Foundation of Cryptography, Lecture 4 Pseudorandom Functions.

Benny Applebaum \& Iftach Haitner, Tel Aviv University

Tel Aviv University.
December 1, 2016

Section 1

Informal Discussion

Motivation discussion

1. We've seen a small set of objects: $\{G(x)\}_{x \in\{0,1\}^{n}}$, that "looks like" a larger set of objects: $\{x\}_{x \in\{0,1\}^{2 n} \text {. }}$

Motivation discussion

1. We've seen a small set of objects: $\{G(x)\}_{x \in\{0,1\}^{n}}$, that "looks like" a larger set of objects: $\{x\}_{x \in\{0,1\}^{2 n}}$.
2. We want small set of objects: efficient function families, that looks like a huge set of objects: the set of all functions.

Motivation discussion

1. We've seen a small set of objects: $\{G(x)\}_{x \in\{0,1\}^{n}}$, that "looks like" a larger set of objects: $\{x\}_{x \in\{0,1\}^{2 n}}$.
2. We want small set of objects: efficient function families, that looks like a huge set of objects: the set of all functions.
But

Motivation discussion

1. We've seen a small set of objects: $\{G(x)\}_{x \in\{0,1\}^{n}}$, that "looks like" a larger set of objects: $\{x\}_{x \in\{0,1\}^{2 n}}$.
2. We want small set of objects: efficient function families, that looks like a huge set of objects: the set of all functions.
Solution

Subsection 1

Function Families

Function families

1. $\mathcal{F}=\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$, where $\mathcal{F}_{n}=\left\{f:\{0,1\}^{m(n)} \mapsto\{0,1\}^{\ell(n)}\right\}$

Function families

1. $\mathcal{F}=\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$, where $\mathcal{F}_{n}=\left\{f:\{0,1\}^{m(n)} \mapsto\{0,1\}^{\ell(n)}\right\}$
2. We write $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{m(n)} \mapsto\{0,1\}^{\ell(n)}\right\}$

Function families

1. $\mathcal{F}=\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$, where $\mathcal{F}_{n}=\left\{f:\{0,1\}^{m(n)} \mapsto\{0,1\}^{\ell(n)}\right\}$
2. We write $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{m(n)} \mapsto\{0,1\}^{\ell(n)}\right\}$
3. If $m(n)=\ell(n)=n$, we omit it from the notation

Function families

1. $\mathcal{F}=\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$, where $\mathcal{F}_{n}=\left\{f:\{0,1\}^{m(n)} \mapsto\{0,1\}^{\ell(n)}\right\}$
2. We write $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{m(n)} \mapsto\{0,1\}^{\ell(n)}\right\}$
3. If $m(n)=\ell(n)=n$, we omit it from the notation
4. We identify function with their description

Random functions

Definition 1 (random functions)

For $n, k \in \mathbb{N}$, let $\Pi_{n, k}$ be the family of all functions from $\{0,1\}^{n}$ to $\{0,1\}^{k}$. Let $\Pi_{n}=\Pi_{n, n}$.

Random functions

Definition 1 (random functions)

For $n, k \in \mathbb{N}$, let $\Pi_{n, k}$ be the family of all functions from $\{0,1\}^{n}$ to $\{0,1\}^{k}$. Let $\Pi_{n}=\Pi_{n, n}$.
$-\pi \leftarrow \Pi_{n}$ is a "random access" source of randomness

Random functions

Definition 1 (random functions)

For $n, k \in \mathbb{N}$, let $\Pi_{n, k}$ be the family of all functions from $\{0,1\}^{n}$ to $\{0,1\}^{k}$. Let $\Pi_{n}=\Pi_{n, n}$.

- $\pi \leftarrow \Pi_{n}$ is a "random access" source of randomness
- Parties with access to a common $\pi \leftarrow \Pi_{n}$ can do a lot

Random functions

Definition 1 (random functions)

For $n, k \in \mathbb{N}$, let $\Pi_{n, k}$ be the family of all functions from $\{0,1\}^{n}$ to $\{0,1\}^{k}$. Let $\Pi_{n}=\Pi_{n, n}$.

- $\pi \leftarrow \Pi_{n}$ is a "random access" source of randomness
- Parties with access to a common $\pi \leftarrow \Pi_{n}$ can do a lot
- How long does it take to describe $\pi \in \Pi_{n}$?

Random functions

Definition 1 (random functions)

For $n, k \in \mathbb{N}$, let $\Pi_{n, k}$ be the family of all functions from $\{0,1\}^{n}$ to $\{0,1\}^{k}$. Let $\Pi_{n}=\Pi_{n, n}$.

- $\pi \leftarrow \Pi_{n}$ is a "random access" source of randomness
- Parties with access to a common $\pi \leftarrow \Pi_{n}$ can do a lot
- How long does it take to describe $\pi \in \Pi_{n}$?

Random functions

Definition 1 (random functions)

For $n, k \in \mathbb{N}$, let $\Pi_{n, k}$ be the family of all functions from $\{0,1\}^{n}$ to $\{0,1\}^{k}$. Let $\Pi_{n}=\Pi_{n, n}$.

- $\pi \leftarrow \Pi_{n}$ is a "random access" source of randomness
- Parties with access to a common $\pi \leftarrow \Pi_{n}$ can do a lot
- How long does it take to describe $\pi \in \Pi_{n}$? $2^{n} \cdot n$ bits

Random functions

Definition 1 (random functions)

For $n, k \in \mathbb{N}$, let $\Pi_{n, k}$ be the family of all functions from $\{0,1\}^{n}$ to $\{0,1\}^{k}$. Let $\Pi_{n}=\Pi_{n, n}$.

- $\pi \leftarrow \Pi_{n}$ is a "random access" source of randomness
- Parties with access to a common $\pi \leftarrow \Pi_{n}$ can do a lot
- How long does it take to describe $\pi \in \Pi_{n}$? $2^{n} \cdot n$ bits
- The truth table of $\pi \leftarrow \Pi_{n}$ is a uniform string of length $2^{n} \cdot n$

Random functions

Definition 1 (random functions)

For $n, k \in \mathbb{N}$, let $\Pi_{n, k}$ be the family of all functions from $\{0,1\}^{n}$ to $\{0,1\}^{k}$. Let $\Pi_{n}=\Pi_{n, n}$.

- $\pi \leftarrow \Pi_{n}$ is a "random access" source of randomness
- Parties with access to a common $\pi \leftarrow \Pi_{n}$ can do a lot
- How long does it take to describe $\pi \in \Pi_{n}$? $2^{n} \cdot n$ bits
- The truth table of $\pi \leftarrow \Pi_{n}$ is a uniform string of length $2^{n} \cdot n$
- For integer function m, we will consider the function family $\left\{\Pi_{n, m(n)}\right\}$.

Subsection 2

Efficient Function Families

Efficient function families

Definition 2 (efficient function family)

An ensemble of function families $\mathcal{F}=\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$ is efficient, if:
Samplable. \mathcal{F} is samplable in polynomial-time: there exists a PPT that given 1^{n}, outputs (the description of) a uniform element in \mathcal{F}_{n}.
Efficient. There exists a polynomial-time algorithm that given $x \in\{0,1\}^{n}$ and (a description of) $f \in \mathcal{F}_{n}$, outputs $f(x)$.

Subsection 3

Pseudorandom Functions

Pseudorandom Functions

Definition 3 (pseudorandom functions (PRFs))

An efficient ensemble $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{m(n)} \mapsto\{0,1\}^{\ell(n)}\right\}$ is pseudorandom, if

$$
\left|\operatorname{Pr}_{f \leftarrow \mathcal{F}_{n}}\left[\mathrm{D}^{f}\left(1^{n}\right)=1\right]-\operatorname{Pr}_{\pi \leftarrow \Pi_{m(n), \ell(n)}}\left[\mathrm{D}^{\pi}\left(1^{n}\right)=1\right]\right|=\operatorname{neg}(n)
$$

for any oracle-aided PPT D.

Pseudorandom Functions

Definition 3 (pseudorandom functions (PRFs))

An efficient ensemble $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{m(n)} \mapsto\{0,1\}^{\ell(n)}\right\}$ is pseudorandom, if

$$
\left|\operatorname{Pr}_{f \leftarrow \mathcal{F}_{n}}\left[\mathrm{D}^{f}\left(1^{n}\right)=1\right]-\operatorname{Pr}_{\pi \leftarrow \Pi_{m(n), \ell(n)}}\left[\mathrm{D}^{\pi}\left(1^{n}\right)=1\right]\right|=\operatorname{neg}(n)
$$

for any oracle-aided PPT D.

Pseudorandom Functions

Definition 3 (pseudorandom functions (PRFs))

An efficient ensemble $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{m(n)} \mapsto\{0,1\}^{\ell(n)}\right\}$ is pseudorandom, if

$$
\left|\operatorname{Pr}_{f \leftarrow \mathcal{F}_{n}}\left[\mathrm{D}^{f}\left(1^{n}\right)=1\right]-\operatorname{Pr}_{\pi \leftarrow \Pi_{m(n), \ell(n)}}\left[\mathrm{D}^{\pi}\left(1^{n}\right)=1\right]\right|=\operatorname{neg}(n)
$$

for any oracle-aided PPT D.

Pseudorandom Functions

Definition 3 (pseudorandom functions (PRFs))

An efficient ensemble $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{m(n)} \mapsto\{0,1\}^{\ell(n)}\right\}$ is pseudorandom, if

$$
\left|\operatorname{Pr}_{f \leftarrow \mathcal{F}_{n}}\left[\mathrm{D}^{f}\left(1^{n}\right)=1\right]-\operatorname{Pr}_{\pi \leftarrow \Pi_{m(n), \ell(n)}}\left[\mathrm{D}^{\pi}\left(1^{n}\right)=1\right]\right|=\operatorname{neg}(n)
$$

for any oracle-aided PPT D.

Pseudorandom Functions

Definition 3 (pseudorandom functions (PRFs))

An efficient ensemble $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{m(n)} \mapsto\{0,1\}^{\ell(n)}\right\}$ is pseudorandom, if

$$
\left|\operatorname{Pr}_{f \leftarrow \mathcal{F}_{n}}\left[\mathrm{D}^{f}\left(1^{n}\right)=1\right]-\operatorname{Pr}_{\pi \leftarrow \Pi_{m(n), \ell(n)}}\left[\mathrm{D}^{\pi}\left(1^{n}\right)=1\right]\right|=\operatorname{neg}(n)
$$

for any oracle-aided PPT D.

Pseudorandom Functions

Definition 3 (pseudorandom functions (PRFs))

An efficient ensemble $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{m(n)} \mapsto\{0,1\}^{\ell(n)}\right\}$ is pseudorandom, if

$$
\left|\underset{f \leftarrow \mathcal{F}_{n}}{\operatorname{Pr}}\left[\mathrm{D}^{f}\left(1^{n}\right)=1\right]-\operatorname{Pr}_{\pi \leftarrow \Pi_{m(n), \ell(n)}}\left[\mathrm{D}^{\pi}\left(1^{n}\right)=1\right]\right|=\operatorname{neg}(n),
$$

for any oracle-aided PPT D.

- Why "oracle-aided"?

Pseudorandom Functions

Definition 3 (pseudorandom functions (PRFs))

An efficient ensemble $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{m(n)} \mapsto\{0,1\}^{\ell(n)}\right\}$ is pseudorandom, if

$$
\left|\operatorname{Pr}_{f \leftarrow \mathcal{F}_{n}}\left[\mathrm{D}^{f}\left(1^{n}\right)=1\right]-\operatorname{Pr}_{\pi \leftarrow \Pi_{m(n), \ell(n)}}\left[\mathrm{D}^{\pi}\left(1^{n}\right)=1\right]\right|=\operatorname{neg}(n)
$$

for any oracle-aided PPT D.

- Why "oracle-aided"?
- Easy to construct (no assumption!) with logarithmic input length

Pseudorandom Functions

Definition 3 (pseudorandom functions (PRFs))

An efficient ensemble $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{m(n)} \mapsto\{0,1\}^{\ell(n)}\right\}$ is pseudorandom, if

$$
\left|\underset{f \leftarrow \mathcal{F}_{n}}{\operatorname{Pr}}\left[\mathrm{D}^{f}\left(1^{n}\right)=1\right]-\operatorname{Pr}_{\pi \leftarrow \Pi_{m(n), \ell(n)}}\left[\mathrm{D}^{\pi}\left(1^{n}\right)=1\right]\right|=\operatorname{neg}(n),
$$

for any oracle-aided PPT D.

- Why "oracle-aided"?
- Easy to construct (no assumption!) with logarithmic input length
- PRFs of super logarithmic input length, which is the interesting case, imply PRGs

Pseudorandom Functions

Definition 3 (pseudorandom functions (PRFs))

An efficient ensemble $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{m(n)} \mapsto\{0,1\}^{\ell(n)}\right\}$ is pseudorandom, if

$$
\left|\underset{f \leftarrow \mathcal{F}_{n}}{\operatorname{Pr}}\left[\mathrm{D}^{f}\left(1^{n}\right)=1\right]-\operatorname{Pr}_{\pi \leftarrow \Pi_{m(n), \ell(n)}}\left[\mathrm{D}^{\pi}\left(1^{n}\right)=1\right]\right|=\operatorname{neg}(n),
$$

for any oracle-aided PPT D.

- Why "oracle-aided"?
- Easy to construct (no assumption!) with logarithmic input length
- PRFs of super logarithmic input length, which is the interesting case, imply PRGs
- We will mainly focus on the case $m(n)=\ell(n)=n$

Pseudorandom Functions

Definition 3 (pseudorandom functions (PRFs))

An efficient ensemble $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{m(n)} \mapsto\{0,1\}^{\ell(n)}\right\}$ is pseudorandom, if

$$
\left|\operatorname{Pr}_{f \leftarrow \mathcal{F}_{n}}\left[\mathrm{D}^{f}\left(1^{n}\right)=1\right]-\operatorname{Pr}_{\pi \leftarrow \Pi_{m(n), \ell(n)}}\left[\mathrm{D}^{\pi}\left(1^{n}\right)=1\right]\right|=\operatorname{neg}(n)
$$

for any oracle-aided PPT D.

- Why "oracle-aided"?
- Easy to construct (no assumption!) with logarithmic input length
- PRFs of super logarithmic input length, which is the interesting case, imply PRGs
- We will mainly focus on the case $m(n)=\ell(n)=n$
- We write $\mathrm{D}^{\mathcal{F}}$ to stand for $\left(\mathrm{D}^{f}\right)_{f \leftarrow \mathcal{F}}$.

Section 2

PRF from OWF

Naive Construction

Let $G:\{0,1\}^{n} \mapsto\{0,1\}^{2 n}$, and for $s \in\{0,1\}^{n}$ define $f_{s}:\{0,1\} \mapsto\{0,1\}^{n}$ by

- $f_{s}(0)=G(s)_{1, \ldots, n}$
- $f_{s}(1)=G(s)_{n+1, \ldots, 2 n}$.

Naive Construction

Let $G:\{0,1\}^{n} \mapsto\{0,1\}^{2 n}$, and for $s \in\{0,1\}^{n}$ define $f_{s}:\{0,1\} \mapsto\{0,1\}^{n}$ by

- $f_{s}(0)=G(s)_{1, \ldots, n}$
- $f_{s}(1)=G(s)_{n+1, \ldots, 2 n}$.

Claim 4

Assume G is a PRG, then $\left\{\mathcal{F}_{n}=\left\{f_{s}\right\}_{s \in\{0,1\}^{n}}\right\}_{n \in \mathbb{N}}$ is a PRF.

Naive Construction

Let $G:\{0,1\}^{n} \mapsto\{0,1\}^{2 n}$, and for $s \in\{0,1\}^{n}$ define $f_{s}:\{0,1\} \mapsto\{0,1\}^{n}$ by

- $f_{s}(0)=G(s)_{1, \ldots, n}$
- $f_{s}(1)=G(s)_{n+1, \ldots, 2 n}$.

Claim 4

Assume G is a PRG, then $\left\{\mathcal{F}_{n}=\left\{f_{s}\right\}_{s \in\{0,1\}^{n}}\right\}_{n \in \mathbb{N}}$ is a PRF.
Proof:

Naive Construction

Let $G:\{0,1\}^{n} \mapsto\{0,1\}^{2 n}$, and for $s \in\{0,1\}^{n}$ define $f_{s}:\{0,1\} \mapsto\{0,1\}^{n}$ by

- $f_{s}(0)=G(s)_{1, \ldots, n}$
- $f_{s}(1)=G(s)_{n+1, \ldots, 2 n}$.

Claim 4

Assume G is a PRG, then $\left\{\mathcal{F}_{n}=\left\{f_{s}\right\}_{s \in\{0,1\}^{n}}\right\}_{n \in \mathbb{N}}$ is a PRF.
Proof: The truth table of $f \leftarrow \mathcal{F}_{n}$ is $G\left(U_{n}\right)$, where the truth table of $\pi \leftarrow \Pi_{1, n}$ is $U_{2 n} \square$

Naive Construction

Let $G:\{0,1\}^{n} \mapsto\{0,1\}^{2 n}$, and for $s \in\{0,1\}^{n}$ define $f_{s}:\{0,1\} \mapsto\{0,1\}^{n}$ by

- $f_{s}(0)=G(s)_{1, \ldots, n}$
- $f_{s}(1)=G(s)_{n+1, \ldots, 2 n}$.

Claim 4

Assume G is a PRG, then $\left\{\mathcal{F}_{n}=\left\{f_{s}\right\}_{s \in\{0,1\}^{n}}\right\}_{n \in \mathbb{N}}$ is a PRF.
Proof: The truth table of $f \leftarrow \mathcal{F}_{n}$ is $G\left(U_{n}\right)$, where the truth table of $\pi \leftarrow \Pi_{1, n}$ is $U_{2 n} \square$

- Naturally extends to input of length $O(\log n)$:-)

Naive Construction

Let $G:\{0,1\}^{n} \mapsto\{0,1\}^{2 n}$, and for $s \in\{0,1\}^{n}$ define $f_{s}:\{0,1\} \mapsto\{0,1\}^{n}$ by

- $f_{s}(0)=G(s)_{1, \ldots, n}$
- $f_{s}(1)=G(s)_{n+1, \ldots, 2 n}$.

Claim 4

Assume G is a PRG, then $\left\{\mathcal{F}_{n}=\left\{f_{s}\right\}_{s \in\{0,1\}^{n}}\right\}_{n \in \mathbb{N}}$ is a PRF.
Proof: The truth table of $f \leftarrow \mathcal{F}_{n}$ is $G\left(U_{n}\right)$, where the truth table of $\pi \leftarrow \Pi_{1, n}$ is $U_{2 n} \square$

- Naturally extends to input of length $O(\log n)$:-)
- Miserably fails for longer length (which is the only interesting case) :-(

Naive Construction

Let $G:\{0,1\}^{n} \mapsto\{0,1\}^{2 n}$, and for $s \in\{0,1\}^{n}$ define $f_{s}:\{0,1\} \mapsto\{0,1\}^{n}$ by

- $f_{s}(0)=G(s)_{1, \ldots, n}$
- $f_{s}(1)=G(s)_{n+1, \ldots, 2 n}$.

Claim 4

Assume G is a PRG, then $\left\{\mathcal{F}_{n}=\left\{f_{s}\right\}_{s \in\{0,1\}^{n}}\right\}_{n \in \mathbb{N}}$ is a PRF.
Proof: The truth table of $f \leftarrow \mathcal{F}_{n}$ is $G\left(U_{n}\right)$, where the truth table of $\pi \leftarrow \Pi_{1, n}$ is $U_{2 n} \square$

- Naturally extends to input of length $O(\log n)$:-)
- Miserably fails for longer length (which is the only interesting case) :-(
- Problem, we are constructing the whole truth table, even to compute a single output

Subsection 1

The GGM Construction

The GGM Construction

Construction 5 (GGM)

For $G:\{0,1\}^{n} \mapsto\{0,1\}^{2 n}$ and $s \in\{0,1\}^{n}$,

- $G_{0}(s)=G(s)_{1, \ldots, n}$
- $G_{1}(s)=G(s)_{n+1, \ldots, 2 n}$

For $x \in\{0,1\}^{k}$ let $f_{s}(x)=G_{x_{k}}\left(f_{s}\left(x_{1}, \ldots, k-1\right)\right)$, letting $f_{s}()=s$.

The GGM Construction

Construction 5 (GGM)

For $G:\{0,1\}^{n} \mapsto\{0,1\}^{2 n}$ and $s \in\{0,1\}^{n}$,

- $G_{0}(s)=G(s)_{1, \ldots, n}$
- $G_{1}(s)=G(s)_{n+1, \ldots, 2 n}$

For $x \in\{0,1\}^{k}$ let $f_{s}(x)=G_{x_{k}}\left(f_{s}\left(x_{1}, \ldots, k-1\right)\right)$, letting $f_{s}()=s$.

$s_{x}=f_{s}(x)$

The GGM Construction

Construction 5 (GGM)

For $G:\{0,1\}^{n} \mapsto\{0,1\}^{2 n}$ and $s \in\{0,1\}^{n}$,

- $G_{0}(s)=G(s)_{1, \ldots, n}$
- $G_{1}(s)=G(s)_{n+1, \ldots, 2 n}$

For $x \in\{0,1\}^{k}$ let $f_{s}(x)=G_{x_{k}}\left(f_{s}\left(x_{1}, \ldots, k-1\right)\right)$, letting $f_{s}()=s$.

$$
s_{x}=f_{s}(x)
$$

- Example: $f_{s}(001)=s_{001}=G_{1}\left(s_{00}\right)=G_{1}\left(G_{0}\left(s_{0}\right)\right)=G_{1}\left(G_{0}\left(G_{0}(s)\right)\right)$

The GGM Construction

Construction 5 (GGM)

For $G:\{0,1\}^{n} \mapsto\{0,1\}^{2 n}$ and $s \in\{0,1\}^{n}$,

- $G_{0}(s)=G(s)_{1, \ldots, n}$
- $G_{1}(s)=G(s)_{n+1, \ldots, 2 n}$

For $x \in\{0,1\}^{k}$ let $f_{s}(x)=G_{x_{k}}\left(f_{s}\left(x_{1}, \ldots, k-1\right)\right)$, letting $f_{s}()=s$.

$$
s_{x}=f_{s}(x)
$$

- Example: $f_{s}(001)=s_{001}=G_{1}\left(s_{00}\right)=G_{1}\left(G_{0}\left(s_{0}\right)\right)=G_{1}\left(G_{0}\left(G_{0}(s)\right)\right)$
- G is poly-time $\Longrightarrow \mathcal{F}:=\left\{\mathcal{F}_{n}=\left\{f_{s}: s \in\{0,1\}^{n}\right\}\right\}$ is efficient

The GGM Construction

Construction 5 (GGM)

For $G:\{0,1\}^{n} \mapsto\{0,1\}^{2 n}$ and $s \in\{0,1\}^{n}$,

- $G_{0}(s)=G(s)_{1, \ldots, n}$
- $G_{1}(s)=G(s)_{n+1, \ldots, 2 n}$

For $x \in\{0,1\}^{k}$ let $f_{s}(x)=G_{x_{k}}\left(f_{s}\left(x_{1}, \ldots, k-1\right)\right)$, letting $f_{s}()=s$.

$$
s_{x}=f_{s}(x)
$$

- Example: $f_{s}(001)=s_{001}=G_{1}\left(s_{00}\right)=G_{1}\left(G_{0}\left(s_{0}\right)\right)=G_{1}\left(G_{0}\left(G_{0}(s)\right)\right)$
- G is poly-time $\Longrightarrow \mathcal{F}:=\left\{\mathcal{F}_{n}=\left\{f_{s}: s \in\{0,1\}^{n}\right\}\right\}$ is efficient

The GGM Construction

Construction 5 (GGM)

For $G:\{0,1\}^{n} \mapsto\{0,1\}^{2 n}$ and $s \in\{0,1\}^{n}$,

- $G_{0}(s)=G(s)_{1, \ldots, n}$
- $G_{1}(s)=G(s)_{n+1, \ldots, 2 n}$

For $x \in\{0,1\}^{k}$ let $f_{s}(x)=G_{x_{k}}\left(f_{s}\left(x_{1}, \ldots, k-1\right)\right)$, letting $f_{s}()=s$.

$s_{x}=f_{s}(x)$

- Example: $f_{s}(001)=s_{001}=G_{1}\left(s_{00}\right)=G_{1}\left(G_{0}\left(s_{0}\right)\right)=G_{1}\left(G_{0}\left(G_{0}(s)\right)\right)$
- G is poly-time $\Longrightarrow \mathcal{F}:=\left\{\mathcal{F}_{n}=\left\{f_{s}: s \in\{0,1\}^{n}\right\}\right\}$ is efficient

Theorem 6 (Goldreich-Goldwasser-Micali (GGM))

 If G is a $P R G$ then \mathcal{F} is a PRF.
The GGM Construction

Construction 5 (GGM)

For $G:\{0,1\}^{n} \mapsto\{0,1\}^{2 n}$ and $s \in\{0,1\}^{n}$,

- $G_{0}(s)=G(s)_{1, \ldots, n}$
- $G_{1}(s)=G(s)_{n+1, \ldots, 2 n}$

For $x \in\{0,1\}^{k}$ let $f_{s}(x)=G_{x_{k}}\left(f_{s}\left(x_{1}, \ldots, k-1\right)\right)$, letting $f_{s}()=s$.

$s_{x}=f_{s}(x)$

- Example: $f_{s}(001)=s_{001}=G_{1}\left(s_{00}\right)=G_{1}\left(G_{0}\left(s_{0}\right)\right)=G_{1}\left(G_{0}\left(G_{0}(s)\right)\right)$
- G is poly-time $\Longrightarrow \mathcal{F}:=\left\{\mathcal{F}_{n}=\left\{f_{s}: s \in\{0,1\}^{n}\right\}\right\}$ is efficient

Theorem 6 (Goldreich-Goldwasser-Micali (GGM)) If G is a $P R G$ then \mathcal{F} is a PRF.

Corollary 7

OWFs imply PRFs.

Subsection 2

Proof

Proof Idea

Assume \exists PPT $\mathrm{D}, p \in$ poly and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$
\begin{equation*}
\left|\operatorname{Pr}\left[\mathrm{D}^{\mathcal{F}_{n}}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathrm{D}^{\Pi_{n}}\left(1^{n}\right)=1\right]\right| \geq \frac{1}{p(n)}, \tag{1}
\end{equation*}
$$

for any $n \in \mathcal{I}$.

Proof Idea

Assume \exists PPT $\mathrm{D}, p \in$ poly and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$
\begin{equation*}
\left|\operatorname{Pr}\left[\mathrm{D}^{\mathcal{F}_{n}}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathrm{D}^{\Pi_{n}}\left(1^{n}\right)=1\right]\right| \geq \frac{1}{p(n)}, \tag{1}
\end{equation*}
$$

for any $n \in \mathcal{I}$.
Fix $n \in \mathbb{N}$ and let $t=t(n)$ be a bound on the running time of $\mathrm{D}\left(1^{n}\right)$.

Proof Idea

Assume \exists PPT $\mathrm{D}, p \in$ poly and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$
\begin{equation*}
\left|\operatorname{Pr}\left[\mathrm{D}^{\mathcal{F}_{n}}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathrm{D}^{\Pi_{n}}\left(1^{n}\right)=1\right]\right| \geq \frac{1}{p(n)}, \tag{1}
\end{equation*}
$$

for any $n \in \mathcal{I}$.
Fix $n \in \mathbb{N}$ and let $t=t(n)$ be a bound on the running time of $\mathrm{D}\left(1^{n}\right)$. We use D to construct a PPT D^{\prime} such that

$$
\left|\operatorname{Pr}\left[\mathrm{D}^{\prime}\left(\left(U_{2 n}\right)^{t}\right)=1\right]-\operatorname{Pr}\left[\mathrm{D}^{\prime}\left(G\left(U_{n}\right)\right)^{t}\right)=1\right|>\frac{1}{n p(n)}
$$

where $\left(U_{2 n}\right)^{t}=U_{2 n}^{(1)}, \ldots, U_{2 n}^{(t)}$ and $G\left(U_{n}\right)^{t}=G\left(U_{n}^{(1)}\right), \ldots, G\left(U_{n}^{(t)}\right)$.

Proof Idea

Assume \exists PPT $\mathrm{D}, p \in$ poly and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$
\begin{equation*}
\left|\operatorname{Pr}\left[\mathrm{D}^{\mathcal{F}_{n}}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathrm{D}^{\Pi_{n}}\left(1^{n}\right)=1\right]\right| \geq \frac{1}{p(n)}, \tag{1}
\end{equation*}
$$

for any $n \in \mathcal{I}$.
Fix $n \in \mathbb{N}$ and let $t=t(n)$ be a bound on the running time of $\mathrm{D}\left(1^{n}\right)$. We use D to construct a PPT D^{\prime} such that

$$
\left|\operatorname{Pr}\left[\mathrm{D}^{\prime}\left(\left(U_{2 n}\right)^{t}\right)=1\right]-\operatorname{Pr}\left[\mathrm{D}^{\prime}\left(G\left(U_{n}\right)\right)^{t}\right)=1\right|>\frac{1}{n p(n)}
$$

where $\left(U_{2 n}\right)^{t}=U_{2 n}^{(1)}, \ldots, U_{2 n}^{(t)}$ and $G\left(U_{n}\right)^{t}=G\left(U_{n}^{(1)}\right), \ldots, G\left(U_{n}^{(t)}\right)$.

Hence, D^{\prime} violates the security of $G .(?)$

The Hybrid

$$
s_{x}=f_{s}(x)
$$

The Hybrid

$s_{x}=f_{s}(x)$

- \mathcal{H}_{i} : all the nodes of depth smaller than i are labeled by random strings. Other nodes are labeled as before (by applying PRG to the father and taking right/left half).

The Hybrid

$s_{x}=f_{s}(x)$

- \mathcal{H}_{i} : all the nodes of depth smaller than i are labeled by random strings. Other nodes are labeled as before (by applying PRG to the father and taking right/left half).
- What family is \mathcal{H}_{1} ?

The Hybrid

$s_{x}=f_{s}(x)$

- \mathcal{H}_{i} : all the nodes of depth smaller than i are labeled by random strings. Other nodes are labeled as before (by applying PRG to the father and taking right/left half).
- What family is \mathcal{H}_{1} ?

The Hybrid

$s_{x}=f_{s}(x)$

- \mathcal{H}_{i} : all the nodes of depth smaller than i are labeled by random strings. Other nodes are labeled as before (by applying PRG to the father and taking right/left half).
- What family is $\mathcal{H}_{1} ? \mathcal{F}_{n}$.

The Hybrid

$s_{x}=f_{s}(x)$

- \mathcal{H}_{i} : all the nodes of depth smaller than i are labeled by random strings. Other nodes are labeled as before (by applying PRG to the father and taking right/left half).
- What family is $\mathcal{H}_{1} ? \mathcal{F}_{n}$.

The Hybrid

- \mathcal{H}_{i} : all the nodes of depth smaller than i are labeled by random strings. Other nodes are labeled as before (by applying PRG to the father and taking right/left half).
- What family is \mathcal{H}_{1} ? \mathcal{F}_{n}. What is \mathcal{H}_{n} ?

The Hybrid

- \mathcal{H}_{i} : all the nodes of depth smaller than i are labeled by random strings. Other nodes are labeled as before (by applying PRG to the father and taking right/left half).
- What family is \mathcal{H}_{1} ? \mathcal{F}_{n}. What is \mathcal{H}_{n} ? Π_{n}.

The Hybrid

- \mathcal{H}_{i} : all the nodes of depth smaller than i are labeled by random strings. Other nodes are labeled as before (by applying PRG to the father and taking right/left half).
- What family is \mathcal{H}_{1} ? \mathcal{F}_{n}. What is \mathcal{H}_{n} ? Π_{n}.

The Hybrid

- \mathcal{H}_{i} : all the nodes of depth smaller than i are labeled by random strings. Other nodes are labeled as before (by applying PRG to the father and taking right/left half).
- What family is \mathcal{H}_{1} ? \mathcal{F}_{n}. What is \mathcal{H}_{n} ? Π_{n}.
- For some $i \in\{1, \ldots, n-1\}$, algorithm D distinguishes \mathcal{H}_{i} from \mathcal{H}_{i+1} by $\frac{1}{n p(n)}$

The Hybrid cont.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_{n}

$$
H_{n-1} \leftarrow \mathcal{H}_{i-1}
$$

The Hybrid cont.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_{n}

- R - a uniform string of length $2^{n} \cdot n$, and
- P - a string generated by 2^{n-1} independent calls to G

The Hybrid cont.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_{n}

- D distinguishes (via t samples) between
- R - a uniform string of length $2^{n} \cdot n$, and
- P - a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G,

The Hybrid cont.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_{n}

- D distinguishes (via t samples) between
- R - a uniform string of length $2^{n} \cdot n$, and
- P - a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(

The Hybrid cont.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_{n}

- D distinguishes (via t samples) between
- R - a uniform string of length $2^{n} \cdot n$, and
- P - a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

The Hybrid cont.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_{n}

- D distinguishes (via t samples) between
- R - a uniform string of length $2^{n} \cdot n$, and
- P - a string generated by 2^{n-1} independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

The Hybrid cont.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_{n}

$$
H_{n-1} \leftarrow \mathcal{H}_{i-1}
$$

The Hybrid cont.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_{n}

Algorithm 8 (D^{\prime} on $y_{1}, \ldots, y_{t} \in\left(\{0,1\}^{2 n}\right)^{t}$)
Emulate D. Initialize a counter $k=0$. On the i 'th query q_{i} made by D :

- If the cell queries by q_{i} 'th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
- If q_{i} is a left son, fill its cell with the left half of y_{k} and use the right half of y to fill the right brother of q_{i}.
- If q_{i} is a right son, fill its cell with the right half of y_{k} and use the left half of y to fill the cell of left brother of q_{i}.

The Hybrid cont.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_{n}

Algorithm 8 (D^{\prime} on $y_{1}, \ldots, y_{t} \in\left(\{0,1\}^{2 n}\right)^{t}$)
Emulate D. Initialize a counter $k=0$. On the i 'th query q_{i} made by D :

- If the cell queries by q_{i} 'th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
- If q_{i} is a left son, fill its cell with the left half of y_{k} and use the right half of y to fill the right brother of q_{i}.
- If q_{i} is a right son, fill its cell with the right half of y_{k} and use the left half of y to fill the cell of left brother of q_{i}.

The Hybrid cont.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_{n}

Algorithm 8 (D^{\prime} on $y_{1}, \ldots, y_{t} \in\left(\{0,1\}^{2 n}\right)^{t}$)
Emulate D. Initialize a counter $k=0$. On the i 'th query q_{i} made by D :

- If the cell queries by q_{i} 'th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
- If q_{i} is a left son, fill its cell with the left half of y_{k} and use the right half of y to fill the right brother of q_{i}.
- If q_{i} is a right son, fill its cell with the right half of y_{k} and use the left half of y to fill the cell of left brother of q_{i}.

The Hybrid cont.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_{n}

Algorithm 8 (D^{\prime} on $y_{1}, \ldots, y_{t} \in\left(\{0,1\}^{2 n}\right)^{t}$)
Emulate D. Initialize a counter $k=0$. On the i 'th query q_{i} made by D :

- If the cell queries by q_{i} 'th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
- If q_{i} is a left son, fill its cell with the left half of y_{k} and use the right half of y to fill the right brother of q_{i}.
- If q_{i} is a right son, fill its cell with the right half of y_{k} and use the left half of y to fill the cell of left brother of q_{i}.

The Hybrid cont.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_{n}

Algorithm 8 (D^{\prime} on $y_{1}, \ldots, y_{t} \in\left(\{0,1\}^{2 n}\right)^{t}$)
Emulate D. Initialize a counter $k=0$. On the i 'th query q_{i} made by D :

- If the cell queries by q_{i} 'th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
- If q_{i} is a left son, fill its cell with the left half of y_{k} and use the right half of y to fill the right brother of q_{i}.
- If q_{i} is a right son, fill its cell with the right half of y_{k} and use the left half of y to fill the cell of left brother of q_{i}.

The Hybrid cont.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_{n}

Algorithm $8\left(\mathrm{D}^{\prime}\right.$ on $\left.y_{1}, \ldots, y_{t} \in\left(\{0,1\}^{2 n}\right)^{t}\right)$
Emulate D. Initialize a counter $k=0$. On the i 'th query q_{i} made by D :

- If the cell queries by q_{i} th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
- If q_{i} is a left son, fill its cell with the left half of y_{k} and use the right half of y to fill the right brother of q_{i}.
- If q_{i} is a right son, fill its cell with the right half of y_{k} and use the left half of y to fill the cell of left brother of q_{i}.

The Hybrid cont.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_{n}

Algorithm $8\left(\mathrm{D}^{\prime}\right.$ on $\left.y_{1}, \ldots, y_{t} \in\left(\{0,1\}^{2 n}\right)^{t}\right)$
Emulate D. Initialize a counter $k=0$. On the i 'th query q_{i} made by D :

- If the cell queries by q_{i} th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
- If q_{i} is a left son, fill its cell with the left half of y_{k} and use the right half of y to fill the right brother of q_{i}.
- If q_{i} is a right son, fill its cell with the right half of y_{k} and use the left half of y to fill the cell of left brother of q_{i}.

The Hybrid cont.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_{n}

Algorithm $8\left(\mathrm{D}^{\prime}\right.$ on $\left.y_{1}, \ldots, y_{t} \in\left(\{0,1\}^{2 n}\right)^{t}\right)$
Emulate D. Initialize a counter $k=0$. On the i 'th query q_{i} made by D :

- If the cell queries by q_{i} th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
- If q_{i} is a left son, fill its cell with the left half of y_{k} and use the right half of y to fill the right brother of q_{i}.
- If q_{i} is a right son, fill its cell with the right half of y_{k} and use the left half of y to fill the cell of left brother of q_{i}.

The Hybrid cont.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_{n}

Algorithm $8\left(\mathrm{D}^{\prime}\right.$ on $\left.y_{1}, \ldots, y_{t} \in\left(\{0,1\}^{2 n}\right)^{t}\right)$
Emulate D. Initialize a counter $k=0$. On the i 'th query q_{i} made by D :

- If the cell queries by q_{i} th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
- If q_{i} is a left son, fill its cell with the left half of y_{k} and use the right half of y to fill the right brother of q_{i}.
- If q_{i} is a right son, fill its cell with the right half of y_{k} and use the left half of y to fill the cell of left brother of q_{i}.

The Hybrid cont.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_{n}

Algorithm 8 (D^{\prime} on $y_{1}, \ldots, y_{t} \in\left(\{0,1\}^{2 n}\right)^{t}$)
Emulate D. Initialize a counter $k=0$. On the i 'th query q_{i} made by D :

- If the cell queries by q_{i} th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
- If q_{i} is a left son, fill its cell with the left half of y_{k} and use the right half of y to fill the right brother of q_{i}.
- If q_{i} is a right son, fill its cell with the right half of y_{k} and use the left half of y to fill the cell of left brother of q_{i}.

The Hybrid cont.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_{n}

Algorithm $8\left(\mathrm{D}^{\prime}\right.$ on $\left.y_{1}, \ldots, y_{t} \in\left(\{0,1\}^{2 n}\right)^{t}\right)$
Emulate D. Initialize a counter $k=0$. On the i 'th query q_{i} made by D :

- If the cell queries by q_{i} th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
- If q_{i} is a left son, fill its cell with the left half of y_{k} and use the right half of y to fill the right brother of q_{i}.
- If q_{i} is a right son, fill its cell with the right half of y_{k} and use the left half of y to fill the cell of left brother of q_{i}.

The Hybrid cont.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_{n}

Algorithm $8\left(\mathrm{D}^{\prime}\right.$ on $\left.y_{1}, \ldots, y_{t} \in\left(\{0,1\}^{2 n}\right)^{t}\right)$
Emulate D. Initialize a counter $k=0$. On the i 'th query q_{i} made by D :

- If the cell queries by q_{i} th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
- If q_{i} is a left son, fill its cell with the left half of y_{k} and use the right half of y to fill the right brother of q_{i}.
- If q_{i} is a right son, fill its cell with the right half of y_{k} and use the left half of y to fill the cell of left brother of q_{i}.

The Hybrid cont.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_{n}

Algorithm 8 (D^{\prime} on $y_{1}, \ldots, y_{t} \in\left(\{0,1\}^{2 n}\right)^{t}$)
Emulate D. Initialize a counter $k=0$. On the i 'th query q_{i} made by D :

- If the cell queries by q_{i} th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
- If q_{i} is a left son, fill its cell with the left half of y_{k} and use the right half of y to fill the right brother of q_{i}.
- If q_{i} is a right son, fill its cell with the right half of y_{k} and use the left half of y to fill the cell of left brother of q_{i}.

The Hybrid cont.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_{n}

Algorithm $8\left(\mathrm{D}^{\prime}\right.$ on $\left.y_{1}, \ldots, y_{t} \in\left(\{0,1\}^{2 n}\right)^{t}\right)$
Emulate D. Initialize a counter $k=0$. On the i 'th query q_{i} made by D :

- If the cell queries by q_{i} 'th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
- If q_{i} is a left son, fill its cell with the left half of y_{k} and use the right half of y to fill the right brother of q_{i}.
- If q_{i} is a right son, fill its cell with the right half of y_{k} and use the left half of y to fill the cell of left brother of q_{i}.

The Hybrid cont.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_{n}

Algorithm $8\left(\mathrm{D}^{\prime}\right.$ on $\left.y_{1}, \ldots, y_{t} \in\left(\{0,1\}^{2 n}\right)^{t}\right)$
Emulate D. Initialize a counter $k=0$. On the i 'th query q_{i} made by D :

- If the cell queries by q_{i} 'th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
- If q_{i} is a left son, fill its cell with the left half of y_{k} and use the right half of y to fill the right brother of q_{i}.
- If q_{i} is a right son, fill its cell with the right half of y_{k} and use the left half of y to fill the cell of left brother of q_{i}.

The Hybrid cont.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_{n}

Algorithm $8\left(\mathrm{D}^{\prime}\right.$ on $\left.y_{1}, \ldots, y_{t} \in\left(\{0,1\}^{2 n}\right)^{t}\right)$
Emulate D. Initialize a counter $k=0$. On the i 'th query q_{i} made by D :

- If the cell queries by q_{i} th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
- If q_{i} is a left son, fill its cell with the left half of y_{k} and use the right half of y to fill the right brother of q_{i}.
- If q_{i} is a right son, fill its cell with the right half of y_{k} and use the left half of y to fill the cell of left brother of q_{i}.

The Hybrid cont.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_{n}

Algorithm $8\left(\mathrm{D}^{\prime}\right.$ on $\left.y_{1}, \ldots, y_{t} \in\left(\{0,1\}^{2 n}\right)^{t}\right)$
Emulate D. Initialize a counter $k=0$. On the i 'th query q_{i} made by D :

- If the cell queries by q_{i} th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
- If q_{i} is a left son, fill its cell with the left half of y_{k} and use the right half of y to fill the right brother of q_{i}.
- If q_{i} is a right son, fill its cell with the right half of y_{k} and use the left half of y to fill the cell of left brother of q_{i}.

Part 1

Pseudorandom Permutations

Formal Definition

Let $\widetilde{\Pi}_{n}$ be the set of all permutations over $\{0,1\}^{n}$.

Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{n} \mapsto\{0,1\}^{n}\right\}$ is a pseudorandom permutation, if

$$
\begin{equation*}
\mid \operatorname{Pr}\left[D^{\mathcal{F}_{n}}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[D^{\tilde{\Pi}_{n}}\left(1^{n}\right)=1 \mid=\operatorname{neg}(n),\right. \tag{2}
\end{equation*}
$$

for any oracle-aided PPT D

Formal Definition

Let $\tilde{\Pi}_{n}$ be the set of all permutations over $\{0,1\}^{n}$.

Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{n} \mapsto\{0,1\}^{n}\right\}$ is a pseudorandom permutation, if

$$
\begin{equation*}
\mid \operatorname{Pr}\left[D^{\mathcal{F}_{n}}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[D^{\tilde{\Pi}_{n}}\left(1^{n}\right)=1 \mid=\operatorname{neg}(n),\right. \tag{2}
\end{equation*}
$$

for any oracle-aided PPT D

- Eq 2 holds for any PRF (taking the role of \mathcal{F})

Formal Definition

Let $\tilde{\Pi}_{n}$ be the set of all permutations over $\{0,1\}^{n}$.

Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{n} \mapsto\{0,1\}^{n}\right\}$ is a pseudorandom permutation, if

$$
\begin{equation*}
\mid \operatorname{Pr}\left[D^{\mathcal{F}_{n}}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[D^{\tilde{\Pi}_{n}}\left(1^{n}\right)=1 \mid=\operatorname{neg}(n),\right. \tag{2}
\end{equation*}
$$

for any oracle-aided PPT D

- Eq 2 holds for any PRF (taking the role of \mathcal{F})
- Hence, PRPs are indistinguishable from PRFs...

Formal Definition

Let $\tilde{\Pi}_{n}$ be the set of all permutations over $\{0,1\}^{n}$.

Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{n} \mapsto\{0,1\}^{n}\right\}$ is a pseudorandom permutation, if

$$
\begin{equation*}
\mid \operatorname{Pr}\left[D^{\mathcal{F}_{n}}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[D^{\tilde{\Pi}_{n}}\left(1^{n}\right)=1 \mid=\operatorname{neg}(n),\right. \tag{2}
\end{equation*}
$$

for any oracle-aided PPT D

- Eq 2 holds for any PRF (taking the role of \mathcal{F})
- Hence, PRPs are indistinguishable from PRFs...
- If no one can distinguish between PRFs and PRPs, let's use PRFs

Formal Definition

Let $\tilde{\Pi}_{n}$ be the set of all permutations over $\{0,1\}^{n}$.

Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{n} \mapsto\{0,1\}^{n}\right\}$ is a pseudorandom permutation, if

$$
\begin{equation*}
\mid \operatorname{Pr}\left[D^{\mathcal{F}_{n}}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[D^{\tilde{\Pi}_{n}}\left(1^{n}\right)=1 \mid=\operatorname{neg}(n),\right. \tag{2}
\end{equation*}
$$

for any oracle-aided PPT D

- Eq 2 holds for any PRF (taking the role of \mathcal{F})
- Hence, PRPs are indistinguishable from PRFs...
- If no one can distinguish between PRFs and PRPs, let's use PRFs
- (partial) Perfect "security"

Formal Definition

Let $\tilde{\Pi}_{n}$ be the set of all permutations over $\{0,1\}^{n}$.

Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{n} \mapsto\{0,1\}^{n}\right\}$ is a pseudorandom permutation, if

$$
\begin{equation*}
\mid \operatorname{Pr}\left[D^{\mathcal{F}_{n}}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[D^{\tilde{\Pi}_{n}}\left(1^{n}\right)=1 \mid=\operatorname{neg}(n),\right. \tag{2}
\end{equation*}
$$

for any oracle-aided PPT D

- Eq 2 holds for any PRF (taking the role of \mathcal{F})
- Hence, PRPs are indistinguishable from PRFs...
- If no one can distinguish between PRFs and PRPs, let's use PRFs
- (partial) Perfect "security"
- Inversion

Subsection 1

PRP from PRF

Feistel permutation

How does one turn a function into a permutation?

Feistel permutation

How does one turn a function into a permutation?

Definition 10 (LR)

For $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, let $\operatorname{LR}_{f}:\{0,1\}^{2 n} \mapsto\{0,1\}^{2 n}$ be defined by

$$
\operatorname{LR}_{f}(\ell, r)=(r, f(r) \oplus \ell)
$$

Feistel permutation

How does one turn a function into a permutation?

Definition 10 (LR)

For $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, let $\operatorname{LR}_{f}:\{0,1\}^{2 n} \mapsto\{0,1\}^{2 n}$ be defined by

Feistel permutation

How does one turn a function into a permutation?

Definition 10 (LR)

For $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, let $\operatorname{LR}_{f}:\{0,1\}^{2 n} \mapsto\{0,1\}^{2 n}$ be defined by

$$
\operatorname{LR}_{f}(\ell, r)=(r, f(r) \oplus \ell)
$$

- LR_{f} is a permutation: $\operatorname{LR}_{f}^{-1}(z, w)=(f(z) \oplus w, z)$

Feistel permutation

How does one turn a function into a permutation?

Definition 10 (LR)

For $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, let $\operatorname{LR}_{f}:\{0,1\}^{2 n} \mapsto\{0,1\}^{2 n}$ be defined by

$$
\operatorname{LR}_{f}(\ell, r)=(r, f(r) \oplus \ell)
$$

- LR_{f} is a permutation: $\operatorname{LR}_{f}^{-1}(z, w)=(f(z) \oplus w, z)$
- LR_{f} is efficiently computable and invertible given oracle access to f

Feistel permutation

How does one turn a function into a permutation?

Definition 10 (LR)

For $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, let $\operatorname{LR}_{f}:\{0,1\}^{2 n} \mapsto\{0,1\}^{2 n}$ be defined by

$$
\operatorname{LR}_{f}(\ell, r)=(r, f(r) \oplus \ell)
$$

- LR_{f} is a permutation: $\operatorname{LR}_{f}^{-1}(z, w)=(f(z) \oplus w, z)$
- LR_{f} is efficiently computable and invertible given
 oracle access to f

Feistel permutation

How does one turn a function into a permutation?

Definition 10 (LR)

For $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, let $\operatorname{LR}_{f}:\{0,1\}^{2 n} \mapsto\{0,1\}^{2 n}$ be defined by

$$
\operatorname{LR}_{f}(\ell, r)=(r, f(r) \oplus \ell)
$$

- LR_{f} is a permutation: $\operatorname{LR}_{f}^{-1}(z, w)=(f(z) \oplus w, z)$
- LR_{f} is efficiently computable and invertible given
 oracle access to f
- For $i \in \mathbb{N}$ and f^{1}, \ldots, f^{i}, define $\operatorname{LR}_{f^{1}, \ldots, f^{i}}:\{0,1\}^{2 n} \mapsto\{0,1\}^{2 n}$ by

Feistel permutation

How does one turn a function into a permutation?

Definition 10 (LR)

For $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, let $\operatorname{LR}_{f}:\{0,1\}^{2 n} \mapsto\{0,1\}^{2 n}$ be defined by

$$
\operatorname{LR}_{f}(\ell, r)=(r, f(r) \oplus \ell)
$$

- LR_{f} is a permutation: $\operatorname{LR}_{f}^{-1}(z, w)=(f(z) \oplus w, z)$
- LR_{f} is efficiently computable and invertible given
 oracle access to f
- For $i \in \mathbb{N}$ and f^{1}, \ldots, f^{i}, define $\operatorname{LR}_{f^{1}, \ldots, f^{i}}:\{0,1\}^{2 n} \mapsto\{0,1\}^{2 n}$ by

$$
\begin{aligned}
& \mathrm{LR}_{f^{1}, \ldots, f^{i}}(\ell, r)=\left(r^{i-1}, f^{i}\left(r^{i-1}\right) \oplus \ell^{i-1}\right) \text {, for }\left(\ell^{i-1}, r^{i-1}\right)=\operatorname{LR}_{f^{1}, \ldots, f^{i-1}}(\ell, r) . \\
& \text { (letting }\left(\ell^{0}, r^{0}\right)=(\ell, r)
\end{aligned}
$$

Luby-Rackoff Thm.

Recall $\mathrm{LR}_{f}(\ell, r)=(r, f(r) \oplus \ell)$.

Luby-Rackoff Thm.

Recall $\mathrm{LR}_{f}(\ell, r)=(r, f(r) \oplus \ell)$.

Definition 11

Given a function family $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{n} \mapsto\{0,1\}^{n}\right\}$, let $\operatorname{LR}^{i}(\mathcal{F})=\left\{\operatorname{LR}_{\mathcal{F}_{n}}^{i}=\left\{\operatorname{LR}_{f^{1}, \ldots, f^{i}}: f^{1}, \ldots, f^{i} \in \mathcal{F}_{n}\right\}\right\}$,

Luby-Rackoff Thm.

Recall $\mathrm{LR}_{f}(\ell, r)=(r, f(r) \oplus \ell)$.

Definition 11

Given a function family $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{n} \mapsto\{0,1\}^{n}\right\}$, let $\operatorname{LR}^{i}(\mathcal{F})=\left\{\operatorname{LR}_{\mathcal{F}_{n}}^{i}=\left\{\operatorname{LR}_{f^{1}, \ldots, f^{i}}: f^{1}, \ldots, f^{i} \in \mathcal{F}_{n}\right\}\right\}$,

- $\mathrm{LR}_{\mathcal{F}}^{i}$ is always a permutation family, and is efficient if \mathcal{F} is.

Luby-Rackoff Thm.

Recall $\mathrm{LR}_{f}(\ell, r)=(r, f(r) \oplus \ell)$.

Definition 11

Given a function family $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{n} \mapsto\{0,1\}^{n}\right\}$, let $\operatorname{LR}^{i}(\mathcal{F})=\left\{\operatorname{LR}_{\mathcal{F}_{n}}^{i}=\left\{\operatorname{LR}_{f^{1}, \ldots, f^{i}}: f^{1}, \ldots, f^{i} \in \mathcal{F}_{n}\right\}\right\}$,

- $\mathrm{LR}_{\mathcal{F}}^{i}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is $L R_{\mathcal{F}}^{1}$ pseudorandom?

Luby-Rackoff Thm.

Recall $\mathrm{LR}_{f}(\ell, r)=(r, f(r) \oplus \ell)$.

Definition 11

Given a function family $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{n} \mapsto\{0,1\}^{n}\right\}$, let $\operatorname{LR}^{i}(\mathcal{F})=\left\{\operatorname{LR}_{\mathcal{F}_{n}}^{i}=\left\{\operatorname{LR}_{f^{1}, \ldots, f^{i}}: f^{1}, \ldots, f^{i} \in \mathcal{F}_{n}\right\}\right\}$,

- $\mathrm{LR}_{\mathcal{F}}^{i}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is $\mathrm{LR}_{\mathcal{F}}^{1}$ pseudorandom?
$-\mathrm{LR}_{\mathcal{F}}^{2}$?

Luby-Rackoff Thm.

Recall $\mathrm{LR}_{f}(\ell, r)=(r, f(r) \oplus \ell)$.

Definition 11

Given a function family $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{n} \mapsto\{0,1\}^{n}\right\}$, let $\operatorname{LR}^{i}(\mathcal{F})=\left\{\operatorname{LR}_{\mathcal{F}_{n}}^{i}=\left\{\operatorname{LR}_{f^{1}, \ldots, f^{i}}: f^{1}, \ldots, f^{i} \in \mathcal{F}_{n}\right\}\right\}$,

- $\mathrm{LR}_{\mathcal{F}}^{i}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is $\mathrm{LR}_{\mathcal{F}}^{1}$ pseudorandom?
$-\mathrm{LR}_{\mathcal{F}}^{2}$?

Luby-Rackoff Thm.

Recall $\mathrm{LR}_{f}(\ell, r)=(r, f(r) \oplus \ell)$.

Definition 11

Given a function family $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{n} \mapsto\{0,1\}^{n}\right\}$, let $\operatorname{LR}^{i}(\mathcal{F})=\left\{\operatorname{LR}_{\mathcal{F}_{n}}^{i}=\left\{\operatorname{LR}_{f^{1}, \ldots, f^{i}}: f^{1}, \ldots, f^{i} \in \mathcal{F}_{n}\right\}\right\}$,

- $\mathrm{LR}_{\mathcal{F}}^{i}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is $L R_{\mathcal{F}}^{1}$ pseudorandom?
$-\operatorname{LR}_{\mathcal{F}}^{2} ? \operatorname{LR}_{f^{1}, f^{2}}\left(0^{n}, 0^{n}\right)=\operatorname{LR}_{f^{2}}\left(0^{n}, f^{1}\left(0^{n}\right)\right)=\left(f^{1}\left(0^{n}\right), \cdot\right)$ and $\operatorname{LR}_{f^{1}, f^{2}}\left(1^{n}, 0^{n}\right)=\operatorname{LR}_{f^{2}}\left(0^{n}, f^{1}\left(0^{n}\right) \oplus 1^{n}\right)=\left(f^{1}\left(0^{n}\right) \oplus 1^{n}, \cdot\right)$

Luby-Rackoff Thm.

Recall $\mathrm{LR}_{f}(\ell, r)=(r, f(r) \oplus \ell)$.

Definition 11

Given a function family $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{n} \mapsto\{0,1\}^{n}\right\}$, let $\operatorname{LR}^{i}(\mathcal{F})=\left\{\operatorname{LR}_{\mathcal{F}_{n}}^{i}=\left\{\operatorname{LR}_{f^{1}, \ldots, f^{i}}: f^{1}, \ldots, f^{i} \in \mathcal{F}_{n}\right\}\right\}$,

- $\mathrm{LR}_{\mathcal{F}}^{i}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is $L R_{\mathcal{F}}^{1}$ pseudorandom?
$-\operatorname{LR}_{\mathcal{F}}^{2} ? \operatorname{LR}_{f^{1}, f^{2}}\left(0^{n}, 0^{n}\right)=\operatorname{LR}_{f^{2}}\left(0^{n}, f^{1}\left(0^{n}\right)\right)=\left(f^{1}\left(0^{n}\right), \cdot\right)$ and $\operatorname{LR}_{f^{1}, f^{2}}\left(1^{n}, 0^{n}\right)=\operatorname{LR}_{f^{2}}\left(0^{n}, f^{1}\left(0^{n}\right) \oplus 1^{n}\right)=\left(f^{1}\left(0^{n}\right) \oplus 1^{n}, \cdot\right)$
$-\mathrm{LR}_{\mathcal{F}}^{3}$?

Luby-Rackoff Thm.

Recall $\mathrm{LR}_{f}(\ell, r)=(r, f(r) \oplus \ell)$.

Definition 11

Given a function family $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{n} \mapsto\{0,1\}^{n}\right\}$, let $\operatorname{LR}^{i}(\mathcal{F})=\left\{\operatorname{LR}_{\mathcal{F}_{n}}^{i}=\left\{\operatorname{LR}_{f^{1}, \ldots, f^{i}}: f^{1}, \ldots, f^{i} \in \mathcal{F}_{n}\right\}\right\}$,

- $\mathrm{LR}_{\mathcal{F}}^{i}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is $L R_{\mathcal{F}}^{1}$ pseudorandom?
$-\operatorname{LR}_{\mathcal{F}}^{2} ? \operatorname{LR}_{f^{1}, f^{2}}\left(0^{n}, 0^{n}\right)=\operatorname{LR}_{f^{2}}\left(0^{n}, f^{1}\left(0^{n}\right)\right)=\left(f^{1}\left(0^{n}\right), \cdot\right)$ and $\operatorname{LR}_{f^{1}, f^{2}}\left(1^{n}, 0^{n}\right)=\operatorname{LR}_{f^{2}}\left(0^{n}, f^{1}\left(0^{n}\right) \oplus 1^{n}\right)=\left(f^{1}\left(0^{n}\right) \oplus 1^{n}, \cdot\right)$
$-\mathrm{LR}_{\mathcal{F}}^{3}$?

Luby-Rackoff Thm.

Recall $\mathrm{LR}_{f}(\ell, r)=(r, f(r) \oplus \ell)$.

Definition 11

Given a function family $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{n} \mapsto\{0,1\}^{n}\right\}$, let $\operatorname{LR}^{i}(\mathcal{F})=\left\{\operatorname{LR}_{\mathcal{F}_{n}}^{i}=\left\{\operatorname{LR}_{f^{1}, \ldots, f^{i}}: f^{1}, \ldots, f^{i} \in \mathcal{F}_{n}\right\}\right\}$,

- $\operatorname{LR}_{\mathcal{F}}^{i}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is $L R_{\mathcal{F}}^{1}$ pseudorandom?
$-\operatorname{LR}_{\mathcal{F}}^{2} ? \operatorname{LR}_{f^{1}, f^{2}}\left(0^{n}, 0^{n}\right)=\operatorname{LR}_{f^{2}}\left(0^{n}, f^{1}\left(0^{n}\right)\right)=\left(f^{1}\left(0^{n}\right), \cdot\right)$ and $\operatorname{LR}_{f^{1}, f^{2}}\left(1^{n}, 0^{n}\right)=\operatorname{LR}_{f^{2}}\left(0^{n}, f^{1}\left(0^{n}\right) \oplus 1^{n}\right)=\left(f^{1}\left(0^{n}\right) \oplus 1^{n}, \cdot\right)$
$-\mathrm{LR}_{\mathcal{F}}^{3}$?

Theorem 12 (Luby-Rackoff)

Assuming that \mathcal{F} is a $P R F$, then $\mathrm{LR}_{\mathcal{F}}^{3}$ is a $P R P$

Luby-Rackoff Thm.

Recall $\mathrm{LR}_{f}(\ell, r)=(r, f(r) \oplus \ell)$.

Definition 11

Given a function family $\mathcal{F}=\left\{\mathcal{F}_{n}:\{0,1\}^{n} \mapsto\{0,1\}^{n}\right\}$, let
$\operatorname{LR}^{i}(\mathcal{F})=\left\{\operatorname{LR}_{\mathcal{F}_{n}}^{i}=\left\{\operatorname{LR}_{f^{1}, \ldots, f^{i}}: f^{1}, \ldots, f^{i} \in \mathcal{F}_{n}\right\}\right\}$,

- $\operatorname{LR}_{\mathcal{F}}^{i}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is $L R_{\mathcal{F}}^{1}$ pseudorandom?
$-\operatorname{LR}_{\mathcal{F}}^{2} ? \operatorname{LR}_{f^{1}, f^{2}}\left(0^{n}, 0^{n}\right)=\operatorname{LR}_{f^{2}}\left(0^{n}, f^{1}\left(0^{n}\right)\right)=\left(f^{1}\left(0^{n}\right), \cdot\right)$ and $\operatorname{LR}_{f^{1}, f^{2}}\left(1^{n}, 0^{n}\right)=\operatorname{LR}_{f^{2}}\left(0^{n}, f^{1}\left(0^{n}\right) \oplus 1^{n}\right)=\left(f^{1}\left(0^{n}\right) \oplus 1^{n}, \cdot\right)$
$-\mathrm{LR}_{\mathcal{F}}^{3}$?

Theorem 12 (Luby-Rackoff)

Assuming that \mathcal{F} is a $P R F$, then $\mathrm{LR}_{\mathcal{F}}^{3}$ is a $P R P$

- $\operatorname{LR}^{4}(\mathcal{F})$ is pseudorandom even if inversion queries are allowed

Proving Luby-Rackoff

Proving Luby-Rackoff

It suffices to prove that $L R_{\Pi_{n}}^{3}$ is pseudorandom (?)

Proving Luby-Rackoff

It suffices to prove that $L R_{\Pi_{n}}^{3}$ is pseudorandom (?)

- How would you prove that?

Proving Luby-Rackoff

It suffices to prove that $L R_{\Pi_{n}}^{3}$ is pseudorandom (?)

- How would you prove that?
- Maybe $\operatorname{LR}^{3}\left(\Pi_{n}\right) \equiv \tilde{\Pi}_{2 n}$?

Proving Luby-Rackoff

It suffices to prove that $L R_{\Pi_{n}}^{3}$ is pseudorandom (?)

- How would you prove that?
- Maybe $\operatorname{LR}^{3}\left(\Pi_{n}\right) \equiv \tilde{\Pi}_{2 n}$?

Proving Luby-Rackoff

It suffices to prove that $L R_{\Pi_{n}}^{3}$ is pseudorandom (?)

- How would you prove that?
- Maybe $\operatorname{LR}^{3}\left(\Pi_{n}\right) \equiv \tilde{\Pi}_{2 n}$? description length of element in $\operatorname{LR}^{3}\left(\Pi_{n}\right)$ is $2^{n} \cdot 3 n$, where that of element in $\tilde{\Pi}_{2 n}$ is

Proving Luby-Rackoff

It suffices to prove that $L R_{\Pi_{n}}^{3}$ is pseudorandom (?)

- How would you prove that?
- Maybe $\operatorname{LR}^{3}\left(\Pi_{n}\right) \equiv \tilde{\Pi}_{2 n}$? description length of element in $\operatorname{LR}^{3}\left(\Pi_{n}\right)$ is $2^{n} \cdot 3 n$, where that of element in $\tilde{\Pi}_{2 n}$ is $\log \left(2^{2 n!}\right)>\log \left(\left(\frac{2^{2 n}}{e}\right)^{2^{2 n}}\right)>2^{2 n} \cdot n$

Proving Luby-Rackoff

It suffices to prove that $L R_{\Pi_{n}}^{3}$ is pseudorandom (?)

- How would you prove that?
- Maybe $\operatorname{LR}^{3}\left(\Pi_{n}\right) \equiv \tilde{\Pi}_{2 n}$? description length of element in $\operatorname{LR}^{3}\left(\Pi_{n}\right)$ is $2^{n} \cdot 3 n$, where that of element in $\tilde{\Pi}_{2 n}$ is $\log \left(2^{2 n!}\right)>\log \left(\left(\frac{2^{2 n}}{e}\right)^{2^{2 n}}\right)>2^{2 n} \cdot n$

Claim 13

For any q-query D ,

$$
\mid \operatorname{Pr}\left[D^{\operatorname{LR}^{3}\left(\Pi_{n}\right)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[D^{\widetilde{\Pi}_{2 n}}\left(1^{n}\right) \mid=1\right] \in O\left(q^{2} / 2^{n}\right) .
$$

Proving Luby-Rackoff

It suffices to prove that $L R_{\Pi_{n}}^{3}$ is pseudorandom (?)

- How would you prove that?
- Maybe $\operatorname{LR}^{3}\left(\Pi_{n}\right) \equiv \tilde{\Pi}_{2 n}$? description length of element in $\operatorname{LR}^{3}\left(\Pi_{n}\right)$ is $2^{n} \cdot 3 n$, where that of element in $\tilde{\Pi}_{2 n}$ is $\log \left(2^{2 n!}\right)>\log \left(\left(\frac{2^{2 n}}{e}\right)^{2^{2 n}}\right)>2^{2 n} \cdot n$

Claim 13

For any q-query D ,

$$
\mid \operatorname{Pr}\left[D^{\mathrm{LR}^{3}\left(\Pi_{n}\right)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathrm{D}^{\widetilde{\Pi}_{2 n}}\left(1^{n}\right) \mid=1\right] \in O\left(q^{2} / 2^{n}\right) .
$$

- We assume for simplicity that D is deterministic, non-repeating and non-adaptive.

Proving Luby-Rackoff

It suffices to prove that $L R_{\Pi_{n}}^{3}$ is pseudorandom (?)

- How would you prove that?
- Maybe $\operatorname{LR}^{3}\left(\Pi_{n}\right) \equiv \tilde{\Pi}_{2 n}$? description length of element in $\operatorname{LR}^{3}\left(\Pi_{n}\right)$ is $2^{n} \cdot 3 n$, where that of element in $\tilde{\Pi}_{2 n}$ is $\log \left(2^{2 n!}\right)>\log \left(\left(\frac{2^{2 n}}{e}\right)^{2^{2 n}}\right)>2^{2 n} \cdot n$

Claim 13

For any q-query D ,

$$
\mid \operatorname{Pr}\left[D^{L R^{3}\left(\Pi_{n}\right)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[D^{\widetilde{\Pi}_{2 n}}\left(1^{n}\right) \mid=1\right] \in O\left(q^{2} / 2^{n}\right) .
$$

- We assume for simplicity that D is deterministic, non-repeating and non-adaptive.
- Let x_{1}, \ldots, x_{q} be D's queries.

Proving Luby-Rackoff

It suffices to prove that $L R_{\Pi_{n}}^{3}$ is pseudorandom (?)

- How would you prove that?
- Maybe $\operatorname{LR}^{3}\left(\Pi_{n}\right) \equiv \tilde{\Pi}_{2 n}$? description length of element in $\operatorname{LR}^{3}\left(\Pi_{n}\right)$ is $2^{n} \cdot 3 n$, where that of element in $\tilde{\Pi}_{2 n}$ is $\log \left(2^{2 n!}\right)>\log \left(\left(\frac{2^{2 n}}{e}\right)^{2^{n n}}\right)>2^{2 n} \cdot n$

Claim 13

For any q-query D ,

$$
\mid \operatorname{Pr}\left[D^{\operatorname{LR}^{3}\left(\Pi_{n}\right)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[D^{\widetilde{\Pi}_{2 n}}\left(1^{n}\right) \mid=1\right] \in O\left(q^{2} / 2^{n}\right) .
$$

- We assume for simplicity that D is deterministic, non-repeating and non-adaptive.
- Let x_{1}, \ldots, x_{q} be D's queries.
- We show $\left(f\left(x_{1}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow L R^{3}\left(\Pi_{n}\right)}$ is $O\left(q^{2} / 2^{n}\right)$ close (i.e., in statistical distance) to $\left(f\left(x_{1}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow \tilde{\Pi}}$

Proving Luby-Rackoff

It suffices to prove that $L R_{\Pi_{n}}^{3}$ is pseudorandom (?)

- How would you prove that?
- Maybe $\operatorname{LR}^{3}\left(\Pi_{n}\right) \equiv \tilde{\Pi}_{2 n}$? description length of element in $\operatorname{LR}^{3}\left(\Pi_{n}\right)$ is $2^{n} \cdot 3 n$, where that of element in $\tilde{\Pi}_{2 n}$ is $\log \left(2^{2 n!}\right)>\log \left(\left(\frac{2^{2 n}}{e}\right)^{2^{2 n}}\right)>2^{2 n} \cdot n$

Claim 13

For any q-query D ,

$$
\mid \operatorname{Pr}\left[D^{\mathrm{LR}^{3}\left(\Pi_{n}\right)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[\mathrm{D}^{\widetilde{\Pi}_{2 n}}\left(1^{n}\right) \mid=1\right] \in O\left(q^{2} / 2^{n}\right) .
$$

- We assume for simplicity that D is deterministic, non-repeating and non-adaptive.
- Let x_{1}, \ldots, x_{q} be D's queries.
- We show $\left(f\left(x_{1}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow L R^{3}\left(\Pi_{n}\right)}$ is $O\left(q^{2} / 2^{n}\right)$ close (i.e., in statistical distance) to $\left(f\left(x_{1}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow \tilde{\Pi}}$
- To do that, we show both distributions are $O\left(q^{2} / 2^{n}\right)$ close to Distinct $:=\left(\left(z_{1}, \ldots z_{q}\right) \leftarrow\left(\{0,1\}^{2 n}\right)^{q} \mid \forall i \neq j:\left(z_{i}\right)_{0} \neq\left(z_{j}\right)_{0}\right)$.

Reminder: Statistical Distance

Definition 14

The statistical distance between distributions P and Q over \mathcal{U}, is defined by

$$
\mathrm{SD}(P, Q)=\frac{1}{2} \cdot \sum_{u \in \mathcal{U}}|P(u)-Q(u)|=\max _{\mathcal{S} \subseteq \mathcal{U}}\{\operatorname{Pr}[\mathcal{S}]-\operatorname{Pr}[\mathcal{S}]\}
$$

Reminder: Statistical Distance

Definition 14

The statistical distance between distributions P and Q over \mathcal{U}, is defined by

$$
\mathrm{SD}(P, Q)=\frac{1}{2} \cdot \sum_{u \in \mathcal{U}}|P(u)-Q(u)|=\max _{\mathcal{S} \subseteq \mathcal{U}}\{\operatorname{Pr}[\mathcal{S}]-\operatorname{Pr}[\mathcal{S}]\}
$$

In case $\operatorname{SD}(P, Q) \leq \varepsilon$, we say that P and Q are ε close.

Reminder: Statistical Distance

Definition 14

The statistical distance between distributions P and Q over \mathcal{U}, is defined by

$$
\mathrm{SD}(P, Q)=\frac{1}{2} \cdot \sum_{u \in \mathcal{U}}|P(u)-Q(u)|=\max _{\mathcal{S} \subseteq \mathcal{U}}\left\{\operatorname{Pr}[\mathcal{S}]-\operatorname{Pr}_{P}[\mathcal{S}]\right\}
$$

In case $\operatorname{SD}(P, Q) \leq \varepsilon$, we say that P and Q are ε close.

Fact 15

Let \mathcal{E} be an event (i.e., set) and assume $\operatorname{SD}\left(\left.P\right|_{\neg \mathcal{E}}, Q\right) \leq \delta_{1}$ and $\operatorname{Pr} \operatorname{Pr}_{P}[\mathcal{E}] \leq \delta_{2}$. Then $\operatorname{SD}(P, Q) \leq \delta_{1}+\delta_{2}$

Proving Fact 15

Proving Fact 15

For any set \mathcal{S}, it holds that

$$
\begin{aligned}
\operatorname{Pr}_{P}[\mathcal{S}] & =\operatorname{Pr}_{P}[\mathcal{E}] \cdot \operatorname{Pr}_{P \mid \mathcal{E}}[\mathcal{S}]+\operatorname{Pr}_{P}[\neg \mathcal{E}] \cdot \operatorname{Pr}_{P \mid \neg \mathcal{E}}[\mathcal{S}] \\
& \geq\left(1-\delta_{2}\right) \cdot \operatorname{Pr}_{P \mid \neg \mathcal{E}}[\mathcal{S}]
\end{aligned}
$$

Proving Fact 15

For any set \mathcal{S}, it holds that

$$
\begin{aligned}
\operatorname{Pr}_{P}[\mathcal{S}] & =\operatorname{Pr} \underset{P}{ }[\mathcal{E}] \cdot \operatorname{Pr}_{P \mid \mathcal{E}}[\mathcal{S}]+\operatorname{Pr}_{P}[\neg \mathcal{E}] \cdot \operatorname{Pr}_{\left.P\right|_{\neg \mathcal{E}}}[\mathcal{S}] \\
& \geq\left(1-\delta_{2}\right) \cdot \operatorname{Pr}_{P \mid-\mathcal{E}}[\mathcal{S}]
\end{aligned}
$$

Hence,

$$
\begin{align*}
\operatorname{Pr}_{Q}[\mathcal{S}]-\operatorname{Pr} & \operatorname{Pr}_{P}[\mathcal{S}] \tag{4}
\end{align*} \leq \operatorname{Pr}_{Q}[\mathcal{S}]-\left(1-\delta_{2}\right) \operatorname{Pr}_{\left.P\right|_{-\varepsilon}}[\mathcal{S}]
$$

Proving Fact 15

For any set \mathcal{S}, it holds that

$$
\begin{align*}
\operatorname{Pr}_{P}[\mathcal{S}] & =\operatorname{Pr}[\mathcal{E}] \cdot \operatorname{Pr}_{P \mid \mathcal{E}}[\mathcal{S}]+\operatorname{Pr}_{P}[\neg \mathcal{E}] \cdot \operatorname{Pr}_{\left.P\right|_{\neg \mathcal{E}}}[\mathcal{S}] \tag{3}\\
& \geq\left(1-\delta_{2}\right) \cdot \operatorname{Pr}_{P \mid-\mathcal{E}}[\mathcal{S}]
\end{align*}
$$

Hence,

$$
\begin{align*}
\operatorname{Pr}_{Q}[\mathcal{S}]-\operatorname{Pr}_{P}[\mathcal{S}] & \leq \operatorname{Pr}_{Q}[\mathcal{S}]-\left(1-\delta_{2}\right) \operatorname{Pr}_{\left.P\right|_{-\mathcal{E}}}[\mathcal{S}] \tag{4}\\
& \leq \operatorname{Pr}_{Q}[\mathcal{S}]-\operatorname{Pr}_{\left.P\right|_{-\mathcal{E}}}[\mathcal{S}]+\delta_{2}
\end{align*}
$$

Thus,

$$
\mathrm{SD}(P, Q)=\max _{\mathcal{S}}\left\{\operatorname{Pr}_{Q}[\mathcal{S}]-\operatorname{Pr}_{P}[\mathcal{S}]\right\} \leq \max _{\mathcal{S}}\left\{\operatorname{Pr}[\mathcal{S}]-\operatorname{Pr}_{P \mid-\mathcal{E}}[\mathcal{S}]\right\}+\delta_{2}=\delta_{1}+\delta_{2} .
$$

$\left(f\left(x_{0}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow \tilde{\Pi}}$ is close to Distinct

$\left(f\left(x_{0}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow \tilde{\Pi}}$ is close to Distinct

$$
\text { Recall Distinct }:=\left(\left(z_{1}, \ldots z_{q}\right) \leftarrow\left(\{0,1\}^{2 n}\right)^{q} \mid \forall i \neq j:\left(z_{i}\right)_{0} \neq\left(z_{j}\right)_{0}\right) .
$$

$\left(f\left(x_{0}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow \tilde{\Pi}}$ is close to Distinct

$$
\text { Recall Distinct }:=\left(\left(z_{1}, \ldots z_{q}\right) \leftarrow\left(\{0,1\}^{2 n}\right)^{q} \mid \forall i \neq j:\left(z_{i}\right)_{0} \neq\left(z_{j}\right)_{0}\right) .
$$

For $f \in \widetilde{\Pi}$, let $\operatorname{Bad}(f):=\exists i \neq j: f\left(x_{i}\right)_{0}=f\left(x_{j}\right)_{0}$.
$\left(f\left(x_{0}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow \tilde{\Pi}}$ is close to Distinct
Recall Distinct $:=\left(\left(z_{1}, \ldots z_{q}\right) \leftarrow\left(\{0,1\}^{2 n}\right)^{q} \mid \forall i \neq j:\left(z_{i}\right)_{0} \neq\left(z_{j}\right)_{0}\right)$.
For $f \in \widetilde{\Pi}$, let $\operatorname{Bad}(f):=\exists i \neq j: f\left(x_{i}\right)_{0}=f\left(x_{j}\right)_{0}$.

Claim 16

$\operatorname{Pr}_{f \leftarrow \tilde{n}}[\operatorname{Bad}(f)] \leq \frac{\binom{q}{2}}{2^{n}} \leq \frac{q^{2}}{2^{n}}$
$\left(f\left(x_{0}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow \tilde{\Pi}}$ is close to Distinct
Recall Distinct $:=\left(\left(z_{1}, \ldots z_{q}\right) \leftarrow\left(\{0,1\}^{2 n}\right)^{q} \mid \forall i \neq j:\left(z_{i}\right)_{0} \neq\left(z_{j}\right)_{0}\right)$.
For $f \in \widetilde{\Pi}$, let $\operatorname{Bad}(f):=\exists i \neq j: f\left(x_{i}\right)_{0}=f\left(x_{j}\right)_{0}$.

Claim 16

$\operatorname{Pr}_{f \leftarrow \tilde{\Pi}}[\operatorname{Bad}(f)] \leq \frac{\binom{q}{2}}{2^{n}} \leq \frac{q^{2}}{2^{n}}$
Proof: ?
$\left(f\left(x_{0}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow \tilde{\Pi}}$ is close to Distinct
Recall Distinct $:=\left(\left(z_{1}, \ldots z_{q}\right) \leftarrow\left(\{0,1\}^{2 n}\right)^{q} \mid \forall i \neq j:\left(z_{i}\right)_{0} \neq\left(z_{j}\right)_{0}\right)$.
For $f \in \tilde{\Pi}$, let $\operatorname{Bad}(f):=\exists i \neq j: f\left(x_{i}\right)_{0}=f\left(x_{j}\right)_{0}$.

Claim 16

$\operatorname{Pr}_{f \leftarrow \tilde{\Pi}}[\operatorname{Bad}(f)] \leq \frac{\binom{q}{2}}{2^{n}} \leq \frac{q^{2}}{2^{n}}$
Proof: ?
Claim 17
$\left(\left(f\left(x_{0}\right), \ldots, f\left(x_{q}\right)\right) ; f \leftarrow \tilde{\Pi} \mid \neg \operatorname{Bad}(f)\right) \equiv$ Distinct
$\left(f\left(x_{0}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow \tilde{\Pi}}$ is close to Distinct
Recall Distinct $:=\left(\left(z_{1}, \ldots z_{q}\right) \leftarrow\left(\{0,1\}^{2 n}\right)^{q} \mid \forall i \neq j:\left(z_{i}\right)_{0} \neq\left(z_{j}\right)_{0}\right)$.
For $f \in \tilde{\Pi}$, let $\operatorname{Bad}(f):=\exists i \neq j: f\left(x_{i}\right)_{0}=f\left(x_{j}\right)_{0}$.

Claim 16

$\operatorname{Pr}_{f \leftarrow \tilde{\Pi}}[\operatorname{Bad}(f)] \leq \frac{\binom{q}{2}}{2^{n}} \leq \frac{q^{2}}{2^{n}}$
Proof: ?
Claim 17
$\left(\left(f\left(x_{0}\right), \ldots, f\left(x_{q}\right)\right) ; f \leftarrow \widetilde{\Pi} \mid \neg \operatorname{Bad}(f)\right) \equiv$ Distinct
Proof: ?
$\left(f\left(x_{0}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow \tilde{\Pi}}$ is close to Distinct
Recall Distinct $:=\left(\left(z_{1}, \ldots z_{q}\right) \leftarrow\left(\{0,1\}^{2 n}\right)^{q} \mid \forall i \neq j:\left(z_{i}\right)_{0} \neq\left(z_{j}\right)_{0}\right)$.
For $f \in \tilde{\Pi}$, let $\operatorname{Bad}(f):=\exists i \neq j: f\left(x_{i}\right)_{0}=f\left(x_{j}\right)_{0}$.

Claim 16

$\operatorname{Pr}_{f \leftarrow \tilde{\Pi}}[\operatorname{Bad}(f)] \leq \frac{\binom{q}{2}}{2^{n}} \leq \frac{q^{2}}{2^{n}}$
Proof: ?
Claim 17
$\left(\left(f\left(x_{0}\right), \ldots, f\left(x_{q}\right)\right) ; f \leftarrow \widetilde{\Pi} \mid \neg \operatorname{Bad}(f)\right) \equiv$ Distinct
Proof: ?
By Fact 15, $\left(f\left(x_{0}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow \tilde{\Pi}}$ is $\frac{q^{2}}{2^{n}}$ close to Distinct

$\left(f\left(x_{0}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow \mathrm{LR}^{3}\left(\Pi_{n}\right)}$ is close to Distinct

$\left(f\left(x_{0}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow \mathrm{LR}{ }^{3}\left(\Pi_{n}\right)}$ is close to Distinct
Let $\left(\ell_{1}^{0}, r_{1}^{0}\right), \ldots,\left(\ell_{q}^{0}, r_{q}^{0}\right)=\left(x_{1}, \ldots, x_{k}\right)$.
$\left(f\left(x_{0}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow \mathrm{LR}{ }^{3}\left(\Pi_{n}\right)}$ is close to Distinct
Let $\left(\ell_{1}^{0}, r_{1}^{0}\right), \ldots,\left(\ell_{q}^{0}, r_{q}^{0}\right)=\left(x_{1}, \ldots, x_{k}\right)$.
The following rv's are defined w.r.t. $\left(f^{1}, f^{2}, f^{3}\right) \leftarrow \Pi_{n}^{3}$.

ℓ_{1}^{0}	r_{1}^{0}	ℓ_{2}^{0}	r_{2}^{0}	\cdots	ℓ_{q}^{0}	r_{q}^{0}
ℓ_{1}^{1}	r_{1}^{1}	ℓ_{2}^{1}	r_{2}^{1}	\cdots	ℓ_{q}^{1}	r_{q}^{1}
ℓ_{1}^{2}	r_{1}^{2}	ℓ_{2}^{2}	r_{2}^{0}	\cdots	ℓ_{q}^{2}	r_{q}^{2}
ℓ_{1}^{3}	r_{1}^{3}	ℓ_{2}^{3}	r_{2}^{0}	\cdots	ℓ_{q}^{3}	r_{q}^{3}

where $\ell_{b}^{j}=r_{b}^{j-1}$ and $r_{b}^{j}=f^{j}\left(r_{b}^{j-1}\right) \oplus \ell_{b}^{j-1}$.
$\left(f\left(x_{0}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow \mathrm{LR}{ }^{3}\left(\Pi_{n}\right)}$ is close to Distinct

$$
\text { Let }\left(\ell_{1}^{0}, r_{1}^{0}\right), \ldots,\left(\ell_{q}^{0}, r_{q}^{0}\right)=\left(x_{1}, \ldots, x_{k}\right) .
$$

The following rv's are defined w.r.t. $\left(f^{1}, f^{2}, f^{3}\right) \leftarrow \Pi_{n}^{3}$.

ℓ_{1}^{0}	r_{1}^{0}	ℓ_{2}^{0}	r_{2}^{0}	\cdots	ℓ_{q}^{0}	r_{q}^{0}
ℓ_{1}^{1}	r_{1}^{1}	ℓ_{2}^{1}	r_{2}^{1}	\cdots	ℓ_{q}^{1}	r_{q}^{1}
ℓ_{1}^{2}	r_{1}^{2}	ℓ_{2}^{2}	r_{2}^{0}	\cdots	ℓ_{q}^{2}	r_{q}^{2}
ℓ_{1}^{3}	r_{1}^{3}	ℓ_{2}^{3}	r_{2}^{0}	\cdots	ℓ_{q}^{3}	r_{q}^{3}

where $\ell_{b}^{j}=r_{b}^{j-1}$ and $r_{b}^{j}=f^{j}\left(r_{b}^{j-1}\right) \oplus \ell_{b}^{j-1}$.

Claim 18

$$
\operatorname{Pr}_{f^{\prime} \leftarrow \Pi_{n}}\left[\operatorname{Bad}^{1}:=\exists i \neq j: r_{i}^{1}=r_{j}^{1}\right] \leq \frac{\binom{q}{2}}{2^{n}}
$$

$\left(f\left(x_{0}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow \mathrm{LR}{ }^{3}\left(\Pi_{n}\right)}$ is close to Distinct

$$
\text { Let }\left(\ell_{1}^{0}, r_{1}^{0}\right), \ldots,\left(\ell_{q}^{0}, r_{q}^{0}\right)=\left(x_{1}, \ldots, x_{k}\right) .
$$

The following rv's are defined w.r.t. $\left(f^{1}, f^{2}, f^{3}\right) \leftarrow \Pi_{n}^{3}$.

ℓ_{1}^{0}	r_{1}^{0}	ℓ_{2}^{0}	r_{2}^{0}	\cdots	ℓ_{q}^{0}	r_{q}^{0}
ℓ_{1}^{1}	r_{1}^{1}	ℓ_{2}^{1}	r_{2}^{1}	\cdots	ℓ_{q}^{1}	r_{q}^{1}
ℓ_{1}^{2}	r_{1}^{2}	ℓ_{2}^{2}	r_{2}^{0}	\cdots	ℓ_{q}^{2}	r_{q}^{2}
ℓ_{1}^{3}	r_{1}^{3}	ℓ_{2}^{3}	r_{2}^{0}	\cdots	ℓ_{q}^{3}	r_{q}^{3}

$$
\text { where } \ell_{b}^{j}=r_{b}^{j-1} \text { and } r_{b}^{j}=f^{j}\left(r_{b}^{j-1}\right) \oplus \ell_{b}^{j-1}
$$

Proof:

Claim 18

$$
\operatorname{Pr}_{f^{\prime} \leftarrow \Pi_{n}}\left[\operatorname{Bad}^{1}:=\exists i \neq j: r_{i}^{1}=r_{j}^{1}\right] \leq \frac{\binom{q}{2}}{2^{n}}
$$

$\left(f\left(x_{0}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow L \mathrm{R}^{3}\left(\Pi_{n}\right)}$ is close to Distinct

$$
\text { Let }\left(\ell_{1}^{0}, r_{1}^{0}\right), \ldots,\left(\ell_{q}^{0}, r_{q}^{0}\right)=\left(x_{1}, \ldots, x_{k}\right)
$$

The following rv's are defined w.r.t. $\left(f^{1}, f^{2}, f^{3}\right) \leftarrow \Pi_{n}^{3}$.

ℓ_{1}^{0}	r_{1}^{0}	ℓ_{2}^{0}	r_{2}^{0}	\cdots	ℓ_{q}^{0}	r_{q}^{0}
ℓ_{1}^{1}	r_{1}^{1}	ℓ_{2}^{1}	r_{2}^{1}	\cdots	ℓ_{q}^{1}	r_{q}^{1}
ℓ_{1}^{2}	r_{1}^{2}	ℓ_{2}^{2}	r_{2}^{0}	\cdots	ℓ_{q}^{2}	r_{q}^{2}
ℓ_{1}^{3}	r_{1}^{3}	ℓ_{2}^{3}	r_{2}^{0}	\cdots	ℓ_{q}^{3}	r_{q}^{3}

where $\ell_{b}^{j}=r_{b}^{j-1}$ and $r_{b}^{j}=f^{j}\left(r_{b}^{j-1}\right) \oplus \ell_{b}^{j-1}$.
Proof: $r_{i}^{0}=r_{j}^{0} \Longrightarrow r_{i}^{1} \neq r_{j}^{\text {T }}$

Claim 18

$$
\operatorname{Pr}_{f^{1} \leftarrow \Pi_{n}}\left[\operatorname{Bad}^{1}:=\exists i \neq j: r_{i}^{1}=r_{j}^{1}\right] \leq \frac{\binom{q}{2}}{2^{n}}
$$

$\left(f\left(x_{0}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow L \mathrm{R}^{3}\left(\Pi_{n}\right)}$ is close to Distinct

$$
\text { Let }\left(\ell_{1}^{0}, r_{1}^{0}\right), \ldots,\left(\ell_{q}^{0}, r_{q}^{0}\right)=\left(x_{1}, \ldots, x_{k}\right)
$$

The following rv's are defined w.r.t. $\left(f^{1}, f^{2}, f^{3}\right) \leftarrow \Pi_{n}^{3}$.

ℓ_{1}^{0}	r_{1}^{0}	ℓ_{2}^{0}	r_{2}^{0}	\cdots	ℓ_{q}^{0}	r_{q}^{0}
ℓ_{1}^{1}	r_{1}^{1}	ℓ_{2}^{1}	r_{2}^{1}	\ldots	ℓ_{q}^{1}	r_{q}^{1}
ℓ_{1}^{2}	r_{1}^{2}	ℓ_{2}^{2}	r_{2}^{0}	\ldots	ℓ_{q}^{2}	r_{q}^{2}
ℓ_{1}^{3}	r_{1}^{3}	ℓ_{2}^{3}	r_{2}^{0}	\ldots	ℓ_{q}^{3}	r_{q}^{3}

where $\ell_{b}^{j}=r_{b}^{j-1}$ and $r_{b}^{j}=f^{j}\left(r_{b}^{j-1}\right) \oplus \ell_{b}^{j-1}$.

Claim 18

$\operatorname{Pr}_{f^{1} \leftarrow \Pi_{n}}\left[\operatorname{Bad}^{1}:=\exists i \neq j: r_{i}^{1}=r_{j}^{1}\right] \leq \frac{\binom{q}{2}}{2^{n}}$

Proof: $r_{i}^{0}=r_{j}^{0} \Longrightarrow r_{i}^{1} \neq r_{j}^{\text {1 }}$ and
$r_{i}^{0} \neq r_{j}^{0} \Longrightarrow \operatorname{Pr}_{f 1}\left[r_{i}^{1}=r_{j}^{1}\right]=2^{-n} \square$
$\left(f\left(x_{0}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow L \mathrm{R}^{3}\left(\Pi_{n}\right)}$ is close to Distinct
Let $\left(\ell_{1}^{0}, r_{1}^{0}\right), \ldots,\left(\ell_{q}^{0}, r_{q}^{0}\right)=\left(x_{1}, \ldots, x_{k}\right)$.
The following rv's are defined w.r.t. $\left(f^{1}, f^{2}, f^{3}\right) \leftarrow \Pi_{n}^{3}$.

ℓ_{1}^{0}	r_{1}^{0}	ℓ_{2}^{0}	r_{2}^{0}	\cdots	ℓ_{q}^{0}	r_{q}^{0}
ℓ_{1}^{1}	r_{1}^{1}	ℓ_{2}^{1}	r_{2}^{1}	\cdots	ℓ_{q}^{1}	r_{q}^{1}
ℓ_{1}^{2}	r_{1}^{2}	ℓ_{2}^{2}	r_{2}^{0}	\cdots	ℓ_{q}^{2}	r_{q}^{2}
ℓ_{1}^{3}	r_{1}^{3}	ℓ_{2}^{3}	r_{2}^{0}	\cdots	ℓ_{q}^{3}	r_{q}^{3}

Claim 18

Proof: $r_{i}^{0}=r_{j}^{0} \Longrightarrow r_{i}^{1} \neq r_{j}^{\text {1 }}$ and
where $\ell_{b}^{j}=r_{b}^{j-1}$ and $r_{b}^{j}=f^{j}\left(r_{b}^{j-1}\right) \oplus \ell_{b}^{j-1}$.
$r_{i}^{0} \neq r_{j}^{0} \Longrightarrow \operatorname{Pr}_{f^{1}}\left[r_{i}^{1}=r_{j}^{1}\right]=2^{-n} \square$
$\operatorname{Pr}_{f^{1} \leftarrow \square_{n}}\left[\operatorname{Bad}^{1}:=\exists i \neq j: r_{i}^{1}=r_{j}^{1}\right] \leq \frac{\binom{q}{2}}{2^{n}}$

Claim 19

$\operatorname{Pr}_{\left(f^{1}, f^{2}\right) \leftarrow \Pi_{n}^{2}}\left[\operatorname{Bad}^{2}:=\exists i \neq j: r_{i}^{1}=r_{j}^{1} \vee r_{i}^{2}=r_{j}^{2}\right] \leq 2 \cdot \frac{\binom{q}{2}}{2^{n}} \in O\left(\frac{q^{2}}{2^{n}}\right)$
$\left(f\left(x_{0}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow L \mathrm{R}^{3}\left(\Pi_{n}\right)}$ is close to Distinct
Let $\left(\ell_{1}^{0}, r_{1}^{0}\right), \ldots,\left(\ell_{q}^{0}, r_{q}^{0}\right)=\left(x_{1}, \ldots, x_{k}\right)$.
The following rv's are defined w.r.t. $\left(f^{1}, f^{2}, f^{3}\right) \leftarrow \Pi_{n}^{3}$.

ℓ_{1}^{0}	r_{1}^{0}	ℓ_{2}^{0}	r_{2}^{0}	\cdots	ℓ_{q}^{0}	r_{q}^{0}
ℓ_{1}^{1}	r_{1}^{1}	ℓ_{2}^{1}	r_{2}^{1}	\cdots	ℓ_{q}^{1}	r_{q}^{1}
ℓ_{1}^{2}	r_{1}^{2}	ℓ_{2}^{2}	r_{2}^{0}	\cdots	ℓ_{q}^{2}	r_{q}^{2}
ℓ_{1}^{3}	r_{1}^{3}	ℓ_{2}^{3}	r_{2}^{0}	\cdots	ℓ_{q}^{3}	r_{q}^{3}

Claim 18

Proof: $r_{i}^{0}=r_{j}^{0} \Longrightarrow r_{i}^{1} \neq r_{j}^{\text {1 }}$ and
where $\ell_{b}^{j}=r_{b}^{j-1}$ and $r_{b}^{j}=f^{j}\left(r_{b}^{j-1}\right) \oplus \ell_{b}^{j-1}$.
$r_{i}^{0} \neq r_{j}^{0} \Longrightarrow \operatorname{Pr}_{f 1}\left[r_{i}^{1}=r_{j}^{1}\right]=2^{-n} \square$
$\operatorname{Pr}_{f^{1} \leftarrow \Pi_{n}}\left[\operatorname{Bad}^{1}:=\exists i \neq j: r_{i}^{1}=r_{j}^{1}\right] \leq \frac{\binom{q}{2}}{2^{n}}$

Proof:

Claim 19

$\operatorname{Pr}_{\left(f^{1}, f^{2}\right) \leftarrow \Pi_{n}^{2}}\left[\operatorname{Bad}^{2}:=\exists i \neq j: r_{i}^{1}=r_{j}^{1} \vee r_{i}^{2}=r_{j}^{2}\right] \leq 2 \cdot \frac{\binom{q}{2}}{2^{n}} \in O\left(\frac{q^{2}}{2^{n}}\right)$
$\left(f\left(x_{0}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow L \mathrm{R}^{3}\left(\Pi_{n}\right)}$ is close to Distinct
Let $\left(\ell_{1}^{0}, r_{1}^{0}\right), \ldots,\left(\ell_{q}^{0}, r_{q}^{0}\right)=\left(x_{1}, \ldots, x_{k}\right)$.
The following rv's are defined w.r.t. $\left(f^{1}, f^{2}, f^{3}\right) \leftarrow \Pi_{n}^{3}$.

ℓ_{1}^{0}	r_{1}^{0}	ℓ_{2}^{0}	r_{2}^{0}	\cdots	ℓ_{q}^{0}	r_{q}^{0}
ℓ_{1}^{1}	r_{1}^{1}	ℓ_{2}^{1}	r_{2}^{1}	\cdots	ℓ_{q}^{1}	r_{q}^{1}
ℓ_{1}^{2}	r_{1}^{2}	ℓ_{2}^{2}	r_{2}^{0}	\cdots	ℓ_{q}^{2}	r_{q}^{2}
ℓ_{1}^{3}	r_{1}^{3}	ℓ_{2}^{3}	r_{2}^{0}	\cdots	ℓ_{q}^{3}	r_{q}^{3}

Claim 18

Proof: $r_{i}^{0}=r_{j}^{0} \Longrightarrow r_{i}^{1} \neq r_{j}^{\text {1 }}$ and

$$
\text { where } \ell_{b}^{j}=r_{b}^{j-1} \text { and } r_{b}^{j}=f^{j}\left(r_{b}^{j-1}\right) \oplus \ell_{b}^{j-1}
$$

$r_{i}^{0} \neq r_{j}^{0} \Longrightarrow \operatorname{Pr}_{f^{1}}\left[r_{i}^{1}=r_{j}^{1}\right]=2^{-n} \square$
$\operatorname{Pr}_{f^{1} \leftarrow \Pi_{n}}\left[\operatorname{Bad}^{1}:=\exists i \neq j: r_{i}^{1}=r_{j}^{1}\right] \leq \frac{\binom{q}{2}}{2^{n}}$
Claim 19
Proof: similar to the above
$\operatorname{Pr}_{\left(f^{1}, f^{2}\right) \leftarrow \Pi_{n}^{2}}\left[\operatorname{Bad}^{2}:=\exists i \neq j: r_{i}^{1}=r_{j}^{1} \vee r_{i}^{2}=r_{j}^{2}\right] \leq 2 \cdot \frac{\binom{q}{2}}{2^{n}} \in O\left(\frac{q^{2}}{2^{n}}\right)$
$\left(f\left(x_{0}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow L \mathrm{R}^{3}\left(\Pi_{n}\right)}$ is close to Distinct
Let $\left(\ell_{1}^{0}, r_{1}^{0}\right), \ldots,\left(\ell_{q}^{0}, r_{q}^{0}\right)=\left(x_{1}, \ldots, x_{k}\right)$.
The following rv's are defined w.r.t. $\left(f^{1}, f^{2}, f^{3}\right) \leftarrow \Pi_{n}^{3}$.

ℓ_{1}^{0}	r_{1}^{0}	ℓ_{2}^{0}	r_{2}^{0}	\cdots	ℓ_{q}^{0}	r_{q}^{0}
ℓ_{1}^{1}	r_{1}^{1}	ℓ_{2}^{1}	r_{2}^{1}	\cdots	ℓ_{q}^{1}	r_{q}^{1}
ℓ_{1}^{2}	r_{1}^{2}	ℓ_{2}^{2}	r_{2}^{0}	\cdots	ℓ_{q}^{2}	r_{q}^{2}
ℓ_{1}^{3}	r_{1}^{3}	ℓ_{2}^{3}	r_{2}^{0}	\cdots	ℓ_{q}^{3}	r_{q}^{3}

Claim 18

Proof: $r_{i}^{0}=r_{j}^{0} \Longrightarrow r_{i}^{1} \neq r_{j}^{\text {1 }}$ and

$$
\text { where } \ell_{b}^{j}=r_{b}^{j-1} \text { and } r_{b}^{j}=f^{j}\left(r_{b}^{j-1}\right) \oplus \ell_{b}^{j-1}
$$

$$
r_{i}^{0} \neq r_{j}^{0} \Longrightarrow \operatorname{Pr}_{f^{1}}\left[r_{i}^{1}=r_{j}^{1}\right]=2^{-n} \square
$$

$\operatorname{Pr}_{f^{1} \leftarrow \square_{n}}\left[\operatorname{Bad}^{1}:=\exists i \neq j: r_{i}^{1}=r_{j}^{1}\right] \leq \frac{\binom{q}{2}}{2^{n}}$

Claim 19

$\operatorname{Pr}_{\left(f^{1}, f^{2}\right) \leftarrow \Pi_{n}^{2}}\left[\operatorname{Bad}^{2}:=\exists i \neq j: r_{i}^{1}=r_{j}^{1} \vee r_{i}^{2}=r_{j}^{2}\right] \leq 2 \cdot \frac{\binom{q}{2}}{2^{n}} \in O\left(\frac{q^{2}}{2^{n}}\right)$

Claim 20

$$
\left.\left(\ell_{1}^{3}, r_{1}^{3}\right), \ldots,\left(\ell_{q}^{3}, r_{q}^{3}\right) \mid \neg \mathrm{Bad}^{2}\right) \equiv \text { Distinct }
$$

$\left(f\left(x_{0}\right), \ldots, f\left(x_{q}\right)\right)_{f \leftarrow L \mathrm{R}^{3}\left(\Pi_{n}\right)}$ is close to Distinct
Let $\left(\ell_{1}^{0}, r_{1}^{0}\right), \ldots,\left(\ell_{q}^{0}, r_{q}^{0}\right)=\left(x_{1}, \ldots, x_{k}\right)$.
The following rv's are defined w.r.t. $\left(f^{1}, f^{2}, f^{3}\right) \leftarrow \Pi_{n}^{3}$.

ℓ_{1}^{0}	r_{1}^{0}	ℓ_{2}^{0}	r_{2}^{0}	\cdots	ℓ_{q}^{0}	r_{q}^{0}
ℓ_{1}^{1}	r_{1}^{1}	ℓ_{2}^{1}	r_{2}^{1}	\cdots	ℓ_{q}^{1}	r_{q}^{1}
ℓ_{1}^{2}	r_{1}^{2}	ℓ_{2}^{2}	r_{2}^{0}	\cdots	ℓ_{q}^{2}	r_{q}^{2}
ℓ_{1}^{3}	r_{1}^{3}	ℓ_{2}^{3}	r_{2}^{0}	\cdots	ℓ_{q}^{3}	r_{q}^{3}

Claim 18

Proof: $r_{i}^{0}=r_{j}^{0} \Longrightarrow r_{i}^{1} \neq r_{j}^{\text {1 }}$ and
where $\ell_{b}^{j}=r_{b}^{j-1}$ and $r_{b}^{j}=f^{j}\left(r_{b}^{j-1}\right) \oplus \ell_{b}^{j-1}$.
$r_{i}^{0} \neq r_{j}^{0} \Longrightarrow \operatorname{Pr}_{f}\left[r_{i}^{1}=r_{j}^{1}\right]=2^{-n} \square$
$\operatorname{Pr}_{f^{1} \leftarrow \Pi_{n}}\left[\operatorname{Bad}^{1}:=\exists i \neq j: r_{i}^{1}=r_{j}^{1}\right] \leq \frac{\binom{q}{2}}{2^{n}}$

Claim 19

Proof: similar to the above
$\operatorname{Pr}_{\left(f^{1}, f^{2}\right) \leftarrow \Pi_{n}^{2}}\left[\operatorname{Bad}^{2}:=\exists i \neq j: r_{i}^{1}=r_{j}^{1} \vee r_{i}^{2}=r_{j}^{2}\right] \leq 2 \cdot \frac{\binom{q}{2}}{2^{n}} \in \underset{\text { Proof: ? }}{O\left(\frac{q^{2}}{2^{n}}\right)}$

Claim 20

$\left.\left(\ell_{1}^{3}, r_{1}^{3}\right), \ldots,\left(\ell_{q}^{3}, r_{q}^{3}\right) \mid \neg \mathrm{Bad}^{2}\right) \equiv$ Distinct

Proving Claim 20

Proving Claim 20

$$
\text { Let } \mathcal{S}=\left\{\left(z_{1}, \ldots, z_{q}\right) \in\left(\{0,1\}^{n}\right)^{q}: \forall i \neq j: z_{i} \neq z_{j}\right\} .
$$

Proving Claim 20

Let $\mathcal{S}=\left\{\left(z_{1}, \ldots, z_{q}\right) \in\left(\{0,1\}^{n}\right)^{q}: \forall i \neq j: z_{i} \neq z_{j}\right\}$.

Claim 21

$\left(\left(\ell_{1}^{3}, \ldots, \ell_{q}^{3}\right) \mid \neg \mathrm{Bad}^{2}\right)$ is uniform over \mathcal{S}.

Proving Claim 20

Let $\mathcal{S}=\left\{\left(z_{1}, \ldots, z_{q}\right) \in\left(\{0,1\}^{n}\right)^{q}: \forall i \neq j: z_{i} \neq z_{j}\right\}$.

Claim 21

$\left(\left(\ell_{1}^{3}, \ldots, \ell_{q}^{3}\right) \mid \neg \mathrm{Bad}^{2}\right)$ is uniform over \mathcal{S}.
Proof:

Proving Claim 20

Let $\mathcal{S}=\left\{\left(z_{1}, \ldots, z_{q}\right) \in\left(\{0,1\}^{n}\right)^{q}: \forall i \neq j: z_{i} \neq z_{j}\right\}$.

Claim 21

$\left(\left(\ell_{1}^{3}, \ldots, \ell_{q}^{3}\right) \mid \neg \mathrm{Bad}^{2}\right)$ is uniform over \mathcal{S}.
Proof: For any $\mathbf{z}=\left(z_{1}, \ldots, z_{q}\right) \in\left(\{0,1\}^{n}\right)^{q}$ and $\pi \in \Pi_{n}$:
$\operatorname{Pr}\left[\left(\ell_{1}^{3}, \ldots, \ell_{q}^{3}\right)=\mathbf{z}\right]=\operatorname{Pr}\left[\left(\ell_{1}^{3}, \ldots, \ell_{q}^{3}\right)=\pi(\mathbf{z}):=\left(\pi\left(z_{1}\right), \ldots, \pi\left(z_{q}\right)\right)\right] \square$

Section 3

Applications

General paradigm

Design a scheme assuming that you have random functions, and the realize them using PRFs.

Subsection 1

Private-key Encryption

Private-key Encryption

Construction 22 (PRF-based encryption)

Given an (efficient) PRF \mathcal{F}, define the encryption scheme (Gen, E, D)):
Key generation: Gen $\left(1^{n}\right)$ returns $k \leftarrow \mathcal{F}_{n}$
Encryption: $\mathrm{E}_{k}(m)$ returns $U_{n}, k\left(U_{n}\right) \oplus m$
Decryption: $D_{k}\left(c=\left(c_{1}, c_{n}\right)\right)$ returns $k\left(c_{1}\right) \oplus c_{2}$

Private-key Encryption

Construction 22 (PRF-based encryption)

Given an (efficient) PRF \mathcal{F}, define the encryption scheme (Gen, E, D)):
Key generation: Gen $\left(1^{n}\right)$ returns $k \leftarrow \mathcal{F}_{n}$
Encryption: $\mathrm{E}_{k}(m)$ returns $U_{n}, k\left(U_{n}\right) \oplus m$
Decryption: $D_{k}\left(c=\left(c_{1}, c_{n}\right)\right)$ returns $k\left(c_{1}\right) \oplus c_{2}$

- Advantages over the PRG based scheme?

Private-key Encryption

Construction 22 (PRF-based encryption)

Given an (efficient) PRF \mathcal{F}, define the encryption scheme (Gen, E, D)):
Key generation: Gen $\left(1^{n}\right)$ returns $k \leftarrow \mathcal{F}_{n}$
Encryption: $\mathrm{E}_{k}(m)$ returns $U_{n}, k\left(U_{n}\right) \oplus m$
Decryption: $D_{k}\left(c=\left(c_{1}, c_{n}\right)\right)$ returns $k\left(c_{1}\right) \oplus c_{2}$

- Advantages over the PRG based scheme?
- Proof of security?

Conclusion

- We constructed PRFs and PRPs from length-doubling PRG (and thus from one-way functions)

Conclusion

- We constructed PRFs and PRPs from length-doubling PRG (and thus from one-way functions)
- Main question: find a simpler, more efficient construction

Conclusion

- We constructed PRFs and PRPs from length-doubling PRG (and thus from one-way functions)
- Main question: find a simpler, more efficient construction or at least, a less adaptive one

