
Foundation of Cryptography, Lecture 4
Pseudorandom Functions.

Benny Applebaum & Iftach Haitner, Tel Aviv University

Tel Aviv University.

December 1, 2016

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 1 / 35

Section 1

Informal Discussion

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 2 / 35

Motivation discussion

1. We’ve seen a small set of objects: {G(x)}x∈{0,1}n , that “looks like" a
larger set of objects: {x}x∈{0,1}2n .

2. We want small set of objects: efficient function families, that looks like a
huge set of objects: the set of all functions.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 3 / 35

Motivation discussion

1. We’ve seen a small set of objects: {G(x)}x∈{0,1}n , that “looks like" a
larger set of objects: {x}x∈{0,1}2n .

2. We want small set of objects: efficient function families, that looks like a
huge set of objects: the set of all functions.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 3 / 35

Motivation discussion

1. We’ve seen a small set of objects: {G(x)}x∈{0,1}n , that “looks like" a
larger set of objects: {x}x∈{0,1}2n .

2. We want small set of objects: efficient function families, that looks like a
huge set of objects: the set of all functions.

But

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 3 / 35

Motivation discussion

1. We’ve seen a small set of objects: {G(x)}x∈{0,1}n , that “looks like" a
larger set of objects: {x}x∈{0,1}2n .

2. We want small set of objects: efficient function families, that looks like a
huge set of objects: the set of all functions.

Solution

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 3 / 35

Subsection 1

Function Families

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 4 / 35

Function families

1. F = {Fn}n∈N, where Fn = {f : {0,1}m(n) 7→ {0,1}`(n)}

2. We write F = {Fn : {0,1}m(n) 7→ {0,1}`(n)}

3. If m(n) = `(n) = n, we omit it from the notation

4. We identify function with their description

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 5 / 35

Function families

1. F = {Fn}n∈N, where Fn = {f : {0,1}m(n) 7→ {0,1}`(n)}

2. We write F = {Fn : {0,1}m(n) 7→ {0,1}`(n)}

3. If m(n) = `(n) = n, we omit it from the notation

4. We identify function with their description

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 5 / 35

Function families

1. F = {Fn}n∈N, where Fn = {f : {0,1}m(n) 7→ {0,1}`(n)}

2. We write F = {Fn : {0,1}m(n) 7→ {0,1}`(n)}

3. If m(n) = `(n) = n, we omit it from the notation

4. We identify function with their description

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 5 / 35

Function families

1. F = {Fn}n∈N, where Fn = {f : {0,1}m(n) 7→ {0,1}`(n)}

2. We write F = {Fn : {0,1}m(n) 7→ {0,1}`(n)}

3. If m(n) = `(n) = n, we omit it from the notation

4. We identify function with their description

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 5 / 35

Random functions

Definition 1 (random functions)

For n, k ∈ N, let Πn,k be the family of all functions from {0,1}n to {0,1}k .
Let Πn = Πn,n.

I π ← Πn is a “random access" source of randomness

I Parties with access to a common π ← Πn can do a lot

I How long does it take to describe π ∈ Πn? 2n · n bits

I The truth table of π ← Πn is a uniform string of length 2n · n
I For integer function m, we will consider the function family {Πn,m(n)}.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 6 / 35

Random functions

Definition 1 (random functions)

For n, k ∈ N, let Πn,k be the family of all functions from {0,1}n to {0,1}k .
Let Πn = Πn,n.

I π ← Πn is a “random access" source of randomness

I Parties with access to a common π ← Πn can do a lot

I How long does it take to describe π ∈ Πn?

2n · n bits

I The truth table of π ← Πn is a uniform string of length 2n · n
I For integer function m, we will consider the function family {Πn,m(n)}.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 6 / 35

Random functions

Definition 1 (random functions)

For n, k ∈ N, let Πn,k be the family of all functions from {0,1}n to {0,1}k .
Let Πn = Πn,n.

I π ← Πn is a “random access" source of randomness

I Parties with access to a common π ← Πn can do a lot

I How long does it take to describe π ∈ Πn?

2n · n bits

I The truth table of π ← Πn is a uniform string of length 2n · n
I For integer function m, we will consider the function family {Πn,m(n)}.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 6 / 35

Random functions

Definition 1 (random functions)

For n, k ∈ N, let Πn,k be the family of all functions from {0,1}n to {0,1}k .
Let Πn = Πn,n.

I π ← Πn is a “random access" source of randomness

I Parties with access to a common π ← Πn can do a lot

I How long does it take to describe π ∈ Πn?

2n · n bits

I The truth table of π ← Πn is a uniform string of length 2n · n
I For integer function m, we will consider the function family {Πn,m(n)}.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 6 / 35

Random functions

Definition 1 (random functions)

For n, k ∈ N, let Πn,k be the family of all functions from {0,1}n to {0,1}k .
Let Πn = Πn,n.

I π ← Πn is a “random access" source of randomness

I Parties with access to a common π ← Πn can do a lot

I How long does it take to describe π ∈ Πn?

2n · n bits

I The truth table of π ← Πn is a uniform string of length 2n · n
I For integer function m, we will consider the function family {Πn,m(n)}.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 6 / 35

Random functions

Definition 1 (random functions)

For n, k ∈ N, let Πn,k be the family of all functions from {0,1}n to {0,1}k .
Let Πn = Πn,n.

I π ← Πn is a “random access" source of randomness

I Parties with access to a common π ← Πn can do a lot

I How long does it take to describe π ∈ Πn? 2n · n bits

I The truth table of π ← Πn is a uniform string of length 2n · n
I For integer function m, we will consider the function family {Πn,m(n)}.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 6 / 35

Random functions

Definition 1 (random functions)

For n, k ∈ N, let Πn,k be the family of all functions from {0,1}n to {0,1}k .
Let Πn = Πn,n.

I π ← Πn is a “random access" source of randomness

I Parties with access to a common π ← Πn can do a lot

I How long does it take to describe π ∈ Πn? 2n · n bits

I The truth table of π ← Πn is a uniform string of length 2n · n

I For integer function m, we will consider the function family {Πn,m(n)}.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 6 / 35

Random functions

Definition 1 (random functions)

For n, k ∈ N, let Πn,k be the family of all functions from {0,1}n to {0,1}k .
Let Πn = Πn,n.

I π ← Πn is a “random access" source of randomness

I Parties with access to a common π ← Πn can do a lot

I How long does it take to describe π ∈ Πn? 2n · n bits

I The truth table of π ← Πn is a uniform string of length 2n · n
I For integer function m, we will consider the function family {Πn,m(n)}.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 6 / 35

Subsection 2

Efficient Function Families

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 7 / 35

Efficient function families

Definition 2 (efficient function family)

An ensemble of function families F = {Fn}n∈N is efficient, if:

Samplable. F is samplable in polynomial-time: there exists a PPT that given
1n, outputs (the description of) a uniform element in Fn.

Efficient. There exists a polynomial-time algorithm that given x ∈ {0,1}n

and (a description of) f ∈ Fn, outputs f (x).

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 8 / 35

Subsection 3

Pseudorandom Functions

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 9 / 35

Pseudorandom Functions

Definition 3 (pseudorandom functions (PRFs))
An efficient ensemble F = {Fn : {0,1}m(n) 7→ {0,1}`(n)} is pseudorandom, if∣∣ Pr

f←Fn

[
Df (1n) = 1

]
− Pr
π←Πm(n),`(n)

[Dπ(1n) = 1]
∣∣ = neg(n),

for any oracle-aided PPT D.

≈C

I Why “oracle-aided"?
I Easy to construct (no assumption!) with logarithmic input length
I PRFs of super logarithmic input length, which is the interesting case, imply PRGs
I We will mainly focus on the case m(n) = `(n) = n
I We write DF to stand for (Df)f←F .

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 10 / 35

Pseudorandom Functions

Definition 3 (pseudorandom functions (PRFs))
An efficient ensemble F = {Fn : {0,1}m(n) 7→ {0,1}`(n)} is pseudorandom, if∣∣ Pr

f←Fn

[
Df (1n) = 1

]
− Pr
π←Πm(n),`(n)

[Dπ(1n) = 1]
∣∣ = neg(n),

for any oracle-aided PPT D.

≈C

I Why “oracle-aided"?
I Easy to construct (no assumption!) with logarithmic input length
I PRFs of super logarithmic input length, which is the interesting case, imply PRGs
I We will mainly focus on the case m(n) = `(n) = n
I We write DF to stand for (Df)f←F .

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 10 / 35

Pseudorandom Functions

Definition 3 (pseudorandom functions (PRFs))
An efficient ensemble F = {Fn : {0,1}m(n) 7→ {0,1}`(n)} is pseudorandom, if∣∣ Pr

f←Fn

[
Df (1n) = 1

]
− Pr
π←Πm(n),`(n)

[Dπ(1n) = 1]
∣∣ = neg(n),

for any oracle-aided PPT D.

≈C

I Why “oracle-aided"?
I Easy to construct (no assumption!) with logarithmic input length
I PRFs of super logarithmic input length, which is the interesting case, imply PRGs
I We will mainly focus on the case m(n) = `(n) = n
I We write DF to stand for (Df)f←F .

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 10 / 35

Pseudorandom Functions

Definition 3 (pseudorandom functions (PRFs))
An efficient ensemble F = {Fn : {0,1}m(n) 7→ {0,1}`(n)} is pseudorandom, if∣∣ Pr

f←Fn

[
Df (1n) = 1

]
− Pr
π←Πm(n),`(n)

[Dπ(1n) = 1]
∣∣ = neg(n),

for any oracle-aided PPT D. ≈C

I Why “oracle-aided"?
I Easy to construct (no assumption!) with logarithmic input length
I PRFs of super logarithmic input length, which is the interesting case, imply PRGs
I We will mainly focus on the case m(n) = `(n) = n
I We write DF to stand for (Df)f←F .

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 10 / 35

Pseudorandom Functions

Definition 3 (pseudorandom functions (PRFs))
An efficient ensemble F = {Fn : {0,1}m(n) 7→ {0,1}`(n)} is pseudorandom, if∣∣ Pr

f←Fn

[
Df (1n) = 1

]
− Pr
π←Πm(n),`(n)

[Dπ(1n) = 1]
∣∣ = neg(n),

for any oracle-aided PPT D. ≈C

I Why “oracle-aided"?
I Easy to construct (no assumption!) with logarithmic input length
I PRFs of super logarithmic input length, which is the interesting case, imply PRGs
I We will mainly focus on the case m(n) = `(n) = n
I We write DF to stand for (Df)f←F .

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 10 / 35

Pseudorandom Functions

Definition 3 (pseudorandom functions (PRFs))
An efficient ensemble F = {Fn : {0,1}m(n) 7→ {0,1}`(n)} is pseudorandom, if∣∣ Pr

f←Fn

[
Df (1n) = 1

]
− Pr
π←Πm(n),`(n)

[Dπ(1n) = 1]
∣∣ = neg(n),

for any oracle-aided PPT D. ≈C

I Why “oracle-aided"?

I Easy to construct (no assumption!) with logarithmic input length
I PRFs of super logarithmic input length, which is the interesting case, imply PRGs
I We will mainly focus on the case m(n) = `(n) = n
I We write DF to stand for (Df)f←F .

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 10 / 35

Pseudorandom Functions

Definition 3 (pseudorandom functions (PRFs))
An efficient ensemble F = {Fn : {0,1}m(n) 7→ {0,1}`(n)} is pseudorandom, if∣∣ Pr

f←Fn

[
Df (1n) = 1

]
− Pr
π←Πm(n),`(n)

[Dπ(1n) = 1]
∣∣ = neg(n),

for any oracle-aided PPT D. ≈C

I Why “oracle-aided"?
I Easy to construct (no assumption!) with logarithmic input length

I PRFs of super logarithmic input length, which is the interesting case, imply PRGs
I We will mainly focus on the case m(n) = `(n) = n
I We write DF to stand for (Df)f←F .

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 10 / 35

Pseudorandom Functions

Definition 3 (pseudorandom functions (PRFs))
An efficient ensemble F = {Fn : {0,1}m(n) 7→ {0,1}`(n)} is pseudorandom, if∣∣ Pr

f←Fn

[
Df (1n) = 1

]
− Pr
π←Πm(n),`(n)

[Dπ(1n) = 1]
∣∣ = neg(n),

for any oracle-aided PPT D. ≈C

I Why “oracle-aided"?
I Easy to construct (no assumption!) with logarithmic input length
I PRFs of super logarithmic input length, which is the interesting case, imply PRGs

I We will mainly focus on the case m(n) = `(n) = n
I We write DF to stand for (Df)f←F .

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 10 / 35

Pseudorandom Functions

Definition 3 (pseudorandom functions (PRFs))
An efficient ensemble F = {Fn : {0,1}m(n) 7→ {0,1}`(n)} is pseudorandom, if∣∣ Pr

f←Fn

[
Df (1n) = 1

]
− Pr
π←Πm(n),`(n)

[Dπ(1n) = 1]
∣∣ = neg(n),

for any oracle-aided PPT D. ≈C

I Why “oracle-aided"?
I Easy to construct (no assumption!) with logarithmic input length
I PRFs of super logarithmic input length, which is the interesting case, imply PRGs
I We will mainly focus on the case m(n) = `(n) = n

I We write DF to stand for (Df)f←F .

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 10 / 35

Pseudorandom Functions

Definition 3 (pseudorandom functions (PRFs))
An efficient ensemble F = {Fn : {0,1}m(n) 7→ {0,1}`(n)} is pseudorandom, if∣∣ Pr

f←Fn

[
Df (1n) = 1

]
− Pr
π←Πm(n),`(n)

[Dπ(1n) = 1]
∣∣ = neg(n),

for any oracle-aided PPT D. ≈C

I Why “oracle-aided"?
I Easy to construct (no assumption!) with logarithmic input length
I PRFs of super logarithmic input length, which is the interesting case, imply PRGs
I We will mainly focus on the case m(n) = `(n) = n
I We write DF to stand for (Df)f←F .

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 10 / 35

Section 2

PRF from OWF

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 11 / 35

Naive Construction

Let G : {0,1}n 7→ {0,1}2n, and for s ∈ {0,1}n define fs : {0,1} 7→ {0,1}n by

I fs(0) = G(s)1,...,n

I fs(1) = G(s)n+1,...,2n.

Claim 4
Assume G is a PRG, then {Fn = {fs}s∈{0,1}n}n∈N is a PRF.

Proof: The truth table of f ← Fn is G(Un), where the truth table of π ← Π1,n is
U2n

I Naturally extends to input of length O(log n) :-)

I Miserably fails for longer length (which is the only interesting case) :-(

I Problem, we are constructing the whole truth table, even to compute a
single output

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 12 / 35

Naive Construction

Let G : {0,1}n 7→ {0,1}2n, and for s ∈ {0,1}n define fs : {0,1} 7→ {0,1}n by

I fs(0) = G(s)1,...,n

I fs(1) = G(s)n+1,...,2n.

Claim 4
Assume G is a PRG, then {Fn = {fs}s∈{0,1}n}n∈N is a PRF.

Proof: The truth table of f ← Fn is G(Un), where the truth table of π ← Π1,n is
U2n

I Naturally extends to input of length O(log n) :-)

I Miserably fails for longer length (which is the only interesting case) :-(

I Problem, we are constructing the whole truth table, even to compute a
single output

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 12 / 35

Naive Construction

Let G : {0,1}n 7→ {0,1}2n, and for s ∈ {0,1}n define fs : {0,1} 7→ {0,1}n by

I fs(0) = G(s)1,...,n

I fs(1) = G(s)n+1,...,2n.

Claim 4
Assume G is a PRG, then {Fn = {fs}s∈{0,1}n}n∈N is a PRF.

Proof:

The truth table of f ← Fn is G(Un), where the truth table of π ← Π1,n is
U2n

I Naturally extends to input of length O(log n) :-)

I Miserably fails for longer length (which is the only interesting case) :-(

I Problem, we are constructing the whole truth table, even to compute a
single output

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 12 / 35

Naive Construction

Let G : {0,1}n 7→ {0,1}2n, and for s ∈ {0,1}n define fs : {0,1} 7→ {0,1}n by

I fs(0) = G(s)1,...,n

I fs(1) = G(s)n+1,...,2n.

Claim 4
Assume G is a PRG, then {Fn = {fs}s∈{0,1}n}n∈N is a PRF.

Proof: The truth table of f ← Fn is G(Un), where the truth table of π ← Π1,n is
U2n

I Naturally extends to input of length O(log n) :-)

I Miserably fails for longer length (which is the only interesting case) :-(

I Problem, we are constructing the whole truth table, even to compute a
single output

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 12 / 35

Naive Construction

Let G : {0,1}n 7→ {0,1}2n, and for s ∈ {0,1}n define fs : {0,1} 7→ {0,1}n by

I fs(0) = G(s)1,...,n

I fs(1) = G(s)n+1,...,2n.

Claim 4
Assume G is a PRG, then {Fn = {fs}s∈{0,1}n}n∈N is a PRF.

Proof: The truth table of f ← Fn is G(Un), where the truth table of π ← Π1,n is
U2n

I Naturally extends to input of length O(log n) :-)

I Miserably fails for longer length (which is the only interesting case) :-(

I Problem, we are constructing the whole truth table, even to compute a
single output

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 12 / 35

Naive Construction

Let G : {0,1}n 7→ {0,1}2n, and for s ∈ {0,1}n define fs : {0,1} 7→ {0,1}n by

I fs(0) = G(s)1,...,n

I fs(1) = G(s)n+1,...,2n.

Claim 4
Assume G is a PRG, then {Fn = {fs}s∈{0,1}n}n∈N is a PRF.

Proof: The truth table of f ← Fn is G(Un), where the truth table of π ← Π1,n is
U2n

I Naturally extends to input of length O(log n) :-)

I Miserably fails for longer length (which is the only interesting case) :-(

I Problem, we are constructing the whole truth table, even to compute a
single output

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 12 / 35

Naive Construction

Let G : {0,1}n 7→ {0,1}2n, and for s ∈ {0,1}n define fs : {0,1} 7→ {0,1}n by

I fs(0) = G(s)1,...,n

I fs(1) = G(s)n+1,...,2n.

Claim 4
Assume G is a PRG, then {Fn = {fs}s∈{0,1}n}n∈N is a PRF.

Proof: The truth table of f ← Fn is G(Un), where the truth table of π ← Π1,n is
U2n

I Naturally extends to input of length O(log n) :-)

I Miserably fails for longer length (which is the only interesting case) :-(

I Problem, we are constructing the whole truth table, even to compute a
single output

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 12 / 35

Subsection 1

The GGM Construction

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 13 / 35

The GGM Construction

Construction 5 (GGM)

For G : {0, 1}n 7→ {0, 1}2n and s ∈ {0, 1}n,

I G0(s) = G(s)1,...,n

I G1(s) = G(s)n+1,...,2n

For x ∈ {0, 1}k let fs(x) = Gxk (fs(x1,...,k−1)),
letting fs() = s.

s

s0

s00

s000

0

s001

1

0

s01

s010

0

s011

1

1

0

s1

s10

s100

0

s101

1

s11

s110

0

s111

1

1

sx = fs(x)

I Example: fs(001) = s001 = G1(s00) = G1(G0(s0)) = G1(G0(G0(s)))

I G is poly-time =⇒ F := {Fn = {fs : s ∈ {0,1}n}} is efficient

Theorem 6 (Goldreich-Goldwasser-Micali (GGM))

If G is a PRG then F is a PRF.

Corollary 7

OWFs imply PRFs.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 14 / 35

The GGM Construction

Construction 5 (GGM)

For G : {0, 1}n 7→ {0, 1}2n and s ∈ {0, 1}n,

I G0(s) = G(s)1,...,n

I G1(s) = G(s)n+1,...,2n

For x ∈ {0, 1}k let fs(x) = Gxk (fs(x1,...,k−1)),
letting fs() = s.

s

s0

s00

s000

0

s001

1

0

s01

s010

0

s011

1

1

0

s1

s10

s100

0

s101

1

s11

s110

0

s111

1

1

sx = fs(x)

I Example: fs(001) = s001 = G1(s00) = G1(G0(s0)) = G1(G0(G0(s)))

I G is poly-time =⇒ F := {Fn = {fs : s ∈ {0,1}n}} is efficient

Theorem 6 (Goldreich-Goldwasser-Micali (GGM))

If G is a PRG then F is a PRF.

Corollary 7

OWFs imply PRFs.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 14 / 35

The GGM Construction

Construction 5 (GGM)

For G : {0, 1}n 7→ {0, 1}2n and s ∈ {0, 1}n,

I G0(s) = G(s)1,...,n

I G1(s) = G(s)n+1,...,2n

For x ∈ {0, 1}k let fs(x) = Gxk (fs(x1,...,k−1)),
letting fs() = s.

s

s0

s00

s000

0

s001

1

0

s01

s010

0

s011

1

1

0

s1

s10

s100

0

s101

1

s11

s110

0

s111

1

1

sx = fs(x)

I Example: fs(001) = s001 = G1(s00) = G1(G0(s0)) = G1(G0(G0(s)))

I G is poly-time =⇒ F := {Fn = {fs : s ∈ {0,1}n}} is efficient

Theorem 6 (Goldreich-Goldwasser-Micali (GGM))

If G is a PRG then F is a PRF.

Corollary 7

OWFs imply PRFs.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 14 / 35

The GGM Construction

Construction 5 (GGM)

For G : {0, 1}n 7→ {0, 1}2n and s ∈ {0, 1}n,

I G0(s) = G(s)1,...,n

I G1(s) = G(s)n+1,...,2n

For x ∈ {0, 1}k let fs(x) = Gxk (fs(x1,...,k−1)),
letting fs() = s.

s

s0

s00

s000

0

s001

1

0

s01

s010

0

s011

1

1

0

s1

s10

s100

0

s101

1

s11

s110

0

s111

1

1

sx = fs(x)

I Example: fs(001) = s001 = G1(s00) = G1(G0(s0)) = G1(G0(G0(s)))

I G is poly-time =⇒ F := {Fn = {fs : s ∈ {0,1}n}} is efficient

Theorem 6 (Goldreich-Goldwasser-Micali (GGM))

If G is a PRG then F is a PRF.

Corollary 7

OWFs imply PRFs.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 14 / 35

The GGM Construction

Construction 5 (GGM)

For G : {0, 1}n 7→ {0, 1}2n and s ∈ {0, 1}n,

I G0(s) = G(s)1,...,n

I G1(s) = G(s)n+1,...,2n

For x ∈ {0, 1}k let fs(x) = Gxk (fs(x1,...,k−1)),
letting fs() = s.

s

s0

s00

s000

0

s001

1

0

s01

s010

0

s011

1

1

0

s1

s10

s100

0

s101

1

s11

s110

0

s111

1

1

sx = fs(x)

I Example: fs(001) = s001 = G1(s00) = G1(G0(s0)) = G1(G0(G0(s)))

I G is poly-time =⇒ F := {Fn = {fs : s ∈ {0,1}n}} is efficient

Theorem 6 (Goldreich-Goldwasser-Micali (GGM))

If G is a PRG then F is a PRF.

Corollary 7

OWFs imply PRFs.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 14 / 35

The GGM Construction

Construction 5 (GGM)

For G : {0, 1}n 7→ {0, 1}2n and s ∈ {0, 1}n,

I G0(s) = G(s)1,...,n

I G1(s) = G(s)n+1,...,2n

For x ∈ {0, 1}k let fs(x) = Gxk (fs(x1,...,k−1)),
letting fs() = s.

s

s0

s00

s000

0

s001

1

0

s01

s010

0

s011

1

1

0

s1

s10

s100

0

s101

1

s11

s110

0

s111

1

1

sx = fs(x)

I Example: fs(001) = s001 = G1(s00) = G1(G0(s0)) = G1(G0(G0(s)))

I G is poly-time =⇒ F := {Fn = {fs : s ∈ {0,1}n}} is efficient

Theorem 6 (Goldreich-Goldwasser-Micali (GGM))

If G is a PRG then F is a PRF.

Corollary 7

OWFs imply PRFs.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 14 / 35

The GGM Construction

Construction 5 (GGM)

For G : {0, 1}n 7→ {0, 1}2n and s ∈ {0, 1}n,

I G0(s) = G(s)1,...,n

I G1(s) = G(s)n+1,...,2n

For x ∈ {0, 1}k let fs(x) = Gxk (fs(x1,...,k−1)),
letting fs() = s.

s

s0

s00

s000

0

s001

1

0

s01

s010

0

s011

1

1

0

s1

s10

s100

0

s101

1

s11

s110

0

s111

1

1

sx = fs(x)

I Example: fs(001) = s001 = G1(s00) = G1(G0(s0)) = G1(G0(G0(s)))

I G is poly-time =⇒ F := {Fn = {fs : s ∈ {0,1}n}} is efficient

Theorem 6 (Goldreich-Goldwasser-Micali (GGM))

If G is a PRG then F is a PRF.

Corollary 7

OWFs imply PRFs.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 14 / 35

Subsection 2

Proof

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 15 / 35

Proof Idea

Assume ∃ PPT D, p ∈ poly and infinite set I ⊆ N with∣∣Pr[DFn (1n) = 1]− Pr[DΠn (1n) = 1]
∣∣ ≥ 1

p(n)
, (1)

for any n ∈ I.

Fix n ∈ N and let t = t(n) be a bound on the running time of D(1n). We use D
to construct a PPT D′ such that∣∣Pr[D′((U2n)t) = 1]− Pr[D′(G(Un))t) = 1

∣∣ > 1
np(n)

,

where (U2n)t = U(1)
2n , . . . ,U

(t)
2n and G(Un)t = G(U(1)

n), . . . ,G(U(t)
n).

Hence, D′ violates the security of G.(?)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 16 / 35

Proof Idea

Assume ∃ PPT D, p ∈ poly and infinite set I ⊆ N with∣∣Pr[DFn (1n) = 1]− Pr[DΠn (1n) = 1]
∣∣ ≥ 1

p(n)
, (1)

for any n ∈ I.

Fix n ∈ N and let t = t(n) be a bound on the running time of D(1n).

We use D
to construct a PPT D′ such that∣∣Pr[D′((U2n)t) = 1]− Pr[D′(G(Un))t) = 1

∣∣ > 1
np(n)

,

where (U2n)t = U(1)
2n , . . . ,U

(t)
2n and G(Un)t = G(U(1)

n), . . . ,G(U(t)
n).

Hence, D′ violates the security of G.(?)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 16 / 35

Proof Idea

Assume ∃ PPT D, p ∈ poly and infinite set I ⊆ N with∣∣Pr[DFn (1n) = 1]− Pr[DΠn (1n) = 1]
∣∣ ≥ 1

p(n)
, (1)

for any n ∈ I.

Fix n ∈ N and let t = t(n) be a bound on the running time of D(1n). We use D
to construct a PPT D′ such that∣∣Pr[D′((U2n)t) = 1]− Pr[D′(G(Un))t) = 1

∣∣ > 1
np(n)

,

where (U2n)t = U(1)
2n , . . . ,U

(t)
2n and G(Un)t = G(U(1)

n), . . . ,G(U(t)
n).

Hence, D′ violates the security of G.(?)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 16 / 35

Proof Idea

Assume ∃ PPT D, p ∈ poly and infinite set I ⊆ N with∣∣Pr[DFn (1n) = 1]− Pr[DΠn (1n) = 1]
∣∣ ≥ 1

p(n)
, (1)

for any n ∈ I.

Fix n ∈ N and let t = t(n) be a bound on the running time of D(1n). We use D
to construct a PPT D′ such that∣∣Pr[D′((U2n)t) = 1]− Pr[D′(G(Un))t) = 1

∣∣ > 1
np(n)

,

where (U2n)t = U(1)
2n , . . . ,U

(t)
2n and G(Un)t = G(U(1)

n), . . . ,G(U(t)
n).

Hence, D′ violates the security of G.(?)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 16 / 35

The Hybrid

s

s0

s00

s000

0

s001

1

0

s01

s010

0

s011

1

1

0

s1

s10

s100

0

s101

1

s11

s110

0

s111

1

1

sx = fs(x)

I Hi : all the nodes of depth smaller than i are labeled by random strings. Other nodes are
labeled as before (by applying PRG to the father and taking right/left half).

I What family is H1? Fn. What is Hn? Πn.

I For some i ∈ {1, . . . , n − 1}, algorithm D distinguishes Hi from Hi+1 by 1
np(n)

6≈

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 17 / 35

The Hybrid

s

s0

s00

s000

0

s001

1

0

s01

s010

0

s011

1

1

0

s1

s10

s100

0

s101

1

s11

s110

0

s111

1

1

sx = fs(x)

I Hi : all the nodes of depth smaller than i are labeled by random strings. Other nodes are
labeled as before (by applying PRG to the father and taking right/left half).

I What family is H1?

Fn. What is Hn? Πn.

I For some i ∈ {1, . . . , n − 1}, algorithm D distinguishes Hi from Hi+1 by 1
np(n)

6≈

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 17 / 35

The Hybrid

s

s0

s00

s000

0

s001

1

0

s01

s010

0

s011

1

1

0

s1

s10

s100

0

s101

1

s11

s110

0

s111

1

1

sx = fs(x)

I Hi : all the nodes of depth smaller than i are labeled by random strings. Other nodes are
labeled as before (by applying PRG to the father and taking right/left half).

I What family is H1?

Fn. What is Hn? Πn.

I For some i ∈ {1, . . . , n − 1}, algorithm D distinguishes Hi from Hi+1 by 1
np(n)

6≈

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 17 / 35

The Hybrid

s

s0

s00

s000

0

s001

1

0

s01

s010

0

s011

1

1

0

s1

s10

s100

0

s101

1

s11

s110

0

s111

1

1

sx = fs(x)

I Hi : all the nodes of depth smaller than i are labeled by random strings. Other nodes are
labeled as before (by applying PRG to the father and taking right/left half).

I What family is H1?

Fn. What is Hn? Πn.

I For some i ∈ {1, . . . , n − 1}, algorithm D distinguishes Hi from Hi+1 by 1
np(n)

6≈

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 17 / 35

The Hybrid

s

s0

s00

s000

0

s001

1

0

s01

s010

0

s011

1

1

0

s1

s10

s100

0

s101

1

s11

s110

0

s111

1

1

sx = fs(x)

I Hi : all the nodes of depth smaller than i are labeled by random strings. Other nodes are
labeled as before (by applying PRG to the father and taking right/left half).

I What family is H1? Fn.

What is Hn? Πn.

I For some i ∈ {1, . . . , n − 1}, algorithm D distinguishes Hi from Hi+1 by 1
np(n)

6≈

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 17 / 35

The Hybrid

s

s0

s00

s000

0

s001

1

0

s01

s010

0

s011

1

1

0

s1

s10

s100

0

s101

1

s11

s110

0

s111

1

1

sx = fs(x)

I Hi : all the nodes of depth smaller than i are labeled by random strings. Other nodes are
labeled as before (by applying PRG to the father and taking right/left half).

I What family is H1? Fn.

What is Hn? Πn.

I For some i ∈ {1, . . . , n − 1}, algorithm D distinguishes Hi from Hi+1 by 1
np(n)

6≈

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 17 / 35

The Hybrid

s

s0

s00

s000

0

s001

1

0

s01

s010

0

s011

1

1

0

s1

s10

s100

0

s101

1

s11

s110

0

s111

1

1

sx = fs(x)

I Hi : all the nodes of depth smaller than i are labeled by random strings. Other nodes are
labeled as before (by applying PRG to the father and taking right/left half).

I What family is H1? Fn. What is Hn?

Πn.

I For some i ∈ {1, . . . , n − 1}, algorithm D distinguishes Hi from Hi+1 by 1
np(n)

6≈

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 17 / 35

The Hybrid

s

s0

s00

s000

0

s001

1

0

s01

s010

0

s011

1

1

0

s1

s10

s100

0

s101

1

s11

s110

0

s111

1

1

sx = fs(x)

I Hi : all the nodes of depth smaller than i are labeled by random strings. Other nodes are
labeled as before (by applying PRG to the father and taking right/left half).

I What family is H1? Fn. What is Hn? Πn.

I For some i ∈ {1, . . . , n − 1}, algorithm D distinguishes Hi from Hi+1 by 1
np(n)

6≈

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 17 / 35

The Hybrid

s

s0

s00

s000

0

s001

1

0

s01

s010

0

s011

1

1

0

s1

s10

s100

0

s101

1

s11

s110

0

s111

1

1

sx = fs(x)

I Hi : all the nodes of depth smaller than i are labeled by random strings. Other nodes are
labeled as before (by applying PRG to the father and taking right/left half).

I What family is H1? Fn. What is Hn? Πn.

I For some i ∈ {1, . . . , n − 1}, algorithm D distinguishes Hi from Hi+1 by 1
np(n)

6≈

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 17 / 35

The Hybrid

s

s0

s00

s000

0

s001

1

0

s01

s010

0

s011

1

1

0

s1

s10

s100

0

s101

1

s11

s110

0

s111

1

1

sx = fs(x)

I Hi : all the nodes of depth smaller than i are labeled by random strings. Other nodes are
labeled as before (by applying PRG to the father and taking right/left half).

I What family is H1? Fn. What is Hn? Πn.

I For some i ∈ {1, . . . , n − 1}, algorithm D distinguishes Hi from Hi+1 by 1
np(n)

6≈
Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 17 / 35

The Hybrid cont.
We focus on the case where D distinguishes between Hn−1 and Hn

I D distinguishes (via t samples) between

I R – a uniform string of length 2n · n, and
I P - a string generated by 2n−1 independent calls to G

I We would like to use D for breaking the security of G, but R and P seem too long :-(

I Solution: focus on the part (i.e., cells) that D sees

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 18 / 35

The Hybrid cont.
We focus on the case where D distinguishes between Hn−1 and Hn

I D distinguishes (via t samples) between

I R – a uniform string of length 2n · n, and
I P - a string generated by 2n−1 independent calls to G

I We would like to use D for breaking the security of G, but R and P seem too long :-(

I Solution: focus on the part (i.e., cells) that D sees

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 18 / 35

The Hybrid cont.
We focus on the case where D distinguishes between Hn−1 and Hn

I D distinguishes (via t samples) between

I R – a uniform string of length 2n · n, and
I P - a string generated by 2n−1 independent calls to G

I We would like to use D for breaking the security of G,

but R and P seem too long :-(

I Solution: focus on the part (i.e., cells) that D sees

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 18 / 35

The Hybrid cont.
We focus on the case where D distinguishes between Hn−1 and Hn

I D distinguishes (via t samples) between

I R – a uniform string of length 2n · n, and
I P - a string generated by 2n−1 independent calls to G

I We would like to use D for breaking the security of G, but R and P seem too long :-(

I Solution: focus on the part (i.e., cells) that D sees

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 18 / 35

The Hybrid cont.
We focus on the case where D distinguishes between Hn−1 and Hn

I D distinguishes (via t samples) between

I R – a uniform string of length 2n · n, and
I P - a string generated by 2n−1 independent calls to G

I We would like to use D for breaking the security of G, but R and P seem too long :-(

I Solution: focus on the part (i.e., cells) that D sees

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 18 / 35

The Hybrid cont.
We focus on the case where D distinguishes between Hn−1 and Hn

I D distinguishes (via t samples) between

I R – a uniform string of length 2n · n, and
I P - a string generated by 2n−1 independent calls to G

I We would like to use D for breaking the security of G, but R and P seem too long :-(

I Solution: focus on the part (i.e., cells) that D sees

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 18 / 35

The Hybrid cont.
We focus on the case where D distinguishes between Hn−1 and Hn

Algorithm 8 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t)

Emulate D. Initialize a counter k = 0. On the i ’th query qi made by D:
I If the cell queries by qi ’th is non-empty, answer with the content of the cell.

I Else increment k by 1 and do:

I If qi is a left son, fill its cell with the left half of yk and use the right half of y to fill the
right brother of qi .

I If qi is a right son, fill its cell with the right half of yk and use the left half of y to fill the
cell of left brother of qi .

I D′(U2n)t) / D′(G(Un))t) emulates D with access to R / P

I Hence,
∣∣Pr[D′((U2n)t) = 1]− Pr[D′(G(Un))t) = 1

∣∣ > 1
np(n)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 19 / 35

The Hybrid cont.
We focus on the case where D distinguishes between Hn−1 and Hn

6≈
Algorithm 8 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t)

Emulate D. Initialize a counter k = 0. On the i ’th query qi made by D:
I If the cell queries by qi ’th is non-empty, answer with the content of the cell.

I Else increment k by 1 and do:

I If qi is a left son, fill its cell with the left half of yk and use the right half of y to fill the
right brother of qi .

I If qi is a right son, fill its cell with the right half of yk and use the left half of y to fill the
cell of left brother of qi .

I D′(U2n)t) / D′(G(Un))t) emulates D with access to R / P

I Hence,
∣∣Pr[D′((U2n)t) = 1]− Pr[D′(G(Un))t) = 1

∣∣ > 1
np(n)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 19 / 35

The Hybrid cont.
We focus on the case where D distinguishes between Hn−1 and Hn

6≈
Algorithm 8 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t)

Emulate D. Initialize a counter k = 0. On the i ’th query qi made by D:
I If the cell queries by qi ’th is non-empty, answer with the content of the cell.

I Else increment k by 1 and do:

I If qi is a left son, fill its cell with the left half of yk and use the right half of y to fill the
right brother of qi .

I If qi is a right son, fill its cell with the right half of yk and use the left half of y to fill the
cell of left brother of qi .

I D′(U2n)t) / D′(G(Un))t) emulates D with access to R / P

I Hence,
∣∣Pr[D′((U2n)t) = 1]− Pr[D′(G(Un))t) = 1

∣∣ > 1
np(n)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 19 / 35

The Hybrid cont.
We focus on the case where D distinguishes between Hn−1 and Hn

6≈
Algorithm 8 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t)

Emulate D. Initialize a counter k = 0. On the i ’th query qi made by D:
I If the cell queries by qi ’th is non-empty, answer with the content of the cell.

I Else increment k by 1 and do:

I If qi is a left son, fill its cell with the left half of yk and use the right half of y to fill the
right brother of qi .

I If qi is a right son, fill its cell with the right half of yk and use the left half of y to fill the
cell of left brother of qi .

I D′(U2n)t) / D′(G(Un))t) emulates D with access to R / P

I Hence,
∣∣Pr[D′((U2n)t) = 1]− Pr[D′(G(Un))t) = 1

∣∣ > 1
np(n)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 19 / 35

The Hybrid cont.
We focus on the case where D distinguishes between Hn−1 and Hn

6≈
Algorithm 8 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t)

Emulate D. Initialize a counter k = 0. On the i ’th query qi made by D:
I If the cell queries by qi ’th is non-empty, answer with the content of the cell.

I Else increment k by 1 and do:

I If qi is a left son, fill its cell with the left half of yk and use the right half of y to fill the
right brother of qi .

I If qi is a right son, fill its cell with the right half of yk and use the left half of y to fill the
cell of left brother of qi .

I D′(U2n)t) / D′(G(Un))t) emulates D with access to R / P

I Hence,
∣∣Pr[D′((U2n)t) = 1]− Pr[D′(G(Un))t) = 1

∣∣ > 1
np(n)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 19 / 35

The Hybrid cont.
We focus on the case where D distinguishes between Hn−1 and Hn

6≈
Algorithm 8 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t)

Emulate D. Initialize a counter k = 0. On the i ’th query qi made by D:
I If the cell queries by qi ’th is non-empty, answer with the content of the cell.

I Else increment k by 1 and do:

I If qi is a left son, fill its cell with the left half of yk and use the right half of y to fill the
right brother of qi .

I If qi is a right son, fill its cell with the right half of yk and use the left half of y to fill the
cell of left brother of qi .

I D′(U2n)t) / D′(G(Un))t) emulates D with access to R / P

I Hence,
∣∣Pr[D′((U2n)t) = 1]− Pr[D′(G(Un))t) = 1

∣∣ > 1
np(n)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 19 / 35

The Hybrid cont.
We focus on the case where D distinguishes between Hn−1 and Hn

6≈
Algorithm 8 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t)

Emulate D. Initialize a counter k = 0. On the i ’th query qi made by D:
I If the cell queries by qi ’th is non-empty, answer with the content of the cell.

I Else increment k by 1 and do:

I If qi is a left son, fill its cell with the left half of yk and use the right half of y to fill the
right brother of qi .

I If qi is a right son, fill its cell with the right half of yk and use the left half of y to fill the
cell of left brother of qi .

I D′(U2n)t) / D′(G(Un))t) emulates D with access to R / P

I Hence,
∣∣Pr[D′((U2n)t) = 1]− Pr[D′(G(Un))t) = 1

∣∣ > 1
np(n)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 19 / 35

The Hybrid cont.
We focus on the case where D distinguishes between Hn−1 and Hn

6≈
Algorithm 8 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t)

Emulate D. Initialize a counter k = 0. On the i ’th query qi made by D:
I If the cell queries by qi ’th is non-empty, answer with the content of the cell.

I Else increment k by 1 and do:

I If qi is a left son, fill its cell with the left half of yk and use the right half of y to fill the
right brother of qi .

I If qi is a right son, fill its cell with the right half of yk and use the left half of y to fill the
cell of left brother of qi .

I D′(U2n)t) / D′(G(Un))t) emulates D with access to R / P

I Hence,
∣∣Pr[D′((U2n)t) = 1]− Pr[D′(G(Un))t) = 1

∣∣ > 1
np(n)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 19 / 35

The Hybrid cont.
We focus on the case where D distinguishes between Hn−1 and Hn

6≈
Algorithm 8 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t)

Emulate D. Initialize a counter k = 0. On the i ’th query qi made by D:
I If the cell queries by qi ’th is non-empty, answer with the content of the cell.

I Else increment k by 1 and do:

I If qi is a left son, fill its cell with the left half of yk and use the right half of y to fill the
right brother of qi .

I If qi is a right son, fill its cell with the right half of yk and use the left half of y to fill the
cell of left brother of qi .

I D′(U2n)t) / D′(G(Un))t) emulates D with access to R / P

I Hence,
∣∣Pr[D′((U2n)t) = 1]− Pr[D′(G(Un))t) = 1

∣∣ > 1
np(n)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 19 / 35

The Hybrid cont.
We focus on the case where D distinguishes between Hn−1 and Hn

6≈
Algorithm 8 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t)

Emulate D. Initialize a counter k = 0. On the i ’th query qi made by D:
I If the cell queries by qi ’th is non-empty, answer with the content of the cell.

I Else increment k by 1 and do:

I If qi is a left son, fill its cell with the left half of yk and use the right half of y to fill the
right brother of qi .

I If qi is a right son, fill its cell with the right half of yk and use the left half of y to fill the
cell of left brother of qi .

I D′(U2n)t) / D′(G(Un))t) emulates D with access to R / P

I Hence,
∣∣Pr[D′((U2n)t) = 1]− Pr[D′(G(Un))t) = 1

∣∣ > 1
np(n)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 19 / 35

The Hybrid cont.
We focus on the case where D distinguishes between Hn−1 and Hn

6≈
Algorithm 8 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t)

Emulate D. Initialize a counter k = 0. On the i ’th query qi made by D:
I If the cell queries by qi ’th is non-empty, answer with the content of the cell.

I Else increment k by 1 and do:

I If qi is a left son, fill its cell with the left half of yk and use the right half of y to fill the
right brother of qi .

I If qi is a right son, fill its cell with the right half of yk and use the left half of y to fill the
cell of left brother of qi .

I D′(U2n)t) / D′(G(Un))t) emulates D with access to R / P

I Hence,
∣∣Pr[D′((U2n)t) = 1]− Pr[D′(G(Un))t) = 1

∣∣ > 1
np(n)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 19 / 35

The Hybrid cont.
We focus on the case where D distinguishes between Hn−1 and Hn

6≈
Algorithm 8 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t)

Emulate D. Initialize a counter k = 0. On the i ’th query qi made by D:
I If the cell queries by qi ’th is non-empty, answer with the content of the cell.

I Else increment k by 1 and do:

I If qi is a left son, fill its cell with the left half of yk and use the right half of y to fill the
right brother of qi .

I If qi is a right son, fill its cell with the right half of yk and use the left half of y to fill the
cell of left brother of qi .

I D′(U2n)t) / D′(G(Un))t) emulates D with access to R / P

I Hence,
∣∣Pr[D′((U2n)t) = 1]− Pr[D′(G(Un))t) = 1

∣∣ > 1
np(n)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 19 / 35

The Hybrid cont.
We focus on the case where D distinguishes between Hn−1 and Hn

6≈
Algorithm 8 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t)

Emulate D. Initialize a counter k = 0. On the i ’th query qi made by D:
I If the cell queries by qi ’th is non-empty, answer with the content of the cell.

I Else increment k by 1 and do:

I If qi is a left son, fill its cell with the left half of yk and use the right half of y to fill the
right brother of qi .

I If qi is a right son, fill its cell with the right half of yk and use the left half of y to fill the
cell of left brother of qi .

I D′(U2n)t) / D′(G(Un))t) emulates D with access to R / P

I Hence,
∣∣Pr[D′((U2n)t) = 1]− Pr[D′(G(Un))t) = 1

∣∣ > 1
np(n)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 19 / 35

The Hybrid cont.
We focus on the case where D distinguishes between Hn−1 and Hn

6≈
Algorithm 8 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t)

Emulate D. Initialize a counter k = 0. On the i ’th query qi made by D:
I If the cell queries by qi ’th is non-empty, answer with the content of the cell.

I Else increment k by 1 and do:

I If qi is a left son, fill its cell with the left half of yk and use the right half of y to fill the
right brother of qi .

I If qi is a right son, fill its cell with the right half of yk and use the left half of y to fill the
cell of left brother of qi .

I D′(U2n)t) / D′(G(Un))t) emulates D with access to R / P

I Hence,
∣∣Pr[D′((U2n)t) = 1]− Pr[D′(G(Un))t) = 1

∣∣ > 1
np(n)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 19 / 35

The Hybrid cont.
We focus on the case where D distinguishes between Hn−1 and Hn

6≈
Algorithm 8 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t)

Emulate D. Initialize a counter k = 0. On the i ’th query qi made by D:
I If the cell queries by qi ’th is non-empty, answer with the content of the cell.

I Else increment k by 1 and do:

I If qi is a left son, fill its cell with the left half of yk and use the right half of y to fill the
right brother of qi .

I If qi is a right son, fill its cell with the right half of yk and use the left half of y to fill the
cell of left brother of qi .

I D′(U2n)t) / D′(G(Un))t) emulates D with access to R / P

I Hence,
∣∣Pr[D′((U2n)t) = 1]− Pr[D′(G(Un))t) = 1

∣∣ > 1
np(n)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 19 / 35

The Hybrid cont.
We focus on the case where D distinguishes between Hn−1 and Hn

6≈
Algorithm 8 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t)

Emulate D. Initialize a counter k = 0. On the i ’th query qi made by D:
I If the cell queries by qi ’th is non-empty, answer with the content of the cell.

I Else increment k by 1 and do:

I If qi is a left son, fill its cell with the left half of yk and use the right half of y to fill the
right brother of qi .

I If qi is a right son, fill its cell with the right half of yk and use the left half of y to fill the
cell of left brother of qi .

I D′(U2n)t) / D′(G(Un))t) emulates D with access to R / P

I Hence,
∣∣Pr[D′((U2n)t) = 1]− Pr[D′(G(Un))t) = 1

∣∣ > 1
np(n)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 19 / 35

The Hybrid cont.
We focus on the case where D distinguishes between Hn−1 and Hn

6≈
Algorithm 8 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t)

Emulate D. Initialize a counter k = 0. On the i ’th query qi made by D:
I If the cell queries by qi ’th is non-empty, answer with the content of the cell.

I Else increment k by 1 and do:

I If qi is a left son, fill its cell with the left half of yk and use the right half of y to fill the
right brother of qi .

I If qi is a right son, fill its cell with the right half of yk and use the left half of y to fill the
cell of left brother of qi .

I D′(U2n)t) / D′(G(Un))t) emulates D with access to R / P

I Hence,
∣∣Pr[D′((U2n)t) = 1]− Pr[D′(G(Un))t) = 1

∣∣ > 1
np(n)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 19 / 35

The Hybrid cont.
We focus on the case where D distinguishes between Hn−1 and Hn

6≈
Algorithm 8 (D′ on y1, . . . , yt ∈ ({0, 1}2n)t)

Emulate D. Initialize a counter k = 0. On the i ’th query qi made by D:
I If the cell queries by qi ’th is non-empty, answer with the content of the cell.

I Else increment k by 1 and do:

I If qi is a left son, fill its cell with the left half of yk and use the right half of y to fill the
right brother of qi .

I If qi is a right son, fill its cell with the right half of yk and use the left half of y to fill the
cell of left brother of qi .

I D′(U2n)t) / D′(G(Un))t) emulates D with access to R / P

I Hence,
∣∣Pr[D′((U2n)t) = 1]− Pr[D′(G(Un))t) = 1

∣∣ > 1
np(n)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 19 / 35

Part I

Pseudorandom Permutations

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 20 / 35

Formal Definition

Let Π̃n be the set of all permutations over {0,1}n.

Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble F = {Fn : {0,1}n 7→ {0,1}n} is a pseudorandom
permutation, if ∣∣∣Pr[DFn (1n) = 1]− Pr[DΠ̃n (1n) = 1

∣∣∣ = neg(n), (2)

for any oracle-aided PPT D

I Eq 2 holds for any PRF (taking the role of F)

I Hence, PRPs are indistinguishable from PRFs...

I If no one can distinguish between PRFs and PRPs, let’s use PRFs

I (partial) Perfect “security"
I Inversion

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 21 / 35

Formal Definition

Let Π̃n be the set of all permutations over {0,1}n.

Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble F = {Fn : {0,1}n 7→ {0,1}n} is a pseudorandom
permutation, if ∣∣∣Pr[DFn (1n) = 1]− Pr[DΠ̃n (1n) = 1

∣∣∣ = neg(n), (2)

for any oracle-aided PPT D

I Eq 2 holds for any PRF (taking the role of F)

I Hence, PRPs are indistinguishable from PRFs...

I If no one can distinguish between PRFs and PRPs, let’s use PRFs

I (partial) Perfect “security"
I Inversion

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 21 / 35

Formal Definition

Let Π̃n be the set of all permutations over {0,1}n.

Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble F = {Fn : {0,1}n 7→ {0,1}n} is a pseudorandom
permutation, if ∣∣∣Pr[DFn (1n) = 1]− Pr[DΠ̃n (1n) = 1

∣∣∣ = neg(n), (2)

for any oracle-aided PPT D

I Eq 2 holds for any PRF (taking the role of F)

I Hence, PRPs are indistinguishable from PRFs...

I If no one can distinguish between PRFs and PRPs, let’s use PRFs

I (partial) Perfect “security"
I Inversion

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 21 / 35

Formal Definition

Let Π̃n be the set of all permutations over {0,1}n.

Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble F = {Fn : {0,1}n 7→ {0,1}n} is a pseudorandom
permutation, if ∣∣∣Pr[DFn (1n) = 1]− Pr[DΠ̃n (1n) = 1

∣∣∣ = neg(n), (2)

for any oracle-aided PPT D

I Eq 2 holds for any PRF (taking the role of F)

I Hence, PRPs are indistinguishable from PRFs...

I If no one can distinguish between PRFs and PRPs, let’s use PRFs

I (partial) Perfect “security"
I Inversion

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 21 / 35

Formal Definition

Let Π̃n be the set of all permutations over {0,1}n.

Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble F = {Fn : {0,1}n 7→ {0,1}n} is a pseudorandom
permutation, if ∣∣∣Pr[DFn (1n) = 1]− Pr[DΠ̃n (1n) = 1

∣∣∣ = neg(n), (2)

for any oracle-aided PPT D

I Eq 2 holds for any PRF (taking the role of F)

I Hence, PRPs are indistinguishable from PRFs...

I If no one can distinguish between PRFs and PRPs, let’s use PRFs

I (partial) Perfect “security"

I Inversion

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 21 / 35

Formal Definition

Let Π̃n be the set of all permutations over {0,1}n.

Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble F = {Fn : {0,1}n 7→ {0,1}n} is a pseudorandom
permutation, if ∣∣∣Pr[DFn (1n) = 1]− Pr[DΠ̃n (1n) = 1

∣∣∣ = neg(n), (2)

for any oracle-aided PPT D

I Eq 2 holds for any PRF (taking the role of F)

I Hence, PRPs are indistinguishable from PRFs...

I If no one can distinguish between PRFs and PRPs, let’s use PRFs

I (partial) Perfect “security"
I Inversion

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 21 / 35

Subsection 1

PRP from PRF

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 22 / 35

Feistel permutation

How does one turn a function into a permutation?

Definition 10 (LR)

For f : {0,1}n 7→ {0,1}n, let LRf : {0,1}2n 7→ {0,1}2n

be defined by

LRf (`, r) = (r , f (r)⊕ `).

I LRf is a permutation: LR−1
f (z,w) = (f (z)⊕ w , z)

I LRf is efficiently computable and invertible given
oracle access to f

I For i ∈ N and f 1, . . . , f i , define LRf 1,...,f i : {0,1}2n 7→ {0,1}2n by

LRf 1,...,f i (`, r) = (r i−1, f i (r i−1)⊕ `i−1), for (`i−1, r i−1) = LRf 1,...,f i−1 (`, r).
(letting (`0, r0) = (`, r)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 23 / 35

Feistel permutation

How does one turn a function into a permutation?

Definition 10 (LR)

For f : {0,1}n 7→ {0,1}n, let LRf : {0,1}2n 7→ {0,1}2n

be defined by

LRf (`, r) = (r , f (r)⊕ `).

I LRf is a permutation: LR−1
f (z,w) = (f (z)⊕ w , z)

I LRf is efficiently computable and invertible given
oracle access to f

I For i ∈ N and f 1, . . . , f i , define LRf 1,...,f i : {0,1}2n 7→ {0,1}2n by

LRf 1,...,f i (`, r) = (r i−1, f i (r i−1)⊕ `i−1), for (`i−1, r i−1) = LRf 1,...,f i−1 (`, r).
(letting (`0, r0) = (`, r)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 23 / 35

Feistel permutation

How does one turn a function into a permutation?

Definition 10 (LR)

For f : {0,1}n 7→ {0,1}n, let LRf : {0,1}2n 7→ {0,1}2n

be defined by

LRf (`, r) = (r , f (r)⊕ `).

I LRf is a permutation: LR−1
f (z,w) = (f (z)⊕ w , z)

I LRf is efficiently computable and invertible given
oracle access to f

I For i ∈ N and f 1, . . . , f i , define LRf 1,...,f i : {0,1}2n 7→ {0,1}2n by

LRf 1,...,f i (`, r) = (r i−1, f i (r i−1)⊕ `i−1), for (`i−1, r i−1) = LRf 1,...,f i−1 (`, r).
(letting (`0, r0) = (`, r)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 23 / 35

Feistel permutation

How does one turn a function into a permutation?

Definition 10 (LR)

For f : {0,1}n 7→ {0,1}n, let LRf : {0,1}2n 7→ {0,1}2n

be defined by

LRf (`, r) = (r , f (r)⊕ `).

I LRf is a permutation: LR−1
f (z,w) = (f (z)⊕ w , z)

I LRf is efficiently computable and invertible given
oracle access to f

I For i ∈ N and f 1, . . . , f i , define LRf 1,...,f i : {0,1}2n 7→ {0,1}2n by

LRf 1,...,f i (`, r) = (r i−1, f i (r i−1)⊕ `i−1), for (`i−1, r i−1) = LRf 1,...,f i−1 (`, r).
(letting (`0, r0) = (`, r)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 23 / 35

Feistel permutation

How does one turn a function into a permutation?

Definition 10 (LR)

For f : {0,1}n 7→ {0,1}n, let LRf : {0,1}2n 7→ {0,1}2n

be defined by

LRf (`, r) = (r , f (r)⊕ `).

I LRf is a permutation: LR−1
f (z,w) = (f (z)⊕ w , z)

I LRf is efficiently computable and invertible given
oracle access to f

I For i ∈ N and f 1, . . . , f i , define LRf 1,...,f i : {0,1}2n 7→ {0,1}2n by

LRf 1,...,f i (`, r) = (r i−1, f i (r i−1)⊕ `i−1), for (`i−1, r i−1) = LRf 1,...,f i−1 (`, r).
(letting (`0, r0) = (`, r)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 23 / 35

Feistel permutation

How does one turn a function into a permutation?

Definition 10 (LR)

For f : {0,1}n 7→ {0,1}n, let LRf : {0,1}2n 7→ {0,1}2n

be defined by

LRf (`, r) = (r , f (r)⊕ `).

I LRf is a permutation: LR−1
f (z,w) = (f (z)⊕ w , z)

I LRf is efficiently computable and invertible given
oracle access to f

I For i ∈ N and f 1, . . . , f i , define LRf 1,...,f i : {0,1}2n 7→ {0,1}2n by

LRf 1,...,f i (`, r) = (r i−1, f i (r i−1)⊕ `i−1), for (`i−1, r i−1) = LRf 1,...,f i−1 (`, r).
(letting (`0, r0) = (`, r)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 23 / 35

Feistel permutation

How does one turn a function into a permutation?

Definition 10 (LR)

For f : {0,1}n 7→ {0,1}n, let LRf : {0,1}2n 7→ {0,1}2n

be defined by

LRf (`, r) = (r , f (r)⊕ `).

I LRf is a permutation: LR−1
f (z,w) = (f (z)⊕ w , z)

I LRf is efficiently computable and invertible given
oracle access to f

I For i ∈ N and f 1, . . . , f i , define LRf 1,...,f i : {0,1}2n 7→ {0,1}2n by

LRf 1,...,f i (`, r) = (r i−1, f i (r i−1)⊕ `i−1), for (`i−1, r i−1) = LRf 1,...,f i−1 (`, r).
(letting (`0, r0) = (`, r)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 23 / 35

Feistel permutation

How does one turn a function into a permutation?

Definition 10 (LR)

For f : {0,1}n 7→ {0,1}n, let LRf : {0,1}2n 7→ {0,1}2n

be defined by

LRf (`, r) = (r , f (r)⊕ `).

I LRf is a permutation: LR−1
f (z,w) = (f (z)⊕ w , z)

I LRf is efficiently computable and invertible given
oracle access to f

I For i ∈ N and f 1, . . . , f i , define LRf 1,...,f i : {0,1}2n 7→ {0,1}2n by

LRf 1,...,f i (`, r) = (r i−1, f i (r i−1)⊕ `i−1), for (`i−1, r i−1) = LRf 1,...,f i−1 (`, r).
(letting (`0, r0) = (`, r)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 23 / 35

Luby-Rackoff Thm.

Recall LRf (`, r) = (r , f (r)⊕ `).

Definition 11
Given a function family F = {Fn : {0,1}n 7→ {0,1}n}, let
LRi (F) = {LRi

Fn
= {LRf 1,...,f i : f 1, . . . , f i ∈ Fn}},

I LRi
F is always a permutation family, and is efficient if F is.

I Is LR1
F pseudorandom?

I LR2
F? LRf 1,f 2 (0n,0n) = LRf 2 (0n, f 1(0n)) = (f 1(0n), ·)

and LRf 1,f 2 (1n,0n) = LRf 2 (0n, f 1(0n)⊕ 1n) = (f 1(0n)⊕ 1n, ·)
I LR3

F?

Theorem 12 (Luby-Rackoff)

Assuming that F is a PRF, then LR3
F is a PRP

I LR4(F) is pseudorandom even if inversion queries are allowed

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 24 / 35

Luby-Rackoff Thm.

Recall LRf (`, r) = (r , f (r)⊕ `).

Definition 11
Given a function family F = {Fn : {0,1}n 7→ {0,1}n}, let
LRi (F) = {LRi

Fn
= {LRf 1,...,f i : f 1, . . . , f i ∈ Fn}},

I LRi
F is always a permutation family, and is efficient if F is.

I Is LR1
F pseudorandom?

I LR2
F? LRf 1,f 2 (0n,0n) = LRf 2 (0n, f 1(0n)) = (f 1(0n), ·)

and LRf 1,f 2 (1n,0n) = LRf 2 (0n, f 1(0n)⊕ 1n) = (f 1(0n)⊕ 1n, ·)
I LR3

F?

Theorem 12 (Luby-Rackoff)

Assuming that F is a PRF, then LR3
F is a PRP

I LR4(F) is pseudorandom even if inversion queries are allowed

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 24 / 35

Luby-Rackoff Thm.

Recall LRf (`, r) = (r , f (r)⊕ `).

Definition 11
Given a function family F = {Fn : {0,1}n 7→ {0,1}n}, let
LRi (F) = {LRi

Fn
= {LRf 1,...,f i : f 1, . . . , f i ∈ Fn}},

I LRi
F is always a permutation family, and is efficient if F is.

I Is LR1
F pseudorandom?

I LR2
F?

LRf 1,f 2 (0n,0n) = LRf 2 (0n, f 1(0n)) = (f 1(0n), ·)
and LRf 1,f 2 (1n,0n) = LRf 2 (0n, f 1(0n)⊕ 1n) = (f 1(0n)⊕ 1n, ·)

I LR3
F?

Theorem 12 (Luby-Rackoff)

Assuming that F is a PRF, then LR3
F is a PRP

I LR4(F) is pseudorandom even if inversion queries are allowed

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 24 / 35

Luby-Rackoff Thm.

Recall LRf (`, r) = (r , f (r)⊕ `).

Definition 11
Given a function family F = {Fn : {0,1}n 7→ {0,1}n}, let
LRi (F) = {LRi

Fn
= {LRf 1,...,f i : f 1, . . . , f i ∈ Fn}},

I LRi
F is always a permutation family, and is efficient if F is.

I Is LR1
F pseudorandom?

I LR2
F?

LRf 1,f 2 (0n,0n) = LRf 2 (0n, f 1(0n)) = (f 1(0n), ·)
and LRf 1,f 2 (1n,0n) = LRf 2 (0n, f 1(0n)⊕ 1n) = (f 1(0n)⊕ 1n, ·)

I LR3
F?

Theorem 12 (Luby-Rackoff)

Assuming that F is a PRF, then LR3
F is a PRP

I LR4(F) is pseudorandom even if inversion queries are allowed

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 24 / 35

Luby-Rackoff Thm.

Recall LRf (`, r) = (r , f (r)⊕ `).

Definition 11
Given a function family F = {Fn : {0,1}n 7→ {0,1}n}, let
LRi (F) = {LRi

Fn
= {LRf 1,...,f i : f 1, . . . , f i ∈ Fn}},

I LRi
F is always a permutation family, and is efficient if F is.

I Is LR1
F pseudorandom?

I LR2
F?

LRf 1,f 2 (0n,0n) = LRf 2 (0n, f 1(0n)) = (f 1(0n), ·)
and LRf 1,f 2 (1n,0n) = LRf 2 (0n, f 1(0n)⊕ 1n) = (f 1(0n)⊕ 1n, ·)

I LR3
F?

Theorem 12 (Luby-Rackoff)

Assuming that F is a PRF, then LR3
F is a PRP

I LR4(F) is pseudorandom even if inversion queries are allowed

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 24 / 35

Luby-Rackoff Thm.

Recall LRf (`, r) = (r , f (r)⊕ `).

Definition 11
Given a function family F = {Fn : {0,1}n 7→ {0,1}n}, let
LRi (F) = {LRi

Fn
= {LRf 1,...,f i : f 1, . . . , f i ∈ Fn}},

I LRi
F is always a permutation family, and is efficient if F is.

I Is LR1
F pseudorandom?

I LR2
F?

LRf 1,f 2 (0n,0n) = LRf 2 (0n, f 1(0n)) = (f 1(0n), ·)
and LRf 1,f 2 (1n,0n) = LRf 2 (0n, f 1(0n)⊕ 1n) = (f 1(0n)⊕ 1n, ·)

I LR3
F?

Theorem 12 (Luby-Rackoff)

Assuming that F is a PRF, then LR3
F is a PRP

I LR4(F) is pseudorandom even if inversion queries are allowed

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 24 / 35

Luby-Rackoff Thm.

Recall LRf (`, r) = (r , f (r)⊕ `).

Definition 11
Given a function family F = {Fn : {0,1}n 7→ {0,1}n}, let
LRi (F) = {LRi

Fn
= {LRf 1,...,f i : f 1, . . . , f i ∈ Fn}},

I LRi
F is always a permutation family, and is efficient if F is.

I Is LR1
F pseudorandom?

I LR2
F? LRf 1,f 2 (0n,0n) = LRf 2 (0n, f 1(0n)) = (f 1(0n), ·)

and LRf 1,f 2 (1n,0n) = LRf 2 (0n, f 1(0n)⊕ 1n) = (f 1(0n)⊕ 1n, ·)

I LR3
F?

Theorem 12 (Luby-Rackoff)

Assuming that F is a PRF, then LR3
F is a PRP

I LR4(F) is pseudorandom even if inversion queries are allowed

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 24 / 35

Luby-Rackoff Thm.

Recall LRf (`, r) = (r , f (r)⊕ `).

Definition 11
Given a function family F = {Fn : {0,1}n 7→ {0,1}n}, let
LRi (F) = {LRi

Fn
= {LRf 1,...,f i : f 1, . . . , f i ∈ Fn}},

I LRi
F is always a permutation family, and is efficient if F is.

I Is LR1
F pseudorandom?

I LR2
F? LRf 1,f 2 (0n,0n) = LRf 2 (0n, f 1(0n)) = (f 1(0n), ·)

and LRf 1,f 2 (1n,0n) = LRf 2 (0n, f 1(0n)⊕ 1n) = (f 1(0n)⊕ 1n, ·)
I LR3

F?

Theorem 12 (Luby-Rackoff)

Assuming that F is a PRF, then LR3
F is a PRP

I LR4(F) is pseudorandom even if inversion queries are allowed

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 24 / 35

Luby-Rackoff Thm.

Recall LRf (`, r) = (r , f (r)⊕ `).

Definition 11
Given a function family F = {Fn : {0,1}n 7→ {0,1}n}, let
LRi (F) = {LRi

Fn
= {LRf 1,...,f i : f 1, . . . , f i ∈ Fn}},

I LRi
F is always a permutation family, and is efficient if F is.

I Is LR1
F pseudorandom?

I LR2
F? LRf 1,f 2 (0n,0n) = LRf 2 (0n, f 1(0n)) = (f 1(0n), ·)

and LRf 1,f 2 (1n,0n) = LRf 2 (0n, f 1(0n)⊕ 1n) = (f 1(0n)⊕ 1n, ·)
I LR3

F?

Theorem 12 (Luby-Rackoff)

Assuming that F is a PRF, then LR3
F is a PRP

I LR4(F) is pseudorandom even if inversion queries are allowed

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 24 / 35

Luby-Rackoff Thm.

Recall LRf (`, r) = (r , f (r)⊕ `).

Definition 11
Given a function family F = {Fn : {0,1}n 7→ {0,1}n}, let
LRi (F) = {LRi

Fn
= {LRf 1,...,f i : f 1, . . . , f i ∈ Fn}},

I LRi
F is always a permutation family, and is efficient if F is.

I Is LR1
F pseudorandom?

I LR2
F? LRf 1,f 2 (0n,0n) = LRf 2 (0n, f 1(0n)) = (f 1(0n), ·)

and LRf 1,f 2 (1n,0n) = LRf 2 (0n, f 1(0n)⊕ 1n) = (f 1(0n)⊕ 1n, ·)
I LR3

F?

Theorem 12 (Luby-Rackoff)

Assuming that F is a PRF, then LR3
F is a PRP

I LR4(F) is pseudorandom even if inversion queries are allowed

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 24 / 35

Luby-Rackoff Thm.

Recall LRf (`, r) = (r , f (r)⊕ `).

Definition 11
Given a function family F = {Fn : {0,1}n 7→ {0,1}n}, let
LRi (F) = {LRi

Fn
= {LRf 1,...,f i : f 1, . . . , f i ∈ Fn}},

I LRi
F is always a permutation family, and is efficient if F is.

I Is LR1
F pseudorandom?

I LR2
F? LRf 1,f 2 (0n,0n) = LRf 2 (0n, f 1(0n)) = (f 1(0n), ·)

and LRf 1,f 2 (1n,0n) = LRf 2 (0n, f 1(0n)⊕ 1n) = (f 1(0n)⊕ 1n, ·)
I LR3

F?

Theorem 12 (Luby-Rackoff)

Assuming that F is a PRF, then LR3
F is a PRP

I LR4(F) is pseudorandom even if inversion queries are allowed

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 24 / 35

Proving Luby-Rackoff

It suffices to prove that LR3
Πn

is pseudorandom (?)

I How would you prove that?

I Maybe LR3(Πn) ≡ Π̃2n? description length of element in LR3(Πn) is
2n · 3n, where that of element in Π̃2n is log(22n!) > log

(
(22n

e)22n
)
> 22n · n

Claim 13
For any q-query D,

|Pr[DLR3(Πn)(1n) = 1]− Pr[DΠ̃2n (1n)| = 1] ∈ O(q2/2n).

I We assume for simplicity that D is deterministic, non-repeating and
non-adaptive.

I Let x1, . . . , xq be D’s queries.

I We show (f (x1), . . . , f (xq))f←LR3(Πn) is O(q2/2n) close (i.e., in statistical
distance) to (f (x1), . . . , f (xq))f←Π̃

I To do that, we show both distributions are O(q2/2n) close to
Distinct :=

(
(z1, . . . zq)← ({0,1}2n)q | ∀i 6= j : (zi)0 6= (zj)0

)
.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 25 / 35

Proving Luby-Rackoff

It suffices to prove that LR3
Πn

is pseudorandom (?)

I How would you prove that?

I Maybe LR3(Πn) ≡ Π̃2n? description length of element in LR3(Πn) is
2n · 3n, where that of element in Π̃2n is log(22n!) > log

(
(22n

e)22n
)
> 22n · n

Claim 13
For any q-query D,

|Pr[DLR3(Πn)(1n) = 1]− Pr[DΠ̃2n (1n)| = 1] ∈ O(q2/2n).

I We assume for simplicity that D is deterministic, non-repeating and
non-adaptive.

I Let x1, . . . , xq be D’s queries.

I We show (f (x1), . . . , f (xq))f←LR3(Πn) is O(q2/2n) close (i.e., in statistical
distance) to (f (x1), . . . , f (xq))f←Π̃

I To do that, we show both distributions are O(q2/2n) close to
Distinct :=

(
(z1, . . . zq)← ({0,1}2n)q | ∀i 6= j : (zi)0 6= (zj)0

)
.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 25 / 35

Proving Luby-Rackoff

It suffices to prove that LR3
Πn

is pseudorandom (?)

I How would you prove that?

I Maybe LR3(Πn) ≡ Π̃2n?

description length of element in LR3(Πn) is
2n · 3n, where that of element in Π̃2n is log(22n!) > log

(
(22n

e)22n
)
> 22n · n

Claim 13
For any q-query D,

|Pr[DLR3(Πn)(1n) = 1]− Pr[DΠ̃2n (1n)| = 1] ∈ O(q2/2n).

I We assume for simplicity that D is deterministic, non-repeating and
non-adaptive.

I Let x1, . . . , xq be D’s queries.

I We show (f (x1), . . . , f (xq))f←LR3(Πn) is O(q2/2n) close (i.e., in statistical
distance) to (f (x1), . . . , f (xq))f←Π̃

I To do that, we show both distributions are O(q2/2n) close to
Distinct :=

(
(z1, . . . zq)← ({0,1}2n)q | ∀i 6= j : (zi)0 6= (zj)0

)
.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 25 / 35

Proving Luby-Rackoff

It suffices to prove that LR3
Πn

is pseudorandom (?)

I How would you prove that?

I Maybe LR3(Πn) ≡ Π̃2n?

description length of element in LR3(Πn) is
2n · 3n, where that of element in Π̃2n is log(22n!) > log

(
(22n

e)22n
)
> 22n · n

Claim 13
For any q-query D,

|Pr[DLR3(Πn)(1n) = 1]− Pr[DΠ̃2n (1n)| = 1] ∈ O(q2/2n).

I We assume for simplicity that D is deterministic, non-repeating and
non-adaptive.

I Let x1, . . . , xq be D’s queries.

I We show (f (x1), . . . , f (xq))f←LR3(Πn) is O(q2/2n) close (i.e., in statistical
distance) to (f (x1), . . . , f (xq))f←Π̃

I To do that, we show both distributions are O(q2/2n) close to
Distinct :=

(
(z1, . . . zq)← ({0,1}2n)q | ∀i 6= j : (zi)0 6= (zj)0

)
.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 25 / 35

Proving Luby-Rackoff

It suffices to prove that LR3
Πn

is pseudorandom (?)

I How would you prove that?

I Maybe LR3(Πn) ≡ Π̃2n?

description length of element in LR3(Πn) is
2n · 3n, where that of element in Π̃2n is log(22n!) > log

(
(22n

e)22n
)
> 22n · n

Claim 13
For any q-query D,

|Pr[DLR3(Πn)(1n) = 1]− Pr[DΠ̃2n (1n)| = 1] ∈ O(q2/2n).

I We assume for simplicity that D is deterministic, non-repeating and
non-adaptive.

I Let x1, . . . , xq be D’s queries.

I We show (f (x1), . . . , f (xq))f←LR3(Πn) is O(q2/2n) close (i.e., in statistical
distance) to (f (x1), . . . , f (xq))f←Π̃

I To do that, we show both distributions are O(q2/2n) close to
Distinct :=

(
(z1, . . . zq)← ({0,1}2n)q | ∀i 6= j : (zi)0 6= (zj)0

)
.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 25 / 35

Proving Luby-Rackoff

It suffices to prove that LR3
Πn

is pseudorandom (?)

I How would you prove that?

I Maybe LR3(Πn) ≡ Π̃2n? description length of element in LR3(Πn) is
2n · 3n, where that of element in Π̃2n is

log(22n!) > log
(

(22n

e)22n
)
> 22n · n

Claim 13
For any q-query D,

|Pr[DLR3(Πn)(1n) = 1]− Pr[DΠ̃2n (1n)| = 1] ∈ O(q2/2n).

I We assume for simplicity that D is deterministic, non-repeating and
non-adaptive.

I Let x1, . . . , xq be D’s queries.

I We show (f (x1), . . . , f (xq))f←LR3(Πn) is O(q2/2n) close (i.e., in statistical
distance) to (f (x1), . . . , f (xq))f←Π̃

I To do that, we show both distributions are O(q2/2n) close to
Distinct :=

(
(z1, . . . zq)← ({0,1}2n)q | ∀i 6= j : (zi)0 6= (zj)0

)
.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 25 / 35

Proving Luby-Rackoff

It suffices to prove that LR3
Πn

is pseudorandom (?)

I How would you prove that?

I Maybe LR3(Πn) ≡ Π̃2n? description length of element in LR3(Πn) is
2n · 3n, where that of element in Π̃2n is log(22n!) > log

(
(22n

e)22n
)
> 22n · n

Claim 13
For any q-query D,

|Pr[DLR3(Πn)(1n) = 1]− Pr[DΠ̃2n (1n)| = 1] ∈ O(q2/2n).

I We assume for simplicity that D is deterministic, non-repeating and
non-adaptive.

I Let x1, . . . , xq be D’s queries.

I We show (f (x1), . . . , f (xq))f←LR3(Πn) is O(q2/2n) close (i.e., in statistical
distance) to (f (x1), . . . , f (xq))f←Π̃

I To do that, we show both distributions are O(q2/2n) close to
Distinct :=

(
(z1, . . . zq)← ({0,1}2n)q | ∀i 6= j : (zi)0 6= (zj)0

)
.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 25 / 35

Proving Luby-Rackoff

It suffices to prove that LR3
Πn

is pseudorandom (?)

I How would you prove that?

I Maybe LR3(Πn) ≡ Π̃2n? description length of element in LR3(Πn) is
2n · 3n, where that of element in Π̃2n is log(22n!) > log

(
(22n

e)22n
)
> 22n · n

Claim 13
For any q-query D,

|Pr[DLR3(Πn)(1n) = 1]− Pr[DΠ̃2n (1n)| = 1] ∈ O(q2/2n).

I We assume for simplicity that D is deterministic, non-repeating and
non-adaptive.

I Let x1, . . . , xq be D’s queries.

I We show (f (x1), . . . , f (xq))f←LR3(Πn) is O(q2/2n) close (i.e., in statistical
distance) to (f (x1), . . . , f (xq))f←Π̃

I To do that, we show both distributions are O(q2/2n) close to
Distinct :=

(
(z1, . . . zq)← ({0,1}2n)q | ∀i 6= j : (zi)0 6= (zj)0

)
.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 25 / 35

Proving Luby-Rackoff

It suffices to prove that LR3
Πn

is pseudorandom (?)

I How would you prove that?

I Maybe LR3(Πn) ≡ Π̃2n? description length of element in LR3(Πn) is
2n · 3n, where that of element in Π̃2n is log(22n!) > log

(
(22n

e)22n
)
> 22n · n

Claim 13
For any q-query D,

|Pr[DLR3(Πn)(1n) = 1]− Pr[DΠ̃2n (1n)| = 1] ∈ O(q2/2n).

I We assume for simplicity that D is deterministic, non-repeating and
non-adaptive.

I Let x1, . . . , xq be D’s queries.

I We show (f (x1), . . . , f (xq))f←LR3(Πn) is O(q2/2n) close (i.e., in statistical
distance) to (f (x1), . . . , f (xq))f←Π̃

I To do that, we show both distributions are O(q2/2n) close to
Distinct :=

(
(z1, . . . zq)← ({0,1}2n)q | ∀i 6= j : (zi)0 6= (zj)0

)
.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 25 / 35

Proving Luby-Rackoff

It suffices to prove that LR3
Πn

is pseudorandom (?)

I How would you prove that?

I Maybe LR3(Πn) ≡ Π̃2n? description length of element in LR3(Πn) is
2n · 3n, where that of element in Π̃2n is log(22n!) > log

(
(22n

e)22n
)
> 22n · n

Claim 13
For any q-query D,

|Pr[DLR3(Πn)(1n) = 1]− Pr[DΠ̃2n (1n)| = 1] ∈ O(q2/2n).

I We assume for simplicity that D is deterministic, non-repeating and
non-adaptive.

I Let x1, . . . , xq be D’s queries.

I We show (f (x1), . . . , f (xq))f←LR3(Πn) is O(q2/2n) close (i.e., in statistical
distance) to (f (x1), . . . , f (xq))f←Π̃

I To do that, we show both distributions are O(q2/2n) close to
Distinct :=

(
(z1, . . . zq)← ({0,1}2n)q | ∀i 6= j : (zi)0 6= (zj)0

)
.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 25 / 35

Proving Luby-Rackoff

It suffices to prove that LR3
Πn

is pseudorandom (?)

I How would you prove that?

I Maybe LR3(Πn) ≡ Π̃2n? description length of element in LR3(Πn) is
2n · 3n, where that of element in Π̃2n is log(22n!) > log

(
(22n

e)22n
)
> 22n · n

Claim 13
For any q-query D,

|Pr[DLR3(Πn)(1n) = 1]− Pr[DΠ̃2n (1n)| = 1] ∈ O(q2/2n).

I We assume for simplicity that D is deterministic, non-repeating and
non-adaptive.

I Let x1, . . . , xq be D’s queries.

I We show (f (x1), . . . , f (xq))f←LR3(Πn) is O(q2/2n) close (i.e., in statistical
distance) to (f (x1), . . . , f (xq))f←Π̃

I To do that, we show both distributions are O(q2/2n) close to
Distinct :=

(
(z1, . . . zq)← ({0,1}2n)q | ∀i 6= j : (zi)0 6= (zj)0

)
.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 25 / 35

Proving Luby-Rackoff

It suffices to prove that LR3
Πn

is pseudorandom (?)

I How would you prove that?

I Maybe LR3(Πn) ≡ Π̃2n? description length of element in LR3(Πn) is
2n · 3n, where that of element in Π̃2n is log(22n!) > log

(
(22n

e)22n
)
> 22n · n

Claim 13
For any q-query D,

|Pr[DLR3(Πn)(1n) = 1]− Pr[DΠ̃2n (1n)| = 1] ∈ O(q2/2n).

I We assume for simplicity that D is deterministic, non-repeating and
non-adaptive.

I Let x1, . . . , xq be D’s queries.

I We show (f (x1), . . . , f (xq))f←LR3(Πn) is O(q2/2n) close (i.e., in statistical
distance) to (f (x1), . . . , f (xq))f←Π̃

I To do that, we show both distributions are O(q2/2n) close to
Distinct :=

(
(z1, . . . zq)← ({0,1}2n)q | ∀i 6= j : (zi)0 6= (zj)0

)
.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 25 / 35

Reminder: Statistical Distance

Definition 14
The statistical distance between distributions P and Q over U , is defined by

SD(P,Q) =
1
2
·
∑
u∈U
|P(u)−Q(u)| = max

S⊆U
{Pr

Q
[S]− Pr

P
[S]}

In case SD(P,Q) ≤ ε, we say that P and Q are ε close.

Fact 15

Let E be an event (i.e., set) and assume SD(P|¬E ,Q) ≤ δ1 and PrP [E] ≤ δ2.
Then SD(P,Q) ≤ δ1 + δ2

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 26 / 35

Reminder: Statistical Distance

Definition 14
The statistical distance between distributions P and Q over U , is defined by

SD(P,Q) =
1
2
·
∑
u∈U
|P(u)−Q(u)| = max

S⊆U
{Pr

Q
[S]− Pr

P
[S]}

In case SD(P,Q) ≤ ε, we say that P and Q are ε close.

Fact 15

Let E be an event (i.e., set) and assume SD(P|¬E ,Q) ≤ δ1 and PrP [E] ≤ δ2.
Then SD(P,Q) ≤ δ1 + δ2

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 26 / 35

Reminder: Statistical Distance

Definition 14
The statistical distance between distributions P and Q over U , is defined by

SD(P,Q) =
1
2
·
∑
u∈U
|P(u)−Q(u)| = max

S⊆U
{Pr

Q
[S]− Pr

P
[S]}

In case SD(P,Q) ≤ ε, we say that P and Q are ε close.

Fact 15

Let E be an event (i.e., set) and assume SD(P|¬E ,Q) ≤ δ1 and PrP [E] ≤ δ2.
Then SD(P,Q) ≤ δ1 + δ2

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 26 / 35

Proving Fact 15

For any set S, it holds that

Pr
P

[S] = Pr
P

[E] · Pr
P|E

[S] + Pr
P

[¬E] · Pr
P|¬E

[S] (3)

≥ (1− δ2) · Pr
P|¬E

[S]

Hence,

Pr
Q

[S]− Pr
P

[S] ≤ Pr
Q

[S]− (1− δ2) Pr
P|¬E

[S] (4)

≤ Pr
Q

[S]− Pr
P|¬E

[S] + δ2

Thus,

SD(P,Q) = max
S
{Pr

Q
[S]− Pr

P
[S]} ≤ max

S
{Pr

Q
[S]− Pr

P|¬E
[S]}+ δ2 = δ1 + δ2.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 27 / 35

Proving Fact 15

For any set S, it holds that

Pr
P

[S] = Pr
P

[E] · Pr
P|E

[S] + Pr
P

[¬E] · Pr
P|¬E

[S] (3)

≥ (1− δ2) · Pr
P|¬E

[S]

Hence,

Pr
Q

[S]− Pr
P

[S] ≤ Pr
Q

[S]− (1− δ2) Pr
P|¬E

[S] (4)

≤ Pr
Q

[S]− Pr
P|¬E

[S] + δ2

Thus,

SD(P,Q) = max
S
{Pr

Q
[S]− Pr

P
[S]} ≤ max

S
{Pr

Q
[S]− Pr

P|¬E
[S]}+ δ2 = δ1 + δ2.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 27 / 35

Proving Fact 15

For any set S, it holds that

Pr
P

[S] = Pr
P

[E] · Pr
P|E

[S] + Pr
P

[¬E] · Pr
P|¬E

[S] (3)

≥ (1− δ2) · Pr
P|¬E

[S]

Hence,

Pr
Q

[S]− Pr
P

[S] ≤ Pr
Q

[S]− (1− δ2) Pr
P|¬E

[S] (4)

≤ Pr
Q

[S]− Pr
P|¬E

[S] + δ2

Thus,

SD(P,Q) = max
S
{Pr

Q
[S]− Pr

P
[S]} ≤ max

S
{Pr

Q
[S]− Pr

P|¬E
[S]}+ δ2 = δ1 + δ2.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 27 / 35

Proving Fact 15

For any set S, it holds that

Pr
P

[S] = Pr
P

[E] · Pr
P|E

[S] + Pr
P

[¬E] · Pr
P|¬E

[S] (3)

≥ (1− δ2) · Pr
P|¬E

[S]

Hence,

Pr
Q

[S]− Pr
P

[S] ≤ Pr
Q

[S]− (1− δ2) Pr
P|¬E

[S] (4)

≤ Pr
Q

[S]− Pr
P|¬E

[S] + δ2

Thus,

SD(P,Q) = max
S
{Pr

Q
[S]− Pr

P
[S]} ≤ max

S
{Pr

Q
[S]− Pr

P|¬E
[S]}+ δ2 = δ1 + δ2.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 27 / 35

(f (x0), . . . , f (xq))f←Π̃
is close to Distinct

Recall Distinct :=
(
(z1, . . . zq)← ({0,1}2n)q | ∀i 6= j : (zi)0 6= (zj)0

)
.

For f ∈ Π̃, let Bad(f) := ∃i 6= j : f (xi)0 = f (xj)0.

Claim 16

Prf←Π̃ [Bad(f)] ≤ (q
2)

2n ≤ q2

2n

Proof: ?

Claim 17(
(f (x0), . . . , f (xq)); f ← Π̃ | ¬Bad(f)

)
≡ Distinct

Proof: ?

By Fact 15, (f (x0), . . . , f (xq))f←Π̃ is q2

2n close to Distinct

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 28 / 35

(f (x0), . . . , f (xq))f←Π̃
is close to Distinct

Recall Distinct :=
(
(z1, . . . zq)← ({0,1}2n)q | ∀i 6= j : (zi)0 6= (zj)0

)
.

For f ∈ Π̃, let Bad(f) := ∃i 6= j : f (xi)0 = f (xj)0.

Claim 16

Prf←Π̃ [Bad(f)] ≤ (q
2)

2n ≤ q2

2n

Proof: ?

Claim 17(
(f (x0), . . . , f (xq)); f ← Π̃ | ¬Bad(f)

)
≡ Distinct

Proof: ?

By Fact 15, (f (x0), . . . , f (xq))f←Π̃ is q2

2n close to Distinct

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 28 / 35

(f (x0), . . . , f (xq))f←Π̃
is close to Distinct

Recall Distinct :=
(
(z1, . . . zq)← ({0,1}2n)q | ∀i 6= j : (zi)0 6= (zj)0

)
.

For f ∈ Π̃, let Bad(f) := ∃i 6= j : f (xi)0 = f (xj)0.

Claim 16

Prf←Π̃ [Bad(f)] ≤ (q
2)

2n ≤ q2

2n

Proof: ?

Claim 17(
(f (x0), . . . , f (xq)); f ← Π̃ | ¬Bad(f)

)
≡ Distinct

Proof: ?

By Fact 15, (f (x0), . . . , f (xq))f←Π̃ is q2

2n close to Distinct

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 28 / 35

(f (x0), . . . , f (xq))f←Π̃
is close to Distinct

Recall Distinct :=
(
(z1, . . . zq)← ({0,1}2n)q | ∀i 6= j : (zi)0 6= (zj)0

)
.

For f ∈ Π̃, let Bad(f) := ∃i 6= j : f (xi)0 = f (xj)0.

Claim 16

Prf←Π̃ [Bad(f)] ≤ (q
2)

2n ≤ q2

2n

Proof: ?

Claim 17(
(f (x0), . . . , f (xq)); f ← Π̃ | ¬Bad(f)

)
≡ Distinct

Proof: ?

By Fact 15, (f (x0), . . . , f (xq))f←Π̃ is q2

2n close to Distinct

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 28 / 35

(f (x0), . . . , f (xq))f←Π̃
is close to Distinct

Recall Distinct :=
(
(z1, . . . zq)← ({0,1}2n)q | ∀i 6= j : (zi)0 6= (zj)0

)
.

For f ∈ Π̃, let Bad(f) := ∃i 6= j : f (xi)0 = f (xj)0.

Claim 16

Prf←Π̃ [Bad(f)] ≤ (q
2)

2n ≤ q2

2n

Proof: ?

Claim 17(
(f (x0), . . . , f (xq)); f ← Π̃ | ¬Bad(f)

)
≡ Distinct

Proof: ?

By Fact 15, (f (x0), . . . , f (xq))f←Π̃ is q2

2n close to Distinct

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 28 / 35

(f (x0), . . . , f (xq))f←Π̃
is close to Distinct

Recall Distinct :=
(
(z1, . . . zq)← ({0,1}2n)q | ∀i 6= j : (zi)0 6= (zj)0

)
.

For f ∈ Π̃, let Bad(f) := ∃i 6= j : f (xi)0 = f (xj)0.

Claim 16

Prf←Π̃ [Bad(f)] ≤ (q
2)

2n ≤ q2

2n

Proof: ?

Claim 17(
(f (x0), . . . , f (xq)); f ← Π̃ | ¬Bad(f)

)
≡ Distinct

Proof: ?

By Fact 15, (f (x0), . . . , f (xq))f←Π̃ is q2

2n close to Distinct

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 28 / 35

(f (x0), . . . , f (xq))f←Π̃
is close to Distinct

Recall Distinct :=
(
(z1, . . . zq)← ({0,1}2n)q | ∀i 6= j : (zi)0 6= (zj)0

)
.

For f ∈ Π̃, let Bad(f) := ∃i 6= j : f (xi)0 = f (xj)0.

Claim 16

Prf←Π̃ [Bad(f)] ≤ (q
2)

2n ≤ q2

2n

Proof: ?

Claim 17(
(f (x0), . . . , f (xq)); f ← Π̃ | ¬Bad(f)

)
≡ Distinct

Proof: ?

By Fact 15, (f (x0), . . . , f (xq))f←Π̃ is q2

2n close to Distinct

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 28 / 35

(f (x0), . . . , f (xq))f←Π̃
is close to Distinct

Recall Distinct :=
(
(z1, . . . zq)← ({0,1}2n)q | ∀i 6= j : (zi)0 6= (zj)0

)
.

For f ∈ Π̃, let Bad(f) := ∃i 6= j : f (xi)0 = f (xj)0.

Claim 16

Prf←Π̃ [Bad(f)] ≤ (q
2)

2n ≤ q2

2n

Proof: ?

Claim 17(
(f (x0), . . . , f (xq)); f ← Π̃ | ¬Bad(f)

)
≡ Distinct

Proof: ?

By Fact 15, (f (x0), . . . , f (xq))f←Π̃ is q2

2n close to Distinct

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 28 / 35

(f (x0), . . . , f (xq))f←LR3(Πn) is close to Distinct

Let (`0
1, r

0
1), . . . , (`0

q , r0
q) = (x1, . . . , xk).

The following rv’s are defined w.r.t. (f 1, f 2, f 3)← Π3
n.

`0
1 r0

1 `0
2 r0

2 . . . `0
q r0

q
`1

1 r1
1 `1

2 r1
2 . . . `1

q r1
q

`2
1 r2

1 `2
2 r0

2 . . . `2
q r2

q
`3

1 r3
1 `3

2 r0
2 . . . `3

q r3
q

where `
j
b = r j−1

b and r j
b = f j (r j−1

b)⊕ `
j−1
b .

Claim 18

Prf 1←Πn

[
Bad1 := ∃i 6= j : r1

i = r1
j

]
≤
(

q
2

)
2n

Proof: r0
i = r0

j =⇒ r1
i 6= r1

j and

r0
i 6= r0

j =⇒ Prf 1

[
r1
i = r1

j

]
= 2−n

Claim 19

Pr(f 1,f 2)←Π2
n

[
Bad2 := ∃i 6= j : r1

i = r1
j ∨ r2

i = r2
j

]
≤ 2 ·

(
q
2

)
2n ∈ O(q2

2n)

Proof: similar to the
above

Claim 20(
`3

1, r
3
1), . . . , (`3

q , r3
q) | ¬Bad2

)
≡ Distinct

Proof: ?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 29 / 35

(f (x0), . . . , f (xq))f←LR3(Πn) is close to Distinct

Let (`0
1, r

0
1), . . . , (`0

q , r0
q) = (x1, . . . , xk).

The following rv’s are defined w.r.t. (f 1, f 2, f 3)← Π3
n.

`0
1 r0

1 `0
2 r0

2 . . . `0
q r0

q
`1

1 r1
1 `1

2 r1
2 . . . `1

q r1
q

`2
1 r2

1 `2
2 r0

2 . . . `2
q r2

q
`3

1 r3
1 `3

2 r0
2 . . . `3

q r3
q

where `
j
b = r j−1

b and r j
b = f j (r j−1

b)⊕ `
j−1
b .

Claim 18

Prf 1←Πn

[
Bad1 := ∃i 6= j : r1

i = r1
j

]
≤
(

q
2

)
2n

Proof: r0
i = r0

j =⇒ r1
i 6= r1

j and

r0
i 6= r0

j =⇒ Prf 1

[
r1
i = r1

j

]
= 2−n

Claim 19

Pr(f 1,f 2)←Π2
n

[
Bad2 := ∃i 6= j : r1

i = r1
j ∨ r2

i = r2
j

]
≤ 2 ·

(
q
2

)
2n ∈ O(q2

2n)

Proof: similar to the
above

Claim 20(
`3

1, r
3
1), . . . , (`3

q , r3
q) | ¬Bad2

)
≡ Distinct

Proof: ?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 29 / 35

(f (x0), . . . , f (xq))f←LR3(Πn) is close to Distinct

Let (`0
1, r

0
1), . . . , (`0

q , r0
q) = (x1, . . . , xk).

The following rv’s are defined w.r.t. (f 1, f 2, f 3)← Π3
n.

`0
1 r0

1 `0
2 r0

2 . . . `0
q r0

q
`1

1 r1
1 `1

2 r1
2 . . . `1

q r1
q

`2
1 r2

1 `2
2 r0

2 . . . `2
q r2

q
`3

1 r3
1 `3

2 r0
2 . . . `3

q r3
q

where `
j
b = r j−1

b and r j
b = f j (r j−1

b)⊕ `
j−1
b .

Claim 18

Prf 1←Πn

[
Bad1 := ∃i 6= j : r1

i = r1
j

]
≤
(

q
2

)
2n

Proof: r0
i = r0

j =⇒ r1
i 6= r1

j and

r0
i 6= r0

j =⇒ Prf 1

[
r1
i = r1

j

]
= 2−n

Claim 19

Pr(f 1,f 2)←Π2
n

[
Bad2 := ∃i 6= j : r1

i = r1
j ∨ r2

i = r2
j

]
≤ 2 ·

(
q
2

)
2n ∈ O(q2

2n)

Proof: similar to the
above

Claim 20(
`3

1, r
3
1), . . . , (`3

q , r3
q) | ¬Bad2

)
≡ Distinct

Proof: ?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 29 / 35

(f (x0), . . . , f (xq))f←LR3(Πn) is close to Distinct

Let (`0
1, r

0
1), . . . , (`0

q , r0
q) = (x1, . . . , xk).

The following rv’s are defined w.r.t. (f 1, f 2, f 3)← Π3
n.

`0
1 r0

1 `0
2 r0

2 . . . `0
q r0

q
`1

1 r1
1 `1

2 r1
2 . . . `1

q r1
q

`2
1 r2

1 `2
2 r0

2 . . . `2
q r2

q
`3

1 r3
1 `3

2 r0
2 . . . `3

q r3
q

where `
j
b = r j−1

b and r j
b = f j (r j−1

b)⊕ `
j−1
b .

Claim 18

Prf 1←Πn

[
Bad1 := ∃i 6= j : r1

i = r1
j

]
≤
(

q
2

)
2n

Proof: r0
i = r0

j =⇒ r1
i 6= r1

j and

r0
i 6= r0

j =⇒ Prf 1

[
r1
i = r1

j

]
= 2−n

Claim 19

Pr(f 1,f 2)←Π2
n

[
Bad2 := ∃i 6= j : r1

i = r1
j ∨ r2

i = r2
j

]
≤ 2 ·

(
q
2

)
2n ∈ O(q2

2n)

Proof: similar to the
above

Claim 20(
`3

1, r
3
1), . . . , (`3

q , r3
q) | ¬Bad2

)
≡ Distinct

Proof: ?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 29 / 35

(f (x0), . . . , f (xq))f←LR3(Πn) is close to Distinct

Let (`0
1, r

0
1), . . . , (`0

q , r0
q) = (x1, . . . , xk).

The following rv’s are defined w.r.t. (f 1, f 2, f 3)← Π3
n.

`0
1 r0

1 `0
2 r0

2 . . . `0
q r0

q
`1

1 r1
1 `1

2 r1
2 . . . `1

q r1
q

`2
1 r2

1 `2
2 r0

2 . . . `2
q r2

q
`3

1 r3
1 `3

2 r0
2 . . . `3

q r3
q

where `
j
b = r j−1

b and r j
b = f j (r j−1

b)⊕ `
j−1
b .

Claim 18

Prf 1←Πn

[
Bad1 := ∃i 6= j : r1

i = r1
j

]
≤
(

q
2

)
2n

Proof:

r0
i = r0

j =⇒ r1
i 6= r1

j and

r0
i 6= r0

j =⇒ Prf 1

[
r1
i = r1

j

]
= 2−n

Claim 19

Pr(f 1,f 2)←Π2
n

[
Bad2 := ∃i 6= j : r1

i = r1
j ∨ r2

i = r2
j

]
≤ 2 ·

(
q
2

)
2n ∈ O(q2

2n)

Proof: similar to the
above

Claim 20(
`3

1, r
3
1), . . . , (`3

q , r3
q) | ¬Bad2

)
≡ Distinct

Proof: ?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 29 / 35

(f (x0), . . . , f (xq))f←LR3(Πn) is close to Distinct

Let (`0
1, r

0
1), . . . , (`0

q , r0
q) = (x1, . . . , xk).

The following rv’s are defined w.r.t. (f 1, f 2, f 3)← Π3
n.

`0
1 r0

1 `0
2 r0

2 . . . `0
q r0

q
`1

1 r1
1 `1

2 r1
2 . . . `1

q r1
q

`2
1 r2

1 `2
2 r0

2 . . . `2
q r2

q
`3

1 r3
1 `3

2 r0
2 . . . `3

q r3
q

where `
j
b = r j−1

b and r j
b = f j (r j−1

b)⊕ `
j−1
b .

Claim 18

Prf 1←Πn

[
Bad1 := ∃i 6= j : r1

i = r1
j

]
≤
(

q
2

)
2n

Proof: r0
i = r0

j =⇒ r1
i 6= r1

j

and

r0
i 6= r0

j =⇒ Prf 1

[
r1
i = r1

j

]
= 2−n

Claim 19

Pr(f 1,f 2)←Π2
n

[
Bad2 := ∃i 6= j : r1

i = r1
j ∨ r2

i = r2
j

]
≤ 2 ·

(
q
2

)
2n ∈ O(q2

2n)

Proof: similar to the
above

Claim 20(
`3

1, r
3
1), . . . , (`3

q , r3
q) | ¬Bad2

)
≡ Distinct

Proof: ?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 29 / 35

(f (x0), . . . , f (xq))f←LR3(Πn) is close to Distinct

Let (`0
1, r

0
1), . . . , (`0

q , r0
q) = (x1, . . . , xk).

The following rv’s are defined w.r.t. (f 1, f 2, f 3)← Π3
n.

`0
1 r0

1 `0
2 r0

2 . . . `0
q r0

q
`1

1 r1
1 `1

2 r1
2 . . . `1

q r1
q

`2
1 r2

1 `2
2 r0

2 . . . `2
q r2

q
`3

1 r3
1 `3

2 r0
2 . . . `3

q r3
q

where `
j
b = r j−1

b and r j
b = f j (r j−1

b)⊕ `
j−1
b .

Claim 18

Prf 1←Πn

[
Bad1 := ∃i 6= j : r1

i = r1
j

]
≤
(

q
2

)
2n

Proof: r0
i = r0

j =⇒ r1
i 6= r1

j and

r0
i 6= r0

j =⇒ Prf 1

[
r1
i = r1

j

]
= 2−n

Claim 19

Pr(f 1,f 2)←Π2
n

[
Bad2 := ∃i 6= j : r1

i = r1
j ∨ r2

i = r2
j

]
≤ 2 ·

(
q
2

)
2n ∈ O(q2

2n)

Proof: similar to the
above

Claim 20(
`3

1, r
3
1), . . . , (`3

q , r3
q) | ¬Bad2

)
≡ Distinct

Proof: ?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 29 / 35

(f (x0), . . . , f (xq))f←LR3(Πn) is close to Distinct

Let (`0
1, r

0
1), . . . , (`0

q , r0
q) = (x1, . . . , xk).

The following rv’s are defined w.r.t. (f 1, f 2, f 3)← Π3
n.

`0
1 r0

1 `0
2 r0

2 . . . `0
q r0

q
`1

1 r1
1 `1

2 r1
2 . . . `1

q r1
q

`2
1 r2

1 `2
2 r0

2 . . . `2
q r2

q
`3

1 r3
1 `3

2 r0
2 . . . `3

q r3
q

where `
j
b = r j−1

b and r j
b = f j (r j−1

b)⊕ `
j−1
b .

Claim 18

Prf 1←Πn

[
Bad1 := ∃i 6= j : r1

i = r1
j

]
≤
(

q
2

)
2n

Proof: r0
i = r0

j =⇒ r1
i 6= r1

j and

r0
i 6= r0

j =⇒ Prf 1

[
r1
i = r1

j

]
= 2−n

Claim 19

Pr(f 1,f 2)←Π2
n

[
Bad2 := ∃i 6= j : r1

i = r1
j ∨ r2

i = r2
j

]
≤ 2 ·

(
q
2

)
2n ∈ O(q2

2n)

Proof: similar to the
above

Claim 20(
`3

1, r
3
1), . . . , (`3

q , r3
q) | ¬Bad2

)
≡ Distinct

Proof: ?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 29 / 35

(f (x0), . . . , f (xq))f←LR3(Πn) is close to Distinct

Let (`0
1, r

0
1), . . . , (`0

q , r0
q) = (x1, . . . , xk).

The following rv’s are defined w.r.t. (f 1, f 2, f 3)← Π3
n.

`0
1 r0

1 `0
2 r0

2 . . . `0
q r0

q
`1

1 r1
1 `1

2 r1
2 . . . `1

q r1
q

`2
1 r2

1 `2
2 r0

2 . . . `2
q r2

q
`3

1 r3
1 `3

2 r0
2 . . . `3

q r3
q

where `
j
b = r j−1

b and r j
b = f j (r j−1

b)⊕ `
j−1
b .

Claim 18

Prf 1←Πn

[
Bad1 := ∃i 6= j : r1

i = r1
j

]
≤
(

q
2

)
2n

Proof: r0
i = r0

j =⇒ r1
i 6= r1

j and

r0
i 6= r0

j =⇒ Prf 1

[
r1
i = r1

j

]
= 2−n

Claim 19

Pr(f 1,f 2)←Π2
n

[
Bad2 := ∃i 6= j : r1

i = r1
j ∨ r2

i = r2
j

]
≤ 2 ·

(
q
2

)
2n ∈ O(q2

2n)

Proof:

similar to the
above

Claim 20(
`3

1, r
3
1), . . . , (`3

q , r3
q) | ¬Bad2

)
≡ Distinct

Proof: ?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 29 / 35

(f (x0), . . . , f (xq))f←LR3(Πn) is close to Distinct

Let (`0
1, r

0
1), . . . , (`0

q , r0
q) = (x1, . . . , xk).

The following rv’s are defined w.r.t. (f 1, f 2, f 3)← Π3
n.

`0
1 r0

1 `0
2 r0

2 . . . `0
q r0

q
`1

1 r1
1 `1

2 r1
2 . . . `1

q r1
q

`2
1 r2

1 `2
2 r0

2 . . . `2
q r2

q
`3

1 r3
1 `3

2 r0
2 . . . `3

q r3
q

where `
j
b = r j−1

b and r j
b = f j (r j−1

b)⊕ `
j−1
b .

Claim 18

Prf 1←Πn

[
Bad1 := ∃i 6= j : r1

i = r1
j

]
≤
(

q
2

)
2n

Proof: r0
i = r0

j =⇒ r1
i 6= r1

j and

r0
i 6= r0

j =⇒ Prf 1

[
r1
i = r1

j

]
= 2−n

Claim 19

Pr(f 1,f 2)←Π2
n

[
Bad2 := ∃i 6= j : r1

i = r1
j ∨ r2

i = r2
j

]
≤ 2 ·

(
q
2

)
2n ∈ O(q2

2n)

Proof: similar to the
above

Claim 20(
`3

1, r
3
1), . . . , (`3

q , r3
q) | ¬Bad2

)
≡ Distinct

Proof: ?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 29 / 35

(f (x0), . . . , f (xq))f←LR3(Πn) is close to Distinct

Let (`0
1, r

0
1), . . . , (`0

q , r0
q) = (x1, . . . , xk).

The following rv’s are defined w.r.t. (f 1, f 2, f 3)← Π3
n.

`0
1 r0

1 `0
2 r0

2 . . . `0
q r0

q
`1

1 r1
1 `1

2 r1
2 . . . `1

q r1
q

`2
1 r2

1 `2
2 r0

2 . . . `2
q r2

q
`3

1 r3
1 `3

2 r0
2 . . . `3

q r3
q

where `
j
b = r j−1

b and r j
b = f j (r j−1

b)⊕ `
j−1
b .

Claim 18

Prf 1←Πn

[
Bad1 := ∃i 6= j : r1

i = r1
j

]
≤
(

q
2

)
2n

Proof: r0
i = r0

j =⇒ r1
i 6= r1

j and

r0
i 6= r0

j =⇒ Prf 1

[
r1
i = r1

j

]
= 2−n

Claim 19

Pr(f 1,f 2)←Π2
n

[
Bad2 := ∃i 6= j : r1

i = r1
j ∨ r2

i = r2
j

]
≤ 2 ·

(
q
2

)
2n ∈ O(q2

2n)

Proof: similar to the
above

Claim 20(
`3

1, r
3
1), . . . , (`3

q , r3
q) | ¬Bad2

)
≡ Distinct

Proof: ?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 29 / 35

(f (x0), . . . , f (xq))f←LR3(Πn) is close to Distinct

Let (`0
1, r

0
1), . . . , (`0

q , r0
q) = (x1, . . . , xk).

The following rv’s are defined w.r.t. (f 1, f 2, f 3)← Π3
n.

`0
1 r0

1 `0
2 r0

2 . . . `0
q r0

q
`1

1 r1
1 `1

2 r1
2 . . . `1

q r1
q

`2
1 r2

1 `2
2 r0

2 . . . `2
q r2

q
`3

1 r3
1 `3

2 r0
2 . . . `3

q r3
q

where `
j
b = r j−1

b and r j
b = f j (r j−1

b)⊕ `
j−1
b .

Claim 18

Prf 1←Πn

[
Bad1 := ∃i 6= j : r1

i = r1
j

]
≤
(

q
2

)
2n

Proof: r0
i = r0

j =⇒ r1
i 6= r1

j and

r0
i 6= r0

j =⇒ Prf 1

[
r1
i = r1

j

]
= 2−n

Claim 19

Pr(f 1,f 2)←Π2
n

[
Bad2 := ∃i 6= j : r1

i = r1
j ∨ r2

i = r2
j

]
≤ 2 ·

(
q
2

)
2n ∈ O(q2

2n)

Proof: similar to the
above

Claim 20(
`3

1, r
3
1), . . . , (`3

q , r3
q) | ¬Bad2

)
≡ Distinct

Proof: ?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 29 / 35

Proving Claim 20

Let S = {(z1, . . . , zq) ∈ ({0,1}n)q : ∀i 6= j : zi 6= zj}.

Claim 21(
(`3

1, . . . , `
3
q) | ¬Bad2

)
is uniform over S.

Proof: For any z = (z1, . . . , zq) ∈ ({0,1}n)q and π ∈ Πn:

Pr
[
(`3

1, . . . , `
3
q) = z

]
= Pr

[
(`3

1, . . . , `
3
q) = π(z) := (π(z1), . . . , π(zq))

]

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 30 / 35

Proving Claim 20

Let S = {(z1, . . . , zq) ∈ ({0,1}n)q : ∀i 6= j : zi 6= zj}.

Claim 21(
(`3

1, . . . , `
3
q) | ¬Bad2

)
is uniform over S.

Proof: For any z = (z1, . . . , zq) ∈ ({0,1}n)q and π ∈ Πn:

Pr
[
(`3

1, . . . , `
3
q) = z

]
= Pr

[
(`3

1, . . . , `
3
q) = π(z) := (π(z1), . . . , π(zq))

]

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 30 / 35

Proving Claim 20

Let S = {(z1, . . . , zq) ∈ ({0,1}n)q : ∀i 6= j : zi 6= zj}.

Claim 21(
(`3

1, . . . , `
3
q) | ¬Bad2

)
is uniform over S.

Proof: For any z = (z1, . . . , zq) ∈ ({0,1}n)q and π ∈ Πn:

Pr
[
(`3

1, . . . , `
3
q) = z

]
= Pr

[
(`3

1, . . . , `
3
q) = π(z) := (π(z1), . . . , π(zq))

]

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 30 / 35

Proving Claim 20

Let S = {(z1, . . . , zq) ∈ ({0,1}n)q : ∀i 6= j : zi 6= zj}.

Claim 21(
(`3

1, . . . , `
3
q) | ¬Bad2

)
is uniform over S.

Proof:

For any z = (z1, . . . , zq) ∈ ({0,1}n)q and π ∈ Πn:

Pr
[
(`3

1, . . . , `
3
q) = z

]
= Pr

[
(`3

1, . . . , `
3
q) = π(z) := (π(z1), . . . , π(zq))

]

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 30 / 35

Proving Claim 20

Let S = {(z1, . . . , zq) ∈ ({0,1}n)q : ∀i 6= j : zi 6= zj}.

Claim 21(
(`3

1, . . . , `
3
q) | ¬Bad2

)
is uniform over S.

Proof: For any z = (z1, . . . , zq) ∈ ({0,1}n)q and π ∈ Πn:

Pr
[
(`3

1, . . . , `
3
q) = z

]
= Pr

[
(`3

1, . . . , `
3
q) = π(z) := (π(z1), . . . , π(zq))

]

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 30 / 35

Section 3

Applications

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 31 / 35

General paradigm

Design a scheme assuming that you have random functions, and the realize
them using PRFs.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 32 / 35

Subsection 1

Private-key Encryption

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 33 / 35

Private-key Encryption

Construction 22 (PRF-based encryption)

Given an (efficient) PRF F , define the encryption scheme (Gen,E,D)):

Key generation: Gen(1n) returns k ← Fn

Encryption: Ek (m) returns Un, k(Un)⊕m

Decryption: Dk (c = (c1, cn)) returns k(c1)⊕ c2

I Advantages over the PRG based scheme?

I Proof of security?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 34 / 35

Private-key Encryption

Construction 22 (PRF-based encryption)

Given an (efficient) PRF F , define the encryption scheme (Gen,E,D)):

Key generation: Gen(1n) returns k ← Fn

Encryption: Ek (m) returns Un, k(Un)⊕m

Decryption: Dk (c = (c1, cn)) returns k(c1)⊕ c2

I Advantages over the PRG based scheme?

I Proof of security?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 34 / 35

Private-key Encryption

Construction 22 (PRF-based encryption)

Given an (efficient) PRF F , define the encryption scheme (Gen,E,D)):

Key generation: Gen(1n) returns k ← Fn

Encryption: Ek (m) returns Un, k(Un)⊕m

Decryption: Dk (c = (c1, cn)) returns k(c1)⊕ c2

I Advantages over the PRG based scheme?

I Proof of security?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 34 / 35

Conclusion

I We constructed PRFs and PRPs from length-doubling PRG (and thus
from one-way functions)

I Main question: find a simpler, more efficient construction

or at least, a less adaptive one

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 35 / 35

Conclusion

I We constructed PRFs and PRPs from length-doubling PRG (and thus
from one-way functions)

I Main question: find a simpler, more efficient construction

or at least, a less adaptive one

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 35 / 35

Conclusion

I We constructed PRFs and PRPs from length-doubling PRG (and thus
from one-way functions)

I Main question: find a simpler, more efficient construction

or at least, a less adaptive one

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 35 / 35

	Informal Discussion
	Function Families
	Efficient Function Families
	Pseudorandom Functions

	PRF from OWF
	The GGM Construction
	Proof

	Pseudorandom Permutations
	PRP from PRF
	Applications
	Private-key Encryption

