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Section 1

Distributions and Statistical Distance
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Distributions and Statistical Distance

Let P and Q be two distributions over a finite set /. Their statistical distance
(also known as, variation distance) is defined as

SD(P,@) = 5 Y IP(X) — Q)| = max (P(S) ~ Q(S))

xeu

We will only consider finite distributions.
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Distributions and Statistical Distance

Let P and Q be two distributions over a finite set /. Their statistical distance
(also known as, variation distance) is defined as

Z IP(x) — Q(x)| = max(P( ) — Q(S))
xeu
We will only consider finite distributions.
Claim 1

For any pair of (finite) distribution P and Q, it holds that
SD(P, Q) = max{ Pr [D(x) =1] — Pr_[D(x) = 1]},
D "x+P x—Q

where D is any algorithm.
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Distributions and Statistical Distance

Let P and Q be two distributions over a finite set 2/. Their statistical distance
(also known as, variation distance) is defined as

Z IP(x) — Q(x)| = max(P( ) —Q(S))
xeu
We will only consider finite distributions.
Claim 1
For any pair of (finite) distribution P and Q, it holds that
SD(P, Q) = mgx{XErP[D(x) =1] - XErO[D(x) =1]},

where D is any algorithm.

Interpretation?
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Some useful facts
Let P, Q, R be finite distributions, then

Triangle inequality:
SD(P,R) < SD(P,Q) + SD(Q,R)

Repeated sampling:
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Distribution ensembles and statistical indistinguishability

Definition 2 (distribution ensembles)

P = {Py}nen is a distribution ensemble, if P, is a (finite) distribution for any
neN.

P is efficiently samplable (or just efficient), if 3 PPT Samp with Sam(17) = P,.
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Distribution ensembles and statistical indistinguishability

Definition 2 (distribution ensembles)

P = {Py}nen is a distribution ensemble, if P, is a (finite) distribution for any
neN.
P is efficiently samplable (or just efficient), if 3 PPT Samp with Sam(17) = P,.

Definition 3 (statistical indistinguishability)

Two distribution ensembles P and Q are statistically indistinguishable, if
SD(Pn, Qn) = neg(n).

Benny Applebaum  lftach Haitner (TAU) Foundation of Cryptography November 10, 2016 6/25



Distribution ensembles and statistical indistinguishability

Definition 2 (distribution ensembles)

P = {Py}nen is a distribution ensemble, if P, is a (finite) distribution for any
neN.
P is efficiently samplable (or just efficient), if 3 PPT Samp with Sam(17) = P,.

V.

Definition 3 (statistical indistinguishability)

Two distribution ensembles P and Q are statistically indistinguishable, if
SD(Pp, Qn) = neg(n).

Alternatively, if ‘A(E’P’Q)(n)‘ = neg(n), for any algorithm D, where

Alp.g)(n) = Pr [D(1",x) =1]— Pr [D(1",x) =1] (1)
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Section 2

Computational Indistinguishability
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Computational Indistinguishability

Definition 4 (computational indistinguishability)
Two distribution ensembles P and Q are computationally indistinguishable, if
‘A n)‘ = neg(n), for any PPT D.
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Computational Indistinguishability

Definition 4 (computational indistinguishability)
Two distribution ensembles P and Q are computationally indistinguishable, if
‘A(E’P’Q)(n)‘ = neg(n), for any PPT D.

» Can it be different from the statistical case?
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Computational Indistinguishability

Definition 4 (computational indistinguishability)
Two distribution ensembles P and Q are computationally indistinguishable, if
‘A(E’P’Q)(n)‘ = neg(n), for any PPT D.

» Can it be different from the statistical case?

» Non uniform variant
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Computational Indistinguishability

Definition 4 (computational indistinguishability)
Two distribution ensembles P and Q are computationally indistinguishable, if
‘A(E’P’Q)(n)‘ = neg(n), for any PPT D.

» Can it be different from the statistical case?
» Non uniform variant

» Sometime behaves different then expected!
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Repeated sampling

Question 5

Assume that P and Q are computationally indistinguishable, is it always true
that P2 = (P, P) and Q2 = (Q, Q) are?
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Repeated sampling

Question 5

Assume that P and Q are computationally indistinguishable, is it always true
that P2 = (P, P) and Q2 = (Q, Q) are?

Let D be an algorithm and let 6(n ’A P2, 02 )’
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Repeated sampling

Question 5

Assume that P and Q are computationally indistinguishable, is it always true
that P2 = (P, P) and Q2 = (Q, Q) are?

Let D be an algorithm and let §(n ’A 2 Qz)( ))
o(n) = Pr [D(x)=1] — Pr [D(x) =1
(M = | Pr[D0) =11~ PrID(x)=1]
< Pr [D(x)=1]- P D(x) =1
o x<—l;:’,2,[ (x) ] x<—(P:,Qn)[ (x) ]‘
P D(x)=1]— Pr [D(x) =1
#], B g P00 =11- Pr DGO =1]
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Repeated sampling

Question 5

Assume that P and Q are computationally indistinguishable, is it always true
that P2 = (P, P) and Q2 = (Q, Q) are?

Let D be an algorithm and let 6(n ’A P2, 02 ))

a(n) =

IA
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| Pr [D(x )_1]_XEBg[D(X):1”

X+ P2

PrD(x)=1— Pr_[D(x)=1
x<—l;:’,2,[ (x) ] x<—(P:,Qn)[ (x) ]‘

+

B P = 1= Pr DG - 1]\

D D
A(P%(P,Q)(”)’ + ‘A((P,Q),QZ)(”)‘
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Repeated sampling

Question 5

Assume that P and Q are computationally indistinguishable, is it always true
that P2 = (P, P) and Q2 = (Q, Q) are?

Let D be an algorithm and let 6(n ’A P2, 02 ))

a(n) =

IA

| Pr [D(x )—ﬂ—xﬁzﬁ[D(X):ﬂ\

X+ P2

PrD(x)=1— Pr_[D(x)=1
x<—l;:’,2,[ (x) ] x<—(P:,Qn)[ (x) ]‘

+

B P = 1= Pr DG - 1]\

D D
A(PZ,(P,Q)(”)’ + ‘A((P,Q),QZ)(”)‘

So either AP, ., o, (n)] = 3(n)/2, o [AD, o) oo (M)] > 6()/2
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» Assume D is a PPT and that ’A(Dpagg)(n)’ > 1/p(n) for some p € poly

and infinitely many n’s, and assume wig. that ‘A%z,(pjg)(n) >1/2p(n)
for infinitely many n’s.
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» Assume D is a PPT and that ’A(Dpagg)(n)’ > 1/p(n) for some p € poly

and infinitely many n’s, and assume wig. that ‘A%z,(pjg)(n) >1/2p(n)
for infinitely many n’s.

» Can we use D to contradict the fact that P and Q are computationally
close?
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» Assume D is a PPT and that ’A(Dpagg)(n)’ > 1/p(n) for some p € poly
and infinitely many n’s, and assume wig. that ‘A%z,(pjg)(n) >1/2p(n)
for infinitely many n’s.

» Can we use D to contradict the fact that P and Q are computationally
close?

» Assuming that P and Q are efficiently samplable
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» Assume D is a PPT and that ’A(Dngz)(n)’ > 1/p(n) for some p € poly

and infinitely many n’s, and assume wig. that ‘A%z,(pjg)(n) >1/2p(n)
for infinitely many n’s.

» Can we use D to contradict the fact that P and Q are computationally
close?

» Assuming that P and Q are efficiently samplable

» Non-uniform settings
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Repeated sampling cont.

Given t = {(n) € N and a distribution ensemble P = { Py} nen, let
Pt = {Py"}nen.
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Repeated sampling cont.

Given t = {(n) € N and a distribution ensemble P = { Py} nen, let
Pt = {Py" }nen.

Question 6

Let t = t(n) < poly(n) be an eff. computable integer function. Assume that P

and Q are eff. samplable and computationally indistinguishable, does it mean
that P! and Q! are?
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Repeated sampling cont.

Given t = {(n) € N and a distribution ensemble P = { Py} nen, let
Pt = {Py" }nen.

Question 6

Let t = t(n) < poly(n) be an eff. computable integer function. Assume that P
and Q are eff. samplable and computationally indistinguishable, does it mean
that P! and Q' are?

Proof:
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Repeated sampling cont.

Given t = {(n) € N and a distribution ensemble P = { Py} nen, let
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Let t = t(n) < poly(n) be an eff. computable integer function. Assume that P
and Q are eff. samplable and computationally indistinguishable, does it mean
that P! and Q' are?

Proof:

» Induction?
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Repeated sampling cont.

Given t = t(n) € N and a distribution ensemble P = { Py} nen, let
Pt = {Py" }nen.

Question 6

Let t = t(n) < poly(n) be an eff. computable integer function. Assume that P
and Q are eff. samplable and computationally indistinguishable, does it mean
that P! and Q' are?

Proof:
» Induction?
» Hybrid
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Hybrid argument
Let D be an algorithm and let 6(n) = ‘AE’P,Q,)(n)‘.
» FixneN,andforic {0,...,t=t(n)}, let H = (p1,...,P1 Qis1,---,Qt),

where the p’s [resp., g’s] are uniformly (and independently) chosen from
Py, [resp., from Qp].
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Hybrid argument
Let D be an algorithm and let 5(n ‘A pton( )‘

» FixneN,andforic {0,...,t=t(n)}, let H = (p1,...,P1 Qis1,---,Qt),
where the p’s [resp., g’s] are uniformly (and independently) chosen from
P, [resp., from Qp].

, there exists i € [t] with

» Since §(n ‘AH, Ho )) = ‘Zie[t] Hi Hi—1

|88, s ()] 2 8(m)/1(n).
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Hybrid argument
Let D be an algorithm and let 5(n ‘A pton( )‘

» FixneN,andforic {0,...,t=t(n)}, let H = (p1,...,P1 Qis1,---,Qt),
where the p’s [resp., g’s] are uniformly (and independently) chosen from
P, [resp., from Qp].

» Since §(n ‘AH, 0 )) = ‘Zie[t] Hi Hi—1
\AD,,H,,«)\_ 5(n)/4(n).

» How do we use it?

, there exists i € [t] with
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Using hybrid argument via estimation

Algorithm 7 (D’)

Input: 1" and x € {0,1}*
1. Find i € [f] with ]AD,’H,._1 (t)‘ > 5(n)/2t(n)
2. Let (p1,..., P, Gist,---,qt) — H
3. Return D(14,py, ..., Pi—1, X, Qix1,---,Qt)s -
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Using hybrid argument via estimation
Algorithm 7 (D’)
Input: 1" and x € {0,1}*

1. Find i € [f] with ’AD,’H,_1 (t)‘ > 5(n)/2t(n)

2. Let (p1,..., P, Gist,---,qt) — H
3. Return D(14,py, ..., Pi—1, X, Qix1,---,Qt)s -

1. how do we find i? why §(n)/2t(n)
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Using hybrid argument via estimation

Algorithm 7 (D’)

Input: 1" and x € {0,1}*
1. Find i € [f] with ’AD,’H,_1 (t)‘ > 5(n)/2t(n)
2. Let (p1,..., P, Gist,---,qt) — H
3. Return D(14,py, ..., Pi—1, X, Qix1,---,Qt)s -

1. how do we find i? why §(n)/2t(n)

2. Easy in the non-uniform case
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Using hybrid argument via sampling

Algorithm 8 (D’)
Input: 1" and x € {0,1}*
1. Sample i + [t = t(n)]
2. Let(p1,...,0i,Qis1,---,qt) — H'
3. Return D(14,p1, ..., Pi—1, X, Qists - - -, Qt)-
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Using hybrid argument via sampling

Algorithm 8 (D’)
Input: 1" and x € {0,1}*
1. Sample i + [t = t(n)]
2. Let(p1,...,0i,Qis1,---,qt) — H'
3. Return D(14,p1, ..., Pi—1, X, Qists - - -, Qt)-

o] = | Pl =11~ PrD(@=1
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Using hybrid argument via sampling

Algorithm 8 (D’)
Input: 1" and x € {0,1}*
1. Sample i + [t = t(n)]
2. Let(p1,...,0i,Qis1,---,qt) — H'
3. Return D(14,p1, ..., Pi—1, X, Qists - - -, Qt)-

‘A(DP,Q)(n)‘ =

LD =11 P D@ = 1]

P PR =1- 1Y P P(X)=1]

ic[t] i€lt]
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Using hybrid argument via sampling

Algorithm 8 (D’)
Input: 1" and x € {0,1}*
1. Sample i + [t = t(n)]
2. Let(p1,...,0i,Qis1,---,qt) — H'
3. Return D(14,p1, ..., Pi—1, X, Qists - - -, Qt)-

S| = | P PE =1 D@ =1
- 72 Pr, [D(x) —1]‘*foﬁ. [D(x) = 1]
ier” ey
_ 1 (XirH[D(x)_ 1]~ Pr.[D(x) - 1])‘
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Using hybrid argument via sampling

Algorithm 8 (D’)
Input: 1" and x € {0,1}*
1. Sample i + [t = t(n)]
2. Let(p1,...,0i,Qis1,---,qt) — H'
3. Return D(14,p1, ..., Pi—1, X, Qists - - -, Qt)-

2ot = | P PE)=1- P06 1)
- 72 Pr, [D(x) —1]‘*foﬁ. [D(x) = 1]
ier” ey
_ 1 (XirH[D(x) — 1]~ Pr [D() - 1])‘
= 4(n)/t(n)
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Part Il

Pseudorandom Generators
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Pseudorandom generator

Definition 9 (pseudorandom distributions)

A distribution ensemble P over {{0,1}4"1 \ is pseudorandom, if it is
computationally indistinguishable from { Uy } nen.
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Pseudorandom generator

Definition 9 (pseudorandom distributions)

A distribution ensemble P over {{0,1}*(M} .y is pseudorandom, if it is
computationally indistinguishable from { Uy } nen.

» Do such distributions exit?
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Pseudorandom generator

Definition 9 (pseudorandom distributions)

A distribution ensemble P over {{0,1}*(M} .y is pseudorandom, if it is
computationally indistinguishable from { Uy ;) } nen.

» Do such distributions exit?
Definition 10 (pseudorandom generators (PRGs))

An efficiently computable function g : {0,1}" — {0,1}¢(" is a pseudorandom
generator, if

» g is length extending (i.e., ¢(n) > n for any n)

» g(U,) is pseudorandom
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A distribution ensemble P over {{0,1}*(M} .y is pseudorandom, if it is
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» Do such distributions exit?
Definition 10 (pseudorandom generators (PRGs))
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» g(U,) is pseudorandom
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Pseudorandom generator

Definition 9 (pseudorandom distributions)

A distribution ensemble P over {{0,1}*(M} .y is pseudorandom, if it is
computationally indistinguishable from { Uy ;) } nen.

» Do such distributions exit?
Definition 10 (pseudorandom generators (PRGs))

An efficiently computable function g : {0,1}" — {0,1}¢(" is a pseudorandom
generator, if

» g is length extending (i.e., ¢(n) > n for any n)

» g(U,) is pseudorandom

» Do such generators exist?

» Imply one-way functions (homework)
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Pseudorandom generator

Definition 9 (pseudorandom distributions)

A distribution ensemble P over {{0,1}*(M} .y is pseudorandom, if it is
computationally indistinguishable from { Uy ;) } nen.

» Do such distributions exit?
Definition 10 (pseudorandom generators (PRGs))

An efficiently computable function g : {0,1}" — {0,1}¢(" is a pseudorandom
generator, if

» g is length extending (i.e., ¢(n) > n for any n)

» g(U,) is pseudorandom

» Do such generators exist?
» Imply one-way functions (homework)

» Do they have any use?
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Section 3

Hardcore Predicates

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography



Hardcore predicates

Definition 11 (hardcore predicates)
An efficiently computable function b : {0,1}"” — {0, 1} is a hardcore predicate
of f:{0,1}"+— {0,1}", if
1
[P(f(x)) = b(x)] < 5 + neg(n),

Pr
x+{0,1}"
for any PPT P.
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1
[P(f(x)) = b(x)] < 5 + neg(n),

Pr
x+{0,1}"
for any PPT P.

» Does the existence of a hardcore predicate for f, implies that f is one
way?
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Hardcore predicates

Definition 11 (hardcore predicates)
An efficiently computable function b : {0,1}"” — {0, 1} is a hardcore predicate
of f:{0,1}"+— {0,1}", if
1
[P(f(x)) = b(x)] < 5 + neg(n),

Pr
x+{0,1}"
for any PPT P.

» Does the existence of a hardcore predicate for f, implies that f is one
way? If f is injective?
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Hardcore predicates

Definition 11 (hardcore predicates)

An efficiently computable function b : {0,1}"” — {0, 1} is a hardcore predicate
of f:{0,1}"+— {0,1}", if

e [P(f(x) = b(x)] < 5 + neg(n).

x<+{0,1}"
for any PPT P.

» Does the existence of a hardcore predicate for f, implies that f is one
way? If f is injective?

» Fact: any OWF has a hardcore predicate (next class)
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Hardcore predicates

Definition 11 (hardcore predicates)

An efficiently computable function b : {0,1}" — {0, 1} is a hardcore predicate
of f: {0,1}" — {0,1}", if

Pr  [P((x) = b(x)] < 5 + neg(n).

x<+{0,1}"
for any PPT P.

» Does the existence of a hardcore predicate for f, implies that f is one
way? If f is injective?

» Fact: any OWF has a hardcore predicate (next class)

» Building blocks in constructions of PRGS from OWF
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Section 4

PRGs from OWPs
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OWP to PRG

Let f: {0,1}" — {0,1}" be an eff. permutation and let b : {0,1}" — {0, 1} be

Claim 12
a hardcore predicate for f, then g(x) = (f(x), b(x)) is a PRG. }
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OWP to PRG

Claim 12
Let f:{0,1}" — {0,1}" be an eff. permutation and let b : {0,1}" — {0,1} be
a hardcore predicate for f, then g(x) = (f(x), b(x)) is a PRG.

Proof: Assume 3 a PPT D, and infinite set Z C N and p € poly with

)Ag(un),un+1 >e(n)=1/p(n)

for any n € Z. We use D for breaking the hardness of b.
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OWP to PRG

Claim 12
Let f:{0,1}" — {0,1}" be an eff. permutation and let b : {0,1}" — {0,1} be
a hardcore predicate for f, then g(x) = (f(x), b(x)) is a PRG.

Proof: Assume 3 a PPT D, and infinite set Z C N and p € poly with

)Ag(un),un+1 > e(n) =1/p(n)
for any n € Z. We use D for breaking the hardness of b.

» We assume wilg. that Pr[D(g(Up)) = 1] — Pr[D(Un41) = 1] > &(n) for any
neZ(?),andfixnel.
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OWP to PRG cont.

> Let d(n) = Pr[D(U,;1) = 1] (note that Pr[D(g(Uy)) = 1] = 6 + ¢).
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OWP to PRG cont.

» Let §(n) = Pr[D(Un11) = 1] (note that Pr[D(g(U,)) = 1] = + &).
» Compute
6 = PrD(f(Un), Ur) = 1]
= Pr{Us = b(Un)] - Pr[D(f(Uy), Ur) = 1| Ur = b(Up)]
+  Pr[Us = b(Un)] - Pr[D(f(Un), Us) = 1| U = b(Up)]
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OWP to PRG cont.

» Let §(n) = Pr[D(Un11) = 1] (note that Pr[D(g(U,)) = 1] = + &).
» Compute

5 = Pr[D(f(Un), Ur) = 1]
= Pr{Us = b(Up)] - Pr[D(f(Up), Ur) = 1 | Uy = b(Up)]
+  Pr{Us = b(Un)] - PrID(f(Un), Ur) = 1| Us = b(Up)]
1

15 +2)+ 1 -PrD(H(Un). Us) = 1| Uy = BT
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OWP to PRG cont.

» Let §(n) = Pr[D(Un11) = 1] (note that Pr[D(g(U,)) = 1] = + &).
» Compute
6 = Pr[D(f(Up), Us) =1]
= Pr[U; = b(Uy)] - PrID(f(Un), Uy) =1 | Uy = b(Up)]
+  Pr[Us = b(Up)] - Pr[D(f(Un), Us) =1 | Uy = b(Up)]

= %(6+€)+%~Pr[D( (Up), Uy) =1 Uy = b(Uy)].
Hence,
Pr[D(f(Un), b(Un)) =1] =06 —¢ (2)
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OWP to PRG cont.

> PrD(f(Un), b(Up)) = 1] =6 +¢

> PrD(F(Up), B(Tp)) = 1] =6 — ¢
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OWP to PRG cont.

> Pr[D(f(Un),b(Un)) =1] =6 +¢

> Pr[D(f(Un),b(Upn)) =1]=6—¢

» Consider the following algorithm for predicting b:
Algorithm 13 (P)

Input: y € {0,1}"
1. Flip a random coin ¢ < {0,1}.

2. If D(y, c) = 1 output ¢, otherwise, output C.
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OWP to PRG cont.

> Pr[D(f(Un),b(Un)) =1] =6 +¢

> Pr[D(f(Un),b(Upn)) =1]=6—¢

» Consider the following algorithm for predicting b:
Algorithm 13 (P)

Input: y € {0,1}"
1. Flip a random coin ¢ < {0,1}.

2. If D(y, c) = 1 output ¢, otherwise, output C.

» |t follows that
Pr[P(f(Un)) = b(Un)]
= Pr[c=b(U,)] - Pr[D(f(Un),c) =1 | c = b(Up)]
+ Pr[c = b(U,)] - Pr[D(f(Up),c) =0 | ¢ = b(Up,)]
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OWP to PRG cont.

> Pr[D(f(Un),b(Un)) =1] =6 +¢

> Pr[D(f(Un),b(Upn)) =1]=6—¢

» Consider the following algorithm for predicting b:
Algorithm 13 (P)

Input: y € {0,1}"
1. Flip a random coin ¢ < {0,1}.

2. If D(y, c) = 1 output ¢, otherwise, output C.

» |t follows that
Pr[P(f(Un)) = b(Un)]
= Pr[c=b(U,)] - Pr[D(f(Un),c) =1 | c = b(Up)]
+ Pr[c = b(U,)] - Pr[D(f(Up),c) =0 | ¢ = b(Up,)]

1 1 1
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OWP to PRG cont.

Remark 14

» Prediction to distinguishing (homework)
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OWP to PRG cont.

Remark 14
» Prediction to distinguishing (homework)

» PRG from any OWF: (1) Regular OWFs, first use pairwise hashing to
convert into “almost" permutation. (2) Any OWF, harder
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PRG Length Extension

Construction 15 (iterated function)

Given g: {0,1}" — {0,1}""! and i € N, define g': {0,1}" > {0,1}"*' as
g'(x) = 9(x)1,9 " (9(x)e

..... n+1 )7
where g°(x) = x.
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PRG Length Extension

Construction 15 (iterated function)
Given g: {0,1}" + {0,1}™" and i € N, define g': {0,1}" + {0,1}"* as

g'() = g(x)1, 9" " (9(X)z....n+1),
where g°(x) = x.

Claim 16

Let g: {0,1}"+— {0,1}™" be a PRG, then g/(": {0,1}" — {0,1}"+1(" is a
PRG, for any t € poly.
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PRG Length Extension

Construction 15 (iterated function)
Given g: {0,1}" — {0,1}™" and i € N, define g': {0,1}" — {0,1}"* as

g'(x) = 9(x)1, g (9(X)z,....n+1),
where g°(x) = x.

Claim 16

Let g: {0,1}"+— {0,1}™" be a PRG, then g/(": {0,1}" — {0,1}"+1(" is a
PRG, for any t € poly.

Proof: Assume 3 a PPT D, an infinite set Z C N and p € poly with

Agt(un)aumrt(n) > 5([’)) = 1/p(n)a

for any n € Z. We use D for breaking the hardness of g.
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PRG Length Extension cont.

» FixneN,foric{0,....t=tn}, let H = U;_;,g'(Up,) (i.e., the

distribution of H' is (x,g"(x’))x<_{071},,,7)(,(_{0,1}”)
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PRG Length Extension cont.

> FixneN,forie{0,.

=t(n)}, let H = U;_;, g'(U,) (i.e., the
distribution of H' is ( (x))

x<+{0,1}t-1, x/<—{0,1}”)
» Note that H° = U,,; and H' = g!(U,).
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PRG Length Extension cont.

> FixneN,forie {0,.

=t(n)}, let H = U;_;, g'(U,) (i.e., the
distribution of H' is ( (x))

x+{0,1}=7 x"+{0,1 }”)

» Note that H° = U,,; and H' = g!(U,).

Algorithm 17 (D)
Input: 17 and y € {0, 1}
1. Sample i + [f]
2. Return D(17, Ur—i, ¥1, 9" ' (Va....n1))-
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PRG Length Extension cont.

> FixneN,forie {0,.

=t(n)}, let H = U;_;, g'(U,) (i.e., the
distribution of H' is ( (x))

x<+{0,1}t-1, x/<—{0,1}”)
» Note that H° = U,,; and H' = g!(U,).

Algorithm 17 (D)
Input: 17 and y € {0, 1}
1. Sample i + [f]
2. Return D(17, Ur—i, ¥1, 9" ' (Va....n1))-

Claim 18
D/
It holds that ‘Ag(un),un+1

> &(n)/t(n)
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PRG Length Extension cont.

> FixneN,forie {0,.

=t(n)}, let H = U;_;, g'(U,) (i.e., the
distribution of H' is ( (x))

x<+{0,1}t-1, x/<—{0,1}”)
» Note that H° = U,,; and H' = g!(U,).

Algorithm 17 (D)
Input: 17 and y € {0, 1}
1. Sample i + [f]
2. Return D(17, Ur—i, ¥1, 9" ' (Va....n1))-

Claim 18
D/
It holds that ‘Ag(un),un+1

> &(n)/t(n)

Proof: ...
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