and let $b:\{0,1\}^{n} \mapsto\{0,1\}$ be a hardcore predicate for f, then $g(x)=(f(x), b(x))$ is a PRG.

OWP to PRG

Claim 12

Let $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$ be an eff. permutation and let $b:\{0,1\}^{n} \mapsto\{0,1\}$ be a hardcore predicate for f, then $g(x)=(f(x), b(x))$ is a PRG.

Proof: Assume \exists a PPT D, and infinite set $\mathcal{I} \subseteq \mathbb{N}$ and $p \in$ poly with

$$
\left|\Delta_{g\left(U_{n}\right), U_{n+1}}^{\mathrm{D}}\right|>\varepsilon(n)=1 / p(n)
$$

for any $n \in \mathcal{I}$. We use D for breaking the hardness of b.

OWP to PRG

Claim 12

Let $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$ be an eff. permutation and let $b:\{0,1\}^{n} \mapsto\{0,1\}$ be a hardcore predicate for f, then $g(x)=(f(x), b(x))$ is a PRG.

Proof: Assume \exists a PPT D, and infinite set $\mathcal{I} \subseteq \mathbb{N}$ and $p \in$ poly with

$$
\left|\Delta_{g\left(U_{n}\right), U_{n+1}}^{\mathrm{D}}\right|>\varepsilon(n)=1 / p(n)
$$

for any $n \in \mathcal{I}$. We use D for breaking the hardness of b.

- We assume wig. that $\operatorname{Pr}\left[\mathrm{D}\left(g\left(U_{n}\right)\right)=1\right]-\operatorname{Pr}\left[\mathrm{D}\left(U_{n+1}\right)=1\right] \geq \varepsilon(n)$ for any $n \in \mathcal{I}$ (?), and fix $n \in \mathcal{I}$.

OWP to PRG cont.

- Let $\delta(n)=\operatorname{Pr}\left[\mathrm{D}\left(U_{n+1}\right)=1\right]$ (note that $\left.\operatorname{Pr}\left[\mathrm{D}\left(g\left(U_{n}\right)\right)=1\right]=\delta+\varepsilon\right)$.

OWP to PRG cont.

- Let $\delta(n)=\operatorname{Pr}\left[\mathrm{D}\left(U_{n+1}\right)=1\right]$ (note that $\left.\operatorname{Pr}\left[\mathrm{D}\left(g\left(U_{n}\right)\right)=1\right]=\delta+\varepsilon\right)$.
- Compute

$$
\begin{aligned}
\delta & =\operatorname{Pr}\left[\mathrm{D}\left(f\left(U_{n}\right), U_{1}\right)=1\right] \\
& =\operatorname{Pr}\left[U_{1}=b\left(U_{n}\right)\right] \cdot \operatorname{Pr}\left[\mathrm{D}\left(f\left(U_{n}\right), U_{1}\right)=1 \mid U_{1}=b\left(U_{n}\right)\right] \\
& +\operatorname{Pr}\left[U_{1}=\overline{b\left(U_{n}\right)}\right] \cdot \operatorname{Pr}\left[\mathrm{D}\left(f\left(U_{n}\right), U_{1}\right)=1 \mid U_{1}=\overline{b\left(U_{n}\right)}\right]
\end{aligned}
$$

OWP to PRG cont.

- Let $\delta(n)=\operatorname{Pr}\left[\mathrm{D}\left(U_{n+1}\right)=1\right]$ (note that $\left.\operatorname{Pr}\left[\mathrm{D}\left(g\left(U_{n}\right)\right)=1\right]=\delta+\varepsilon\right)$.
- Compute

$$
\begin{aligned}
\delta & =\operatorname{Pr}\left[\mathrm{D}\left(f\left(U_{n}\right), U_{1}\right)=1\right] \\
& =\operatorname{Pr}\left[U_{1}=b\left(U_{n}\right)\right] \cdot \operatorname{Pr}\left[\mathrm{D}\left(f\left(U_{n}\right), U_{1}\right)=1 \mid U_{1}=b\left(U_{n}\right)\right] \\
& +\operatorname{Pr}\left[U_{1}=\overline{b\left(U_{n}\right)}\right] \cdot \operatorname{Pr}\left[\mathrm{D}\left(f\left(U_{n}\right), U_{1}\right)=1 \mid U_{1}=\overline{b\left(U_{n}\right)}\right] \\
& =\frac{1}{2}(\delta+\varepsilon)+\frac{1}{2} \cdot \operatorname{Pr}\left[\mathrm{D}\left(f\left(U_{n}\right), U_{1}\right)=1 \mid U_{1}=\overline{b\left(U_{n}\right)}\right] .
\end{aligned}
$$

OWP to PRG cont.

- Let $\delta(n)=\operatorname{Pr}\left[\mathrm{D}\left(U_{n+1}\right)=1\right]$ (note that $\left.\operatorname{Pr}\left[\mathrm{D}\left(g\left(U_{n}\right)\right)=1\right]=\delta+\varepsilon\right)$.
- Compute

$$
\begin{aligned}
\delta & =\operatorname{Pr}\left[\mathrm{D}\left(f\left(U_{n}\right), U_{1}\right)=1\right] \\
& =\operatorname{Pr}\left[U_{1}=b\left(U_{n}\right)\right] \cdot \operatorname{Pr}\left[\mathrm{D}\left(f\left(U_{n}\right), U_{1}\right)=1 \mid U_{1}=b\left(U_{n}\right)\right] \\
& +\operatorname{Pr}\left[U_{1}=\overline{b\left(U_{n}\right)}\right] \cdot \operatorname{Pr}\left[\mathrm{D}\left(f\left(U_{n}\right), U_{1}\right)=1 \mid U_{1}=\overline{b\left(U_{n}\right)}\right] \\
& =\frac{1}{2}(\delta+\varepsilon)+\frac{1}{2} \cdot \operatorname{Pr}\left[\mathrm{D}\left(f\left(U_{n}\right), U_{1}\right)=1 \mid U_{1}=\overline{b\left(U_{n}\right)}\right] .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\operatorname{Pr}\left[\mathrm{D}\left(f\left(U_{n}\right), \overline{b\left(U_{n}\right)}\right)=1\right]=\delta-\varepsilon \tag{2}
\end{equation*}
$$

OWP to PRG cont.

- $\operatorname{Pr}\left[\mathrm{D}\left(f\left(U_{n}\right), b\left(U_{n}\right)\right)=1\right]=\delta+\varepsilon$
- $\operatorname{Pr}\left[\mathrm{D}\left(f\left(U_{n}\right), \overline{b\left(U_{n}\right)}\right)=1\right]=\delta-\varepsilon$

OWP to PRG cont.

- $\operatorname{Pr}\left[\mathrm{D}\left(f\left(U_{n}\right), b\left(U_{n}\right)\right)=1\right]=\delta+\varepsilon$
- $\operatorname{Pr}\left[\mathrm{D}\left(f\left(U_{n}\right), \overline{b\left(U_{n}\right)}\right)=1\right]=\delta-\varepsilon$
- Consider the following algorithm for predicting b :

Algorithm 13 (P)

Input: $y \in\{0,1\}^{n}$

1. Flip a random coin $c \leftarrow\{0,1\}$.
2. If $\mathrm{D}(y, c)=1$ output c, otherwise, output \bar{c}.

OWP to PRG cont.

- $\operatorname{Pr}\left[\mathrm{D}\left(f\left(U_{n}\right), b\left(U_{n}\right)\right)=1\right]=\delta+\varepsilon$
- $\operatorname{Pr}\left[\mathrm{D}\left(f\left(U_{n}\right), \overline{b\left(U_{n}\right)}\right)=1\right]=\delta-\varepsilon$
- Consider the following algorithm for predicting b :

Algorithm 13 (P)

Input: $y \in\{0,1\}^{n}$

1. Flip a random coin $c \leftarrow\{0,1\}$.
2. If $\mathrm{D}(y, c)=1$ output c, otherwise, output \bar{c}.

- It follows that

$$
\begin{aligned}
& \operatorname{Pr}\left[\operatorname{P}\left(f\left(U_{n}\right)\right)=b\left(U_{n}\right)\right] \\
& =\quad \operatorname{Pr}\left[c=b\left(U_{n}\right)\right] \cdot \operatorname{Pr}\left[\mathrm{D}\left(f\left(U_{n}\right), c\right)=1 \mid c=b\left(U_{n}\right)\right] \\
& \quad+\operatorname{Pr}\left[c=\overline{b\left(U_{n}\right)}\right] \cdot \operatorname{Pr}\left[\mathrm{D}\left(f\left(U_{n}\right), c\right)=0 \mid c=\overline{b\left(U_{n}\right)}\right]
\end{aligned}
$$

OWP to PRG cont.

- $\operatorname{Pr}\left[\mathrm{D}\left(f\left(U_{n}\right), b\left(U_{n}\right)\right)=1\right]=\delta+\varepsilon$
- $\operatorname{Pr}\left[\mathrm{D}\left(f\left(U_{n}\right), \overline{b\left(U_{n}\right)}\right)=1\right]=\delta-\varepsilon$
- Consider the following algorithm for predicting b :

Algorithm 13 (P)

Input: $y \in\{0,1\}^{n}$

1. Flip a random coin $c \leftarrow\{0,1\}$.
2. If $\mathrm{D}(y, c)=1$ output c, otherwise, output \bar{c}.

- It follows that

$$
\begin{aligned}
\operatorname{Pr}[& \left.P\left(f\left(U_{n}\right)\right)=b\left(U_{n}\right)\right] \\
= & \operatorname{Pr}\left[c=b\left(U_{n}\right)\right] \cdot \operatorname{Pr}\left[\mathrm{D}\left(f\left(U_{n}\right), c\right)=1 \mid c=b\left(U_{n}\right)\right] \\
& +\operatorname{Pr}\left[c=\overline{b\left(U_{n}\right)}\right] \cdot \operatorname{Pr}\left[\mathrm{D}\left(f\left(U_{n}\right), c\right)=0 \mid c=\overline{b\left(U_{n}\right)}\right] \\
= & \frac{1}{2} \cdot(\delta+\varepsilon)+\frac{1}{2}(1-\delta+\varepsilon)=\frac{1}{2}+\varepsilon .
\end{aligned}
$$

OWP to PRG cont.

Remark 14

- Prediction to distinguishing (homework)

OWP to PRG cont.

Remark 14

- Prediction to distinguishing (homework)
- PRG from any OWF: (1) Regular OWFs, first use pairwise hashing to convert into "almost" permutation. (2) Any OWF, harder

PRG Length Extension

Construction 15 (iterated function)

Given $g:\{0,1\}^{n} \mapsto\{0,1\}^{n+1}$ and $i \in \mathbb{N}$, define $g^{i}:\{0,1\}^{n} \mapsto\{0,1\}^{n+i}$ as

$$
g^{i}(x)=g(x)_{1}, g^{i-1}\left(g(x)_{2, \ldots, n+1}\right)
$$

where $g^{0}(x)=x$.

PRG Length Extension

Construction 15 (iterated function)

Given $g:\{0,1\}^{n} \mapsto\{0,1\}^{n+1}$ and $i \in \mathbb{N}$, define $g^{i}:\{0,1\}^{n} \mapsto\{0,1\}^{n+i}$ as

$$
g^{i}(x)=g(x)_{1}, g^{i-1}\left(g(x)_{2, \ldots, n+1}\right)
$$

where $g^{0}(x)=x$.

Claim 16

Let $g:\{0,1\}^{n} \mapsto\{0,1\}^{n+1}$ be a PRG, then $g^{t(n)}:\{0,1\}^{n} \mapsto\{0,1\}^{n+t(n)}$ is a PRG, for any $t \in$ poly.

PRG Length Extension

Construction 15 (iterated function)

Given $g:\{0,1\}^{n} \mapsto\{0,1\}^{n+1}$ and $i \in \mathbb{N}$, define $g^{i}:\{0,1\}^{n} \mapsto\{0,1\}^{n+i}$ as

$$
g^{i}(x)=g(x)_{1}, g^{i-1}\left(g(x)_{2, \ldots, n+1}\right)
$$

where $g^{0}(x)=x$.

Claim 16

Let $g:\{0,1\}^{n} \mapsto\{0,1\}^{n+1}$ be a PRG, then $g^{t(n)}:\{0,1\}^{n} \mapsto\{0,1\}^{n+t(n)}$ is a PRG, for any $t \in$ poly.

Proof: Assume \exists a PPT D, an infinite set $\mathcal{I} \subseteq \mathbb{N}$ and $p \in$ poly with

$$
\left|\Delta_{g^{t}\left(U_{n}\right), U_{n+t(n)}}^{\mathrm{D}}\right|>\varepsilon(n)=1 / p(n)
$$

for any $n \in \mathcal{I}$. We use D for breaking the hardness of g.

PRG Length Extension cont.

- Fix $n \in \mathbb{N}$, for $i \in\{0, \ldots, t=t(n)\}$, let $H^{i}=U_{t-i}, g^{i}\left(U_{n}\right)$ (i.e., the distribution of H^{i} is $\left.\left(x, g^{i}\left(x^{\prime}\right)\right)_{x \leftarrow\{0,1\}^{t-i}, x^{\prime} \leftarrow\{0,1\}^{n}}\right)$

PRG Length Extension cont.

- Fix $n \in \mathbb{N}$, for $i \in\{0, \ldots, t=t(n)\}$, let $H^{i}=U_{t-i}, g^{i}\left(U_{n}\right)$ (i.e., the distribution of H^{i} is $\left.\left(x, g^{i}\left(x^{\prime}\right)\right)_{x \leftarrow\{0,1\}^{t-i}, x^{\prime} \leftarrow\{0,1\}^{n}}\right)$
- Note that $H^{0} \equiv U_{n+t}$ and $H^{t} \equiv g^{t}\left(U_{n}\right)$.

PRG Length Extension cont.

- Fix $n \in \mathbb{N}$, for $i \in\{0, \ldots, t=t(n)\}$, let $H^{i}=U_{t-i}, g^{i}\left(U_{n}\right)$ (i.e., the distribution of H^{i} is $\left.\left(x, g^{i}\left(x^{\prime}\right)\right)_{x \leftarrow\{0,1\}^{t-i}, x^{\prime} \leftarrow\{0,1\}^{n}}\right)$
- Note that $H^{0} \equiv U_{n+t}$ and $H^{t} \equiv g^{t}\left(U_{n}\right)$.

Algorithm 17 (D^{\prime})

Input: 1^{n} and $y \in\{0,1\}^{n+1}$

1. Sample $i \leftarrow[t]$
2. Return $\mathrm{D}\left(1^{n}, U_{t-i}, y_{1}, g^{i-1}\left(y_{2, \ldots, n+1}\right)\right)$.

PRG Length Extension cont.

- Fix $n \in \mathbb{N}$, for $i \in\{0, \ldots, t=t(n)\}$, let $H^{i}=U_{t-i}, g^{i}\left(U_{n}\right)$ (i.e., the distribution of H^{i} is $\left.\left(x, g^{i}\left(x^{\prime}\right)\right)_{x \leftarrow\{0,1\}^{t-i}, x^{\prime} \leftarrow\{0,1\}^{n}}\right)$
- Note that $H^{0} \equiv U_{n+t}$ and $H^{t} \equiv g^{t}\left(U_{n}\right)$.

Algorithm 17 (D^{\prime})

Input: 1^{n} and $y \in\{0,1\}^{n+1}$

1. Sample $i \leftarrow[t]$
2. Return $D\left(1^{n}, U_{t-i}, y_{1}, g^{i-1}\left(y_{2}, \ldots, n+1\right)\right)$.

Claim 18

It holds that $\left|\Delta_{g\left(U_{n}\right), U_{n+1}}^{\mathrm{D}^{\prime}}\right|>\varepsilon(n) / t(n)$

PRG Length Extension cont.

- Fix $n \in \mathbb{N}$, for $i \in\{0, \ldots, t=t(n)\}$, let $H^{i}=U_{t-i}, g^{i}\left(U_{n}\right)$ (i.e., the distribution of H^{i} is $\left.\left(x, g^{i}\left(x^{\prime}\right)\right)_{x \leftarrow\{0,1\}^{t-i}, x^{\prime} \leftarrow\{0,1\}^{n}}\right)$
- Note that $H^{0} \equiv U_{n+t}$ and $H^{t} \equiv g^{t}\left(U_{n}\right)$.

Algorithm 17 (D^{\prime})

Input: 1^{n} and $y \in\{0,1\}^{n+1}$

1. Sample $i \leftarrow[t]$
2. Return $\mathrm{D}\left(1^{n}, U_{t-i}, y_{1}, g^{i-1}\left(y_{2}, \ldots, n+1\right)\right)$.

Claim 18

It holds that $\left|\Delta_{g\left(U_{n}\right), U_{n+1}}^{\mathrm{D}^{\prime}}\right|>\varepsilon(n) / t(n)$
Proof: ...

