Foundation of Cryptography, Lecture 4 Pseudorandom Functions.

Benny Applebaum & Iftach Haitner, Tel Aviv University

Tel Aviv University.

December 1, 2016

Section 1

Informal Discussion

1. We've seen a small set of objects: $\{G(x)\}_{x \in \{0,1\}^n}$, that "looks like" a larger set of objects: $\{x\}_{x \in \{0,1\}^{2n}}$.

- 1. We've seen a small set of objects: $\{G(x)\}_{x \in \{0,1\}^n}$, that "looks like" a larger set of objects: $\{x\}_{x \in \{0,1\}^{2n}}$.
- 2. We want small set of objects: *efficient function families*, that looks like a huge set of objects: *the set of <u>all</u> functions*.

- 1. We've seen a small set of objects: $\{G(x)\}_{x \in \{0,1\}^n}$, that "looks like" a larger set of objects: $\{x\}_{x \in \{0,1\}^{2n}}$.
- 2. We want small set of objects: *efficient function families*, that looks like a huge set of objects: *the set of <u>all</u> functions*.

But

- 1. We've seen a small set of objects: $\{G(x)\}_{x \in \{0,1\}^n}$, that "looks like" a larger set of objects: $\{x\}_{x \in \{0,1\}^{2n}}$.
- 2. We want small set of objects: *efficient function families*, that looks like a huge set of objects: *the set of <u>all</u> functions*.

Solution

Subsection 1

Function Families

1. $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$, where $\mathcal{F}_n = \{f : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$

- **1.** $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$, where $\mathcal{F}_n = \{f : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$
- **2.** We write $\mathcal{F} = \{\mathcal{F}_n : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$

- **1.** $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$, where $\mathcal{F}_n = \{f : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$
- **2.** We write $\mathcal{F} = \{\mathcal{F}_n : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$
- **3.** If $m(n) = \ell(n) = n$, we omit it from the notation

- **1.** $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$, where $\mathcal{F}_n = \{f : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$
- **2.** We write $\mathcal{F} = \{\mathcal{F}_n : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$
- **3.** If $m(n) = \ell(n) = n$, we omit it from the notation
- 4. We identify function with their description

Definition 1 (random functions)

Definition 1 (random functions)

For $n, k \in \mathbb{N}$, let $\Pi_{n,k}$ be the family of all functions from $\{0, 1\}^n$ to $\{0, 1\}^k$. Let $\Pi_n = \Pi_{n,n}$.

▶ $\pi \leftarrow \prod_n$ is a "random access" source of randomness

Definition 1 (random functions)

- ▶ $\pi \leftarrow \prod_n$ is a "random access" source of randomness
- ▶ Parties with access to a common $\pi \leftarrow \prod_n$ can do a lot

Definition 1 (random functions)

- ▶ $\pi \leftarrow \prod_n$ is a "random access" source of randomness
- ▶ Parties with access to a common $\pi \leftarrow \prod_n$ can do a lot
- How long does it take to describe $\pi \in \prod_n$?

Definition 1 (random functions)

- ▶ $\pi \leftarrow \prod_n$ is a "random access" source of randomness
- ▶ Parties with access to a common $\pi \leftarrow \prod_n$ can do a lot
- How long does it take to describe $\pi \in \prod_n$?

Definition 1 (random functions)

- ▶ $\pi \leftarrow \prod_n$ is a "random access" source of randomness
- Parties with access to a common $\pi \leftarrow \prod_n$ can do a lot
- ► How long does it take to describe $\pi \in \prod_n$? $2^n \cdot n$ bits

Definition 1 (random functions)

- ▶ $\pi \leftarrow \prod_n$ is a "random access" source of randomness
- Parties with access to a common $\pi \leftarrow \prod_n$ can do a lot
- ► How long does it take to describe $\pi \in \prod_n$? $2^n \cdot n$ bits
- ► The truth table of $\pi \leftarrow \prod_n$ is a uniform string of length $2^n \cdot n$

Definition 1 (random functions)

- ▶ $\pi \leftarrow \prod_n$ is a "random access" source of randomness
- Parties with access to a common $\pi \leftarrow \prod_n$ can do a lot
- ► How long does it take to describe $\pi \in \prod_n$? $2^n \cdot n$ bits
- ► The truth table of $\pi \leftarrow \prod_n$ is a uniform string of length $2^n \cdot n$
- For integer function *m*, we will consider the function family $\{\Pi_{n,m(n)}\}$.

Subsection 2

Efficient Function Families

Efficient function families

Definition 2 (efficient function family)

An ensemble of function families $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ is efficient, if:

Samplable. \mathcal{F} is samplable in polynomial-time: there exists a PPT that given 1^n , outputs (the description of) a uniform element in \mathcal{F}_n .

Efficient. There exists a polynomial-time algorithm that given $x \in \{0, 1\}^n$ and (a description of) $f \in \mathcal{F}_n$, outputs f(x).

Subsection 3

Definition 3 (pseudorandom functions (PRFs)) An efficient ensemble $\mathcal{F} = \{\mathcal{F}_n : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$ is pseudorandom, if $|\Pr_{f \leftarrow \mathcal{F}_n} \left[\mathsf{D}^f(1^n) = 1 \right] - \Pr_{\pi \leftarrow \Pi_{m(n),\ell(n)}} \left[\mathsf{D}^\pi(1^n) = 1 \right] | = \mathsf{neg}(n),$ for any oracle-aided PPT D.

Definition 3 (pseudorandom functions (PRFs)) An efficient ensemble $\mathcal{F} = \{\mathcal{F}_n : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$ is pseudorandom, if $|\Pr_{f \leftarrow \mathcal{F}_n} \left[\mathsf{D}^f(1^n) = 1 \right] - \Pr_{\pi \leftarrow \Pi_{m(n),\ell(n)}} \left[\mathsf{D}^\pi(1^n) = 1 \right] | = \mathsf{neg}(n),$ for any oracle-aided PPT D.

Definition 3 (pseudorandom functions (PRFs)) An efficient ensemble $\mathcal{F} = \{\mathcal{F}_n : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$ is pseudorandom, if $|\Pr_{f \leftarrow \mathcal{F}_n} \left[\mathsf{D}^f(1^n) = 1 \right] - \Pr_{\pi \leftarrow \Pi_{m(n),\ell(n)}} \left[\mathsf{D}^\pi(1^n) = 1 \right] | = \mathsf{neg}(n),$ for any oracle-aided PPT D.

Definition 3 (pseudorandom functions (PRFs)) An efficient ensemble $\mathcal{F} = \{\mathcal{F}_n : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{\ell(n)}\}$ is pseudorandom, if $|\Pr_{f \leftarrow \mathcal{F}_n} \left[D^f(1^n) = 1 \right] - \Pr_{\pi \leftarrow \Pi_{m(n), \ell(n)}} \left[D^{\pi}(1^n) = 1 \right] | = \operatorname{neg}(n),$ for any oracle-aided PPT D. \approx_G

Definition 3 (pseudorandom functions (PRFs)) An efficient ensemble $\mathcal{F} = \{\mathcal{F}_n : \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$ is pseudorandom, if $|\Pr_{f \leftarrow \mathcal{F}_n} \left[\mathsf{D}^f(1^n) = 1 \right] - \Pr_{\pi \leftarrow \Pi_{m(n),\ell(n)}} \left[\mathsf{D}^\pi(1^n) = 1 \right] | = \mathsf{neg}(n),$ for any oracle-aided PPT D. \approx_C

Definition 3 (pseudorandom functions (PRFs)) An efficient ensemble $\mathcal{F} = \{\mathcal{F}_n : \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$ is pseudorandom, if $|\Pr_{f \leftarrow \mathcal{F}_n} \left[\mathsf{D}^f(1^n) = 1 \right] - \Pr_{\pi \leftarrow \Pi_{m(n),\ell(n)}} \left[\mathsf{D}^\pi(1^n) = 1 \right] | = \mathsf{neg}(n),$ for any oracle-aided PPT D. \approx_C

n-1, 1,453 1,453 1,453 1,453 1,453 1,453 1,453 1,453 1,453 1,453 1,453 1,453 1,453 1,453 1,453 1,453 1,453 1,455 1,4

Why "oracle-aided"?

- Why "oracle-aided"?
- Easy to construct (no assumption!) with logarithmic input length

- Why "oracle-aided"?
- Easy to construct (no assumption!) with logarithmic input length
- PRFs of super logarithmic input length, which is the interesting case, imply PRGs

- Why "oracle-aided"?
- Easy to construct (no assumption!) with logarithmic input length
- PRFs of super logarithmic input length, which is the interesting case, imply PRGs
- We will mainly focus on the case $m(n) = \ell(n) = n$

- Why "oracle-aided"?
- Easy to construct (no assumption!) with logarithmic input length
- PRFs of super logarithmic input length, which is the interesting case, imply PRGs
- We will mainly focus on the case $m(n) = \ell(n) = n$
- We write $D^{\mathcal{F}}$ to stand for $(D^f)_{f \leftarrow \mathcal{F}}$.

Section 2

PRF from OWF

Naive Construction

Let $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$, and for $s \in \{0,1\}^n$ define $f_s: \{0,1\} \mapsto \{0,1\}^n$ by

- $\blacktriangleright f_s(0) = G(s)_{1,\ldots,n}$
- ► $f_s(1) = G(s)_{n+1,...,2n}$.

Naive Construction

Let $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$, and for $s \in \{0,1\}^n$ define $f_s: \{0,1\} \mapsto \{0,1\}^n$ by

- $\blacktriangleright f_s(0) = G(s)_{1,\ldots,n}$
- ► $f_s(1) = G(s)_{n+1,...,2n}$.

Claim 4

Assume *G* is a PRG, then $\{\mathcal{F}_n = \{f_s\}_{s \in \{0,1\}^n}\}_{n \in \mathbb{N}}$ is a PRF.

Naive Construction

Let $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$, and for $s \in \{0,1\}^n$ define $f_s: \{0,1\} \mapsto \{0,1\}^n$ by

- $\blacktriangleright f_s(0) = G(s)_{1,\ldots,n}$
- ► $f_s(1) = G(s)_{n+1,...,2n}$.

Claim 4

Assume *G* is a PRG, then $\{\mathcal{F}_n = \{f_s\}_{s \in \{0,1\}^n}\}_{n \in \mathbb{N}}$ is a PRF.

Proof:
Let $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$, and for $s \in \{0,1\}^n$ define $f_s: \{0,1\} \mapsto \{0,1\}^n$ by

- $\blacktriangleright f_s(0) = G(s)_{1,\ldots,n}$
- $f_s(1) = G(s)_{n+1,...,2n}$.

Claim 4

Assume *G* is a PRG, then $\{\mathcal{F}_n = \{f_s\}_{s \in \{0,1\}^n}\}_{n \in \mathbb{N}}$ is a PRF.

Proof: The truth table of $f \leftarrow \mathcal{F}_n$ is $G(U_n)$, where the truth table of $\pi \leftarrow \Pi_{1,n}$ is $U_{2n}\Box$

Let $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$, and for $s \in \{0,1\}^n$ define $f_s: \{0,1\} \mapsto \{0,1\}^n$ by

- $\blacktriangleright f_s(0) = G(s)_{1,\ldots,n}$
- $f_s(1) = G(s)_{n+1,...,2n}$.

Claim 4

Assume *G* is a PRG, then $\{\mathcal{F}_n = \{f_s\}_{s \in \{0,1\}^n}\}_{n \in \mathbb{N}}$ is a PRF.

Proof: The truth table of $f \leftarrow \mathcal{F}_n$ is $G(U_n)$, where the truth table of $\pi \leftarrow \Pi_{1,n}$ is $U_{2n}\Box$

Naturally extends to input of length O(log n) :-)

Let $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$, and for $s \in \{0,1\}^n$ define $f_s: \{0,1\} \mapsto \{0,1\}^n$ by

- $\blacktriangleright f_s(0) = G(s)_{1,\ldots,n}$
- $f_s(1) = G(s)_{n+1,...,2n}$.

Claim 4

Assume *G* is a PRG, then $\{\mathcal{F}_n = \{f_s\}_{s \in \{0,1\}^n}\}_{n \in \mathbb{N}}$ is a PRF.

Proof: The truth table of $f \leftarrow \mathcal{F}_n$ is $G(U_n)$, where the truth table of $\pi \leftarrow \Pi_{1,n}$ is $U_{2n}\Box$

- Naturally extends to input of length O(log n) :-)
- Miserably fails for longer length (which is the only interesting case) :-(

Let $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$, and for $s \in \{0,1\}^n$ define $f_s: \{0,1\} \mapsto \{0,1\}^n$ by

- $\blacktriangleright f_s(0) = G(s)_{1,\ldots,n}$
- $f_s(1) = G(s)_{n+1,...,2n}$.

Claim 4

Assume *G* is a PRG, then $\{\mathcal{F}_n = \{f_s\}_{s \in \{0,1\}^n}\}_{n \in \mathbb{N}}$ is a PRF.

Proof: The truth table of $f \leftarrow \mathcal{F}_n$ is $G(U_n)$, where the truth table of $\pi \leftarrow \Pi_{1,n}$ is $U_{2n}\Box$

- Naturally extends to input of length O(log n) :-)
- Miserably fails for longer length (which is the only interesting case) :-(
- Problem, we are constructing the whole truth table, even to compute a single output

Subsection 1

The GGM Construction

Construction 5 (GGM)

For $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$ and $s \in \{0,1\}^n$,

- $G_0(s) = G(s)_{1,...,n}$
- $G_1(s) = G(s)_{n+1,...,2n}$

For $x \in \{0, 1\}^k$ let $f_s(x) = G_{x_k}(f_s(x_{1,...,k-1}))$, letting $f_s() = s$.

Construction 5 (GGM)

For $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$ and $s \in \{0,1\}^n$,

- $G_0(s) = G(s)_{1,...,n}$
- $G_1(s) = G(s)_{n+1,...,2n}$

For $x \in \{0, 1\}^k$ let $f_s(x) = G_{x_k}(f_s(x_{1,...,k-1}))$, letting $f_s() = s$.

Construction 5 (GGM)

For $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$ and $s \in \{0,1\}^n$,

- $G_0(s) = G(s)_{1,...,n}$
- $G_1(s) = G(s)_{n+1,...,2n}$

For $x \in \{0, 1\}^k$ let $f_s(x) = G_{x_k}(f_s(x_{1,...,k-1}))$, letting $f_s() = s$.

• Example: $f_s(001) = s_{001} = G_1(s_{00}) = G_1(G_0(s_0)) = G_1(G_0(G_0(s)))$

Construction 5 (GGM)

For $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$ and $s \in \{0,1\}^n$,

- $G_0(s) = G(s)_{1,...,n}$
- $G_1(s) = G(s)_{n+1,...,2n}$

For $x \in \{0, 1\}^k$ let $f_s(x) = G_{x_k}(f_s(x_{1,...,k-1}))$, letting $f_s() = s$.

- Example: $f_s(001) = s_{001} = G_1(s_{00}) = G_1(G_0(s_0)) = G_1(G_0(G_0(s)))$
- *G* is poly-time $\implies \mathcal{F} := \{\mathcal{F}_n = \{f_s : s \in \{0, 1\}^n\}\}$ is efficient

Construction 5 (GGM)

For $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$ and $s \in \{0,1\}^n$,

- $G_0(s) = G(s)_{1,...,n}$
- $G_1(s) = G(s)_{n+1,...,2n}$

For $x \in \{0, 1\}^k$ let $f_s(x) = G_{x_k}(f_s(x_{1,...,k-1}))$, letting $f_s() = s$.

- Example: $f_s(001) = s_{001} = G_1(s_{00}) = G_1(G_0(s_0)) = G_1(G_0(G_0(s)))$
- *G* is poly-time $\implies \mathcal{F} := \{\mathcal{F}_n = \{f_s : s \in \{0, 1\}^n\}\}$ is efficient

Construction 5 (GGM)

For $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$ and $s \in \{0,1\}^n$,

- $G_0(s) = G(s)_{1,...,n}$
- $G_1(s) = G(s)_{n+1,...,2n}$

For $x \in \{0, 1\}^k$ let $f_s(x) = G_{x_k}(f_s(x_{1,...,k-1}))$, letting $f_s() = s$.

- Example: $f_s(001) = s_{001} = G_1(s_{00}) = G_1(G_0(s_0)) = G_1(G_0(G_0(s)))$
- *G* is poly-time $\implies \mathcal{F} := \{\mathcal{F}_n = \{f_s : s \in \{0, 1\}^n\}\}$ is efficient

Theorem 6 (Goldreich-Goldwasser-Micali (GGM))

If G is a PRG then \mathcal{F} is a PRF.

Construction 5 (GGM)

For $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$ and $s \in \{0,1\}^n$,

- $G_0(s) = G(s)_{1,...,n}$
- $G_1(s) = G(s)_{n+1,...,2n}$

For $x \in \{0, 1\}^k$ let $f_s(x) = G_{x_k}(f_s(x_{1,...,k-1}))$, letting $f_s() = s$.

- Example: $f_s(001) = s_{001} = G_1(s_{00}) = G_1(G_0(s_0)) = G_1(G_0(G_0(s)))$
- *G* is poly-time $\implies \mathcal{F} := \{\mathcal{F}_n = \{f_s : s \in \{0, 1\}^n\}\}$ is efficient

Theorem 6 (Goldreich-Goldwasser-Micali (GGM))

If G is a PRG then \mathcal{F} is a PRF.

Corollary 7 OWFs imply PRFs.

Subsection 2

Proof

Assume $\exists \text{ PPT } D, p \in \text{poly and infinite set } \mathcal{I} \subseteq \mathbb{N} \text{ with}$ $\left| \Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\Pi_n}(1^n) = 1] \right| \geq \frac{1}{p(n)},$

for any $n \in \mathcal{I}$.

(1)

Assume $\exists \text{ PPT } D, p \in \text{poly and infinite set } \mathcal{I} \subseteq \mathbb{N} \text{ with}$ $\left| \Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\Pi_n}(1^n) = 1] \right| \geq \frac{1}{p(n)},$

for any $n \in \mathcal{I}$.

Fix $n \in \mathbb{N}$ and let t = t(n) be a bound on the running time of $D(1^n)$.

(1)

Assume $\exists PPT D, p \in poly and infinite set <math>\mathcal{I} \subseteq \mathbb{N}$ with $\left| \Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\Pi_n}(1^n) = 1] \right| \ge \frac{1}{p(n)},$ (1)

for any $n \in \mathcal{I}$.

Fix $n \in \mathbb{N}$ and let t = t(n) be a bound on the running time of $D(1^n)$. We use D to construct a PPT D' such that

$$|\Pr[D'((U_{2n})^t) = 1] - \Pr[D'(G(U_n))^t) = 1| > \frac{1}{np(n)},$$

where $(U_{2n})^t = U_{2n}^{(1)}, \dots, U_{2n}^{(t)}$ and $G(U_n)^t = G(U_n^{(1)}), \dots, G(U_n^{(t)}).$

Assume $\exists PPT D, p \in poly and infinite set <math>\mathcal{I} \subseteq \mathbb{N}$ with $\left| \Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\Pi_n}(1^n) = 1] \right| \ge \frac{1}{p(n)},$ (1)

for any $n \in \mathcal{I}$.

Fix $n \in \mathbb{N}$ and let t = t(n) be a bound on the running time of $D(1^n)$. We use D to construct a PPT D' such that

$$\left|\Pr[\mathsf{D}'((U_{2n})^t)=1]-\Pr[\mathsf{D}'(G(U_n))^t)=1\right|>\frac{1}{np(n)},$$

where $(U_{2n})^t = U_{2n}^{(1)}, \dots, U_{2n}^{(t)}$ and $G(U_n)^t = G(U_n^{(1)}), \dots, G(U_n^{(t)})$.

Hence, D' violates the security of G.(?)

H_i: all the nodes of depth smaller than *i* are labeled by random strings. Other nodes are labeled as before (by applying PRG to the father and taking right/left half).

- *H_i*: all the nodes of depth smaller than *i* are labeled by random strings. Other nodes are labeled as before (by applying PRG to the father and taking right/left half).
- What family is \mathcal{H}_1 ?

- *H_i*: all the nodes of depth smaller than *i* are labeled by random strings. Other nodes are labeled as before (by applying PRG to the father and taking right/left half).
- What family is \mathcal{H}_1 ?

- *H_i*: all the nodes of depth smaller than *i* are labeled by random strings. Other nodes are labeled as before (by applying PRG to the father and taking right/left half).
- What family is \mathcal{H}_1 ? \mathcal{F}_n .

- *H_i*: all the nodes of depth smaller than *i* are labeled by random strings. Other nodes are labeled as before (by applying PRG to the father and taking right/left half).
- What family is \mathcal{H}_1 ? \mathcal{F}_n .

- *H_i*: all the nodes of depth smaller than *i* are labeled by random strings. Other nodes are labeled as before (by applying PRG to the father and taking right/left half).
- What family is \mathcal{H}_1 ? \mathcal{F}_n . What is \mathcal{H}_n ?

- *H_i*: all the nodes of depth smaller than *i* are labeled by random strings. Other nodes are labeled as before (by applying PRG to the father and taking right/left half).
- What family is \mathcal{H}_1 ? \mathcal{F}_n . What is \mathcal{H}_n ? Π_n .

- *H_i*: all the nodes of depth smaller than *i* are labeled by random strings. Other nodes are labeled as before (by applying PRG to the father and taking right/left half).
- What family is \mathcal{H}_1 ? \mathcal{F}_n . What is \mathcal{H}_n ? Π_n .

- *H_i*: all the nodes of depth smaller than *i* are labeled by random strings. Other nodes are labeled as before (by applying PRG to the father and taking right/left half).
- What family is \mathcal{H}_1 ? \mathcal{F}_n . What is \mathcal{H}_n ? Π_n .
- For some $i \in \{1, ..., n-1\}$, algorithm D distinguishes \mathcal{H}_i from \mathcal{H}_{i+1} by $\frac{1}{no(n)}$

- D distinguishes (via t samples) between
 - R a uniform string of length $2^n \cdot n$, and
 - P a string generated by 2ⁿ⁻¹ independent calls to G

- D distinguishes (via t samples) between
 - R a uniform string of length $2^n \cdot n$, and
 - P a string generated by 2ⁿ⁻¹ independent calls to G
- We would like to use D for breaking the security of G,

- D distinguishes (via t samples) between
 - R a uniform string of length $2^n \cdot n$, and
 - P a string generated by 2ⁿ⁻¹ independent calls to G
- ▶ We would like to use D for breaking the security of G, but R and P seem too long :-(

- D distinguishes (via t samples) between
 - R a uniform string of length $2^n \cdot n$, and
 - P a string generated by 2ⁿ⁻¹ independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

- D distinguishes (via t samples) between
 - R a uniform string of length $2^n \cdot n$, and
 - P a string generated by 2ⁿ⁻¹ independent calls to G
- We would like to use D for breaking the security of G, but R and P seem too long :-(
- Solution: focus on the part (i.e., cells) that D sees

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

Emulate D. Initialize a counter k = 0. On the *i*'th query q_i made by D:

- If the cell queries by q_i'th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
 - ▶ If q_i is a left son, fill its cell with the left half of y_k and use the right half of y to fill the right brother of q_i .
 - If q_i is a right son, fill its cell with the right half of y_k and use the left half of y to fill the cell of left brother of q_i.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

Emulate D. Initialize a counter k = 0. On the *i*'th query q_i made by D:

- If the cell queries by q_i'th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
 - ▶ If q_i is a left son, fill its cell with the left half of y_k and use the right half of y to fill the right brother of q_i .
 - If q_i is a right son, fill its cell with the right half of y_k and use the left half of y to fill the cell of left brother of q_i.
We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

- If the cell queries by q_i'th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
 - ▶ If q_i is a left son, fill its cell with the left half of y_k and use the right half of y to fill the right brother of q_i .
 - If q_i is a right son, fill its cell with the right half of y_k and use the left half of y to fill the cell of left brother of q_i.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

- If the cell queries by q_i'th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
 - ▶ If q_i is a left son, fill its cell with the left half of y_k and use the right half of y to fill the right brother of q_i .
 - If q_i is a right son, fill its cell with the right half of y_k and use the left half of y to fill the cell of left brother of q_i.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

- If the cell queries by q_i'th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
 - ▶ If q_i is a left son, fill its cell with the left half of y_k and use the right half of y to fill the right brother of q_i .
 - If q_i is a right son, fill its cell with the right half of y_k and use the left half of y to fill the cell of left brother of q_i.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

- ▶ If the cell queries by q_i'th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
 - ▶ If q_i is a left son, fill its cell with the left half of y_k and use the right half of y to fill the right brother of q_i .
 - If q_i is a right son, fill its cell with the right half of y_k and use the left half of y to fill the cell of left brother of q_i.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t$)

- If the cell queries by q_i'th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
 - ▶ If q_i is a left son, fill its cell with the left half of y_k and use the right half of y to fill the right brother of q_i .
 - If q_i is a right son, fill its cell with the right half of y_k and use the left half of y to fill the cell of left brother of q_i.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

- ▶ If the cell queries by q_i'th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
 - ▶ If q_i is a left son, fill its cell with the left half of y_k and use the right half of y to fill the right brother of q_i .
 - If q_i is a right son, fill its cell with the right half of y_k and use the left half of y to fill the cell of left brother of q_i.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n

Algorithm 8 (D' on $y_1, \ldots, y_t \in (\{0, 1\}^{2n})^t)$

- If the cell queries by q_i'th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
 - ▶ If q_i is a left son, fill its cell with the left half of y_k and use the right half of y to fill the right brother of q_i .
 - If q_i is a right son, fill its cell with the right half of y_k and use the left half of y to fill the cell of left brother of q_i.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

- If the cell queries by q_i'th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
 - ▶ If q_i is a left son, fill its cell with the left half of y_k and use the right half of y to fill the right brother of q_i .
 - If q_i is a right son, fill its cell with the right half of y_k and use the left half of y to fill the cell of left brother of q_i.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

- If the cell queries by q_i'th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
 - ▶ If q_i is a left son, fill its cell with the left half of y_k and use the right half of y to fill the right brother of q_i .
 - If q_i is a right son, fill its cell with the right half of y_k and use the left half of y to fill the cell of left brother of q_i.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

- If the cell queries by q_i'th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
 - ▶ If q_i is a left son, fill its cell with the left half of y_k and use the right half of y to fill the right brother of q_i .
 - If q_i is a right son, fill its cell with the right half of y_k and use the left half of y to fill the cell of left brother of q_i.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n

Algorithm 8 (D' on $y_1, \ldots, y_t \in (\{0, 1\}^{2n})^t)$

- If the cell queries by q_i'th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
 - If q_i is a left son, fill its cell with the left half of y_k and use the right half of y to fill the right brother of q_i.
 - If q_i is a right son, fill its cell with the right half of y_k and use the left half of y to fill the cell of left brother of q_i.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

- If the cell queries by q_i'th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
 - If q_i is a left son, fill its cell with the left half of y_k and use the right half of y to fill the right brother of q_i.
 - If q_i is a right son, fill its cell with the right half of y_k and use the left half of y to fill the cell of left brother of q_i.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

- If the cell queries by q_i'th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
 - ▶ If q_i is a left son, fill its cell with the left half of y_k and use the right half of y to fill the right brother of q_i .
 - If q_i is a right son, fill its cell with the right half of y_k and use the left half of y to fill the cell of left brother of q_i.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t)$

- If the cell queries by q_i'th is non-empty, answer with the content of the cell.
- Else increment k by 1 and do:
 - ▶ If q_i is a left son, fill its cell with the left half of y_k and use the right half of y to fill the right brother of q_i .
 - If q_i is a right son, fill its cell with the right half of y_k and use the left half of y to fill the cell of left brother of q_i.

We focus on the case where D distinguishes between \mathcal{H}_{n-1} and \mathcal{H}_n

Algorithm 8 (D' on $y_1, ..., y_t \in (\{0, 1\}^{2n})^t$)

- If the cell queries by q_i'th is non-empty, answer with the content of the cell.
- Else increment *k* by 1 and do:
 - If q_i is a left son, fill its cell with the left half of y_k and use the right half of y to fill the right brother of q_i.
 - If q_i is a right son, fill its cell with the right half of y_k and use the left half of y to fill the cell of left brother of q_i.

Part I

Pseudorandom Permutations

Benny Applebaum & Iftach Haitner (TAU)

Foundation of Cryptography

December 1, 2016 20/35

Let $\widetilde{\Pi}_n$ be the set of all permutations over $\{0, 1\}^n$.

Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble $\mathcal{F} = \{\mathcal{F}_n : \{0,1\}^n \mapsto \{0,1\}^n\}$ is a pseudorandom permutation, if

$$\Pr[\mathsf{D}^{\mathcal{F}_n}(1^n) = 1] - \Pr[\mathsf{D}^{\widetilde{\mathsf{H}}_n}(1^n) = 1] = \operatorname{neg}(n),$$

for any oracle-aided PPT D

Let $\widetilde{\Pi}_n$ be the set of all permutations over $\{0, 1\}^n$.

Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble $\mathcal{F} = \{\mathcal{F}_n : \{0,1\}^n \mapsto \{0,1\}^n\}$ is a pseudorandom permutation, if

$$\Pr[\mathsf{D}^{\mathcal{F}_n}(1^n) = 1] - \Pr[\mathsf{D}^{\widetilde{\mathsf{II}}_n}(1^n) = 1] = \operatorname{neg}(n),$$

for any oracle-aided PPT D

Eq 2 holds for any PRF (taking the role of *F*)

Let $\widetilde{\Pi}_n$ be the set of all permutations over $\{0, 1\}^n$.

Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble $\mathcal{F} = \{\mathcal{F}_n : \{0,1\}^n \mapsto \{0,1\}^n\}$ is a pseudorandom permutation, if

$$\Pr[\mathsf{D}^{\mathcal{F}_n}(1^n) = 1] - \Pr[\mathsf{D}^{\widetilde{\mathsf{n}}_n}(1^n) = 1] = \operatorname{neg}(n),$$

for any oracle-aided PPT D

- Eq 2 holds for any PRF (taking the role of *F*)
- Hence, PRPs are indistinguishable from PRFs...

Let $\widetilde{\Pi}_n$ be the set of all permutations over $\{0, 1\}^n$.

Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble $\mathcal{F} = \{\mathcal{F}_n : \{0,1\}^n \mapsto \{0,1\}^n\}$ is a pseudorandom permutation, if

$$\Pr[\mathsf{D}^{\mathcal{F}_n}(1^n) = 1] - \Pr[\mathsf{D}^{\widetilde{\mathsf{n}}_n}(1^n) = 1] = \operatorname{neg}(n),$$

for any oracle-aided PPT D

- Eq 2 holds for any PRF (taking the role of *F*)
- Hence, PRPs are indistinguishable from PRFs...
- If no one can distinguish between PRFs and PRPs, let's use PRFs

Let $\widetilde{\Pi}_n$ be the set of all permutations over $\{0, 1\}^n$.

Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble $\mathcal{F} = \{\mathcal{F}_n : \{0,1\}^n \mapsto \{0,1\}^n\}$ is a pseudorandom permutation, if

$$\Pr[\mathsf{D}^{\mathcal{F}_n}(1^n) = 1] - \Pr[\mathsf{D}^{\widetilde{\mathsf{II}}_n}(1^n) = 1] = \operatorname{neg}(n),$$

for any oracle-aided PPT D

- Eq 2 holds for any PRF (taking the role of *F*)
- Hence, PRPs are indistinguishable from PRFs...
- If no one can distinguish between PRFs and PRPs, let's use PRFs
 - (partial) Perfect "security"

Let $\widetilde{\Pi}_n$ be the set of all permutations over $\{0, 1\}^n$.

Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble $\mathcal{F} = \{\mathcal{F}_n : \{0,1\}^n \mapsto \{0,1\}^n\}$ is a pseudorandom permutation, if

$$\Pr[\mathsf{D}^{\mathcal{F}_n}(1^n) = 1] - \Pr[\mathsf{D}^{\widetilde{\mathsf{n}}_n}(1^n) = 1] = \operatorname{neg}(n),$$

for any oracle-aided PPT D

- Eq 2 holds for any PRF (taking the role of *F*)
- Hence, PRPs are indistinguishable from PRFs...
- If no one can distinguish between PRFs and PRPs, let's use PRFs
 - (partial) Perfect "security"
 - Inversion

Subsection 1

PRP from PRF

How does one turn a function into a permutation?

How does one turn a function into a permutation?

```
Definition 10 (LR)
```

```
For f: \{0, 1\}^n \mapsto \{0, 1\}^n, let LR_f: \{0, 1\}^{2n} \mapsto \{0, 1\}^{2n} be defined by
```

How does one turn a function into a permutation?

Definition 10 (LR)

```
For f: \{0,1\}^n \mapsto \{0,1\}^n, let LR<sub>f</sub>: \{0,1\}^{2n} \mapsto \{0,1\}^{2n} be defined by
```


How does one turn a function into a permutation?

```
Definition 10 (LR)
```

```
For f: \{0,1\}^n \mapsto \{0,1\}^n, let LR_f: \{0,1\}^{2n} \mapsto \{0,1\}^{2n} be defined by
```

 $LR_f(\ell, r) = (r, f(r) \oplus \ell).$

▶ LR_{*f*} is a permutation: LR⁻¹_{*f*}(z, w) = ($f(z) \oplus w, z$)

How does one turn a function into a permutation?

```
Definition 10 (LR)
```

```
For f: \{0, 1\}^n \mapsto \{0, 1\}^n, let LR_f: \{0, 1\}^{2n} \mapsto \{0, 1\}^{2n} be defined by
```


- ▶ LR_{*f*} is a permutation: LR⁻¹_{*f*}(z, w) = ($f(z) \oplus w, z$)
- LR_f is efficiently computable and invertible given oracle access to f

How does one turn a function into a permutation?

Definition 10 (LR)

For $f: \{0, 1\}^n \mapsto \{0, 1\}^n$, let $LR_f: \{0, 1\}^{2n} \mapsto \{0, 1\}^{2n}$ be defined by

- ▶ LR_{*f*} is a permutation: LR⁻¹_{*f*}(z, w) = ($f(z) \oplus w, z$)
- LR_f is efficiently computable and invertible given oracle access to f

How does one turn a function into a permutation?

Definition 10 (LR)

For $f: \{0, 1\}^n \mapsto \{0, 1\}^n$, let $LR_f: \{0, 1\}^{2n} \mapsto \{0, 1\}^{2n}$ be defined by

- ▶ LR_{*f*} is a permutation: LR⁻¹_{*f*}(z, w) = ($f(z) \oplus w, z$)
- LR_f is efficiently computable and invertible given oracle access to f
- For $i \in \mathbb{N}$ and f^1, \ldots, f^i , define $LR_{f^1, \ldots, f^i} \colon \{0, 1\}^{2n} \mapsto \{0, 1\}^{2n}$ by

How does one turn a function into a permutation?

Definition 10 (LR)

For $f: \{0, 1\}^n \mapsto \{0, 1\}^n$, let $LR_f: \{0, 1\}^{2n} \mapsto \{0, 1\}^{2n}$ be defined by

 $LR_f(\ell, r) = (r, f(r) \oplus \ell).$

- ▶ LR_{*f*} is a permutation: LR⁻¹_{*f*}(*z*, *w*) = (*f*(*z*) \oplus *w*, *z*)
- LR_f is efficiently computable and invertible given oracle access to f
- ▶ For $i \in \mathbb{N}$ and f^1, \ldots, f^i , define LR_{f^1, \ldots, f^i} : $\{0, 1\}^{2n} \mapsto \{0, 1\}^{2n}$ by

 $\mathsf{LR}_{f^{1},...,f^{i}}(\ell,r) = (r^{i-1}, f^{i}(r^{i-1}) \oplus \ell^{i-1}), \text{ for } (\ell^{i-1}, r^{i-1}) = \mathsf{LR}_{f^{1},...,f^{i-1}}(\ell,r).$ (letting $(\ell^{0}, r^{0}) = (\ell, r)$

Recall $LR_f(\ell, r) = (r, f(r) \oplus \ell)$.

Definition 11

Given a function family $\mathcal{F} = \{\mathcal{F}_n : \{0, 1\}^n \mapsto \{0, 1\}^n\}$, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}^{f_1, \dots, f^i} \colon f^1, \dots, f^i \in \mathcal{F}_n\}\},\$

Recall $LR_f(\ell, r) = (r, f(r) \oplus \ell)$.

Definition 11

Given a function family $\mathcal{F} = \{\mathcal{F}_n : \{0, 1\}^n \mapsto \{0, 1\}^n\}$, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}_{f^1, \dots, f^i} : f^1, \dots, f^i \in \mathcal{F}_n\}\},\$

► $LR_{\mathcal{F}}^{i}$ is always a permutation family, and is efficient if \mathcal{F} is.

Recall $LR_f(\ell, r) = (r, f(r) \oplus \ell)$.

Definition 11

Given a function family $\mathcal{F} = \{\mathcal{F}_n : \{0, 1\}^n \mapsto \{0, 1\}^n\}$, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}_{f^1, \dots, f^i} : f^1, \dots, f^i \in \mathcal{F}_n\}\},\$

- ► $LR_{\mathcal{F}}^{i}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is LR¹_F pseudorandom?

Recall $LR_f(\ell, r) = (r, f(r) \oplus \ell)$.

Definition 11

Given a function family $\mathcal{F} = \{\mathcal{F}_n : \{0, 1\}^n \mapsto \{0, 1\}^n\}$, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}_{f^1, \dots, f^i} : f^1, \dots, f^i \in \mathcal{F}_n\}\},\$

- ► $LR_{\mathcal{F}}^{i}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is LR¹_F pseudorandom?
- ► $LR_{\mathcal{F}}^2$?
Recall $LR_f(\ell, r) = (r, f(r) \oplus \ell)$.

Definition 11

- ► $LR_{\mathcal{F}}^{i}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is LR¹_F pseudorandom?
- ► $LR_{\mathcal{F}}^2$?

Recall $LR_f(\ell, r) = (r, f(r) \oplus \ell)$.

Definition 11

- ► $LR_{\mathcal{F}}^{i}$ is always a permutation family, and is efficient if \mathcal{F} is.
- ▶ Is LR¹_F pseudorandom?
- ► $LR_{\mathcal{F}}^2$? $LR_{f^1,f^2}(0^n, 0^n) = LR_{f^2}(0^n, f^1(0^n)) = (f^1(0^n), \cdot)$ and $LR_{f^1,f^2}(1^n, 0^n) = LR_{f^2}(0^n, f^1(0^n) \oplus 1^n) = (f^1(0^n) \oplus 1^n, \cdot)$

Recall $LR_f(\ell, r) = (r, f(r) \oplus \ell)$.

Definition 11

- ► $LR_{\mathcal{F}}^{i}$ is always a permutation family, and is efficient if \mathcal{F} is.
- ▶ Is LR¹_F pseudorandom?
- ► $LR_{\mathcal{F}}^2$? $LR_{f^1,f^2}(0^n, 0^n) = LR_{f^2}(0^n, f^1(0^n)) = (f^1(0^n), \cdot)$ and $LR_{f^1,f^2}(1^n, 0^n) = LR_{f^2}(0^n, f^1(0^n) \oplus 1^n) = (f^1(0^n) \oplus 1^n, \cdot)$
- ► $LR_{\mathcal{F}}^3$?

Recall $LR_f(\ell, r) = (r, f(r) \oplus \ell)$.

Definition 11

- ► $LR_{\mathcal{F}}^{i}$ is always a permutation family, and is efficient if \mathcal{F} is.
- ▶ Is LR¹_F pseudorandom?
- ► $LR_{\mathcal{F}}^2$? $LR_{f^1,f^2}(0^n, 0^n) = LR_{f^2}(0^n, f^1(0^n)) = (f^1(0^n), \cdot)$ and $LR_{f^1,f^2}(1^n, 0^n) = LR_{f^2}(0^n, f^1(0^n) \oplus 1^n) = (f^1(0^n) \oplus 1^n, \cdot)$
- ► $LR_{\mathcal{F}}^3$?

Recall $LR_f(\ell, r) = (r, f(r) \oplus \ell)$.

Definition 11

Given a function family $\mathcal{F} = \{\mathcal{F}_n : \{0, 1\}^n \mapsto \{0, 1\}^n\}$, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}_{f^1, \dots, f^i} : f^1, \dots, f^i \in \mathcal{F}_n\}\},\$

- ► $LR_{\mathcal{F}}^{i}$ is always a permutation family, and is efficient if \mathcal{F} is.
- ▶ Is LR¹_F pseudorandom?
- ► $LR_{\mathcal{F}}^2$? $LR_{f^1,f^2}(0^n,0^n) = LR_{f^2}(0^n,f^1(0^n)) = (f^1(0^n),\cdot)$ and $LR_{f^1,f^2}(1^n,0^n) = LR_{f^2}(0^n,f^1(0^n)\oplus 1^n) = (f^1(0^n)\oplus 1^n,\cdot)$
- ► $LR_{\mathcal{F}}^3$?

Theorem 12 (Luby-Rackoff)

Assuming that \mathcal{F} is a PRF, then $LR^3_{\mathcal{F}}$ is a PRP

Recall $LR_f(\ell, r) = (r, f(r) \oplus \ell)$.

Definition 11

Given a function family $\mathcal{F} = \{\mathcal{F}_n : \{0, 1\}^n \mapsto \{0, 1\}^n\}$, let $\mathsf{LR}^i(\mathcal{F}) = \{\mathsf{LR}^i_{\mathcal{F}_n} = \{\mathsf{LR}_{f^1, \dots, f^i} : f^1, \dots, f^i \in \mathcal{F}_n\}\},\$

- ▶ $LR_{\mathcal{F}}^{i}$ is always a permutation family, and is efficient if \mathcal{F} is.
- Is LR¹_F pseudorandom?
- ► $LR_{\mathcal{F}}^2$? $LR_{f^1,f^2}(0^n,0^n) = LR_{f^2}(0^n,f^1(0^n)) = (f^1(0^n),\cdot)$ and $LR_{f^1,f^2}(1^n,0^n) = LR_{f^2}(0^n,f^1(0^n)\oplus 1^n) = (f^1(0^n)\oplus 1^n,\cdot)$
- ► $LR_{\mathcal{F}}^3$?

Theorem 12 (Luby-Rackoff)

Assuming that \mathcal{F} is a PRF, then $LR^3_{\mathcal{F}}$ is a PRP

► LR⁴(*F*) is pseudorandom even if inversion queries are allowed

Benny Applebaum & Iftach Haitner (TAU)

It suffices to prove that $LR_{\Pi_n}^3$ is pseudorandom (?)

How would you prove that?

- How would you prove that?
- Maybe $LR^3(\Pi_n) \equiv \widetilde{\Pi}_{2n}$?

- How would you prove that?
- Maybe $LR^3(\Pi_n) \equiv \widetilde{\Pi}_{2n}$?

- How would you prove that?
- Maybe $LR^3(\Pi_n) \equiv \widetilde{\Pi}_{2n}$? description length of element in $LR^3(\Pi_n)$ is $2^n \cdot 3n$, where that of element in $\widetilde{\Pi}_{2n}$ is

- How would you prove that?
- ► Maybe LR³(Π_n) $\equiv \widetilde{\Pi}_{2n}$? description length of element in LR³(Π_n) is $2^n \cdot 3n$, where that of element in $\widetilde{\Pi}_{2n}$ is $\log(2^{2n}!) > \log\left(\left(\frac{2^{2n}}{e}\right)^{2^{2n}}\right) > 2^{2n} \cdot n$

It suffices to prove that $LR_{\Pi_n}^3$ is pseudorandom (?)

- How would you prove that?
- ► Maybe LR³(Π_n) $\equiv \widetilde{\Pi}_{2n}$? description length of element in LR³(Π_n) is $2^n \cdot 3n$, where that of element in $\widetilde{\Pi}_{2n}$ is $\log(2^{2n}!) > \log\left(\left(\frac{2^{2n}}{e}\right)^{2^{2n}}\right) > 2^{2n} \cdot n$

Claim 13

For any *q*-query D,

It suffices to prove that $LR_{\Pi_n}^3$ is pseudorandom (?)

- How would you prove that?
- ► Maybe LR³(Π_n) $\equiv \widetilde{\Pi}_{2n}$? description length of element in LR³(Π_n) is $2^n \cdot 3n$, where that of element in $\widetilde{\Pi}_{2n}$ is $\log(2^{2n!}) > \log\left(\left(\frac{2^{2n}}{e}\right)^{2^{2n}}\right) > 2^{2n} \cdot n$

Claim 13

For any *q*-query D,

 $|\Pr[\mathsf{D}^{\mathsf{LR}^3(\Pi_n)}(1^n) = 1] - \Pr[\mathsf{D}^{\widetilde{\Pi}_{2n}}(1^n)| = 1] \in O(q^2/2^n).$

We assume for simplicity that D is deterministic, non-repeating and non-adaptive.

It suffices to prove that $LR_{\Pi_n}^3$ is pseudorandom (?)

- How would you prove that?
- ► Maybe LR³(Π_n) $\equiv \widetilde{\Pi}_{2n}$? description length of element in LR³(Π_n) is $2^n \cdot 3n$, where that of element in $\widetilde{\Pi}_{2n}$ is $\log(2^{2n!}) > \log\left(\left(\frac{2^{2n}}{e}\right)^{2^{2n}}\right) > 2^{2n} \cdot n$

Claim 13

```
For any q-query D,
```

- We assume for simplicity that D is deterministic, non-repeating and non-adaptive.
- Let x_1, \ldots, x_q be D's queries.

It suffices to prove that $LR_{\Pi_n}^3$ is pseudorandom (?)

- How would you prove that?
- ► Maybe LR³(Π_n) $\equiv \widetilde{\Pi}_{2n}$? description length of element in LR³(Π_n) is $2^n \cdot 3n$, where that of element in $\widetilde{\Pi}_{2n}$ is $\log(2^{2n!}) > \log\left(\left(\frac{2^{2n}}{e}\right)^{2^{2n}}\right) > 2^{2n} \cdot n$

Claim 13

For any *q*-query D,

- We assume for simplicity that D is deterministic, non-repeating and non-adaptive.
- Let x_1, \ldots, x_q be D's queries.
- We show (f(x₁),..., f(x_q))_{f←LR³(Π_n)} is O(q²/2ⁿ) close (i.e., in statistical distance) to (f(x₁),..., f(x_q))_{f←Π}

It suffices to prove that $LR_{\Pi_n}^3$ is pseudorandom (?)

- How would you prove that?
- ► Maybe LR³(Π_n) $\equiv \widetilde{\Pi}_{2n}$? description length of element in LR³(Π_n) is $2^n \cdot 3n$, where that of element in $\widetilde{\Pi}_{2n}$ is $\log(2^{2n!}) > \log\left(\left(\frac{2^{2n}}{e}\right)^{2^{2n}}\right) > 2^{2n} \cdot n$

Claim 13

For any q-query D,

- We assume for simplicity that D is deterministic, non-repeating and non-adaptive.
- Let x_1, \ldots, x_q be D's queries.
- We show (f(x₁),..., f(x_q))_{f←LR³(Π_n)} is O(q²/2ⁿ) close (i.e., in statistical distance) to (f(x₁),..., f(x_q))_{f←Π̃}
- ► To do that, we show both distributions are $O(q^2/2^n)$ close to *Distinct* := $((z_1, ..., z_q) \leftarrow (\{0, 1\}^{2n})^q | \forall i \neq j : (z_i)_0 \neq (z_j)_0)$.

Reminder: Statistical Distance

Definition 14

The statistical distance between distributions P and Q over U, is defined by

$$\mathsf{SD}(P,Q) = \frac{1}{2} \cdot \sum_{u \in \mathcal{U}} |P(u) - Q(u)| = \max_{\mathcal{S} \subseteq \mathcal{U}} \{\Pr_Q[\mathcal{S}] - \Pr_P[\mathcal{S}]\}$$

Reminder: Statistical Distance

Definition 14

The statistical distance between distributions P and Q over U, is defined by

$$\mathsf{SD}(P,Q) = \frac{1}{2} \cdot \sum_{u \in \mathcal{U}} |P(u) - Q(u)| = \max_{\mathcal{S} \subseteq \mathcal{U}} \{\Pr_Q[\mathcal{S}] - \Pr_P[\mathcal{S}]\}$$

In case $SD(P, Q) \leq \varepsilon$, we say that P and Q are ε close.

Reminder: Statistical Distance

Definition 14

The statistical distance between distributions P and Q over U, is defined by

$$\mathsf{SD}(P,Q) = \frac{1}{2} \cdot \sum_{u \in \mathcal{U}} |P(u) - Q(u)| = \max_{\mathcal{S} \subseteq \mathcal{U}} \{\Pr_{Q}[\mathcal{S}] - \Pr_{P}[\mathcal{S}]\}$$

In case $SD(P, Q) \leq \varepsilon$, we say that P and Q are ε close.

Fact 15

Let \mathcal{E} be an event (i.e., set) and assume $SD(P|_{\neg \mathcal{E}}, Q) \leq \delta_1$ and $\Pr_P[\mathcal{E}] \leq \delta_2$. Then $SD(P, Q) \leq \delta_1 + \delta_2$

For any set S, it holds that

$$\Pr_{P} [S] = \Pr_{P} [\mathcal{E}] \cdot \Pr_{P|_{\mathcal{E}}} [S] + \Pr_{P} [\neg \mathcal{E}] \cdot \Pr_{P|_{\neg \mathcal{E}}} [S]$$
$$\geq (1 - \delta_{2}) \cdot \Pr_{P|_{\neg \mathcal{E}}} [S]$$

(3)

For any set S, it holds that

$$\Pr_{P}[S] = \Pr_{P}[\mathcal{E}] \cdot \Pr_{P|_{\mathcal{E}}}[S] + \Pr_{P}[\neg \mathcal{E}] \cdot \Pr_{P|_{\neg \mathcal{E}}}[S]$$
$$\geq (1 - \delta_{2}) \cdot \Pr_{P|_{\neg \mathcal{E}}}[S]$$

Hence,

$$\begin{aligned} \Pr_{Q}\left[\mathcal{S}\right] - \Pr_{P}\left[\mathcal{S}\right] &\leq \Pr_{Q}\left[\mathcal{S}\right] - (1 - \delta_{2}) \Pr_{P|_{\neg \varepsilon}}\left[\mathcal{S}\right] \\ &\leq \Pr_{Q}\left[\mathcal{S}\right] - \Pr_{P|_{\neg \varepsilon}}\left[\mathcal{S}\right] + \delta_{2} \end{aligned}$$

(3)

(4)

For any set S, it holds that

$$\Pr_{P}[S] = \Pr_{P}[\mathcal{E}] \cdot \Pr_{P|_{\mathcal{E}}}[S] + \Pr_{P}[\neg \mathcal{E}] \cdot \Pr_{P|_{\neg \mathcal{E}}}[S]$$

$$\geq (1 - \delta_{2}) \cdot \Pr_{P|_{\neg \mathcal{E}}}[S]$$
(3)

Hence,

$$\Pr_{Q}[S] - \Pr_{P}[S] \le \Pr_{Q}[S] - (1 - \delta_{2}) \Pr_{P| \neg \varepsilon}[S]$$

$$\le \Pr_{Q}[S] - \Pr_{P| \neg \varepsilon}[S] + \delta_{2}$$
(4)

Thus,

$$\mathsf{SD}(P,Q) = \max_{\mathcal{S}} \{\Pr_{Q}[\mathcal{S}] - \Pr_{P}[\mathcal{S}]\} \le \max_{\mathcal{S}} \{\Pr_{Q}[\mathcal{S}] - \Pr_{P|_{-\mathcal{E}}}[\mathcal{S}]\} + \delta_{2} = \delta_{1} + \delta_{2}.$$

 $(f(x_0), \ldots, f(x_q))_{f \leftarrow \widetilde{\Pi}}$ is close to *Distinct*

For $f \in \widetilde{\Pi}$, let $Bad(f) := \exists i \neq j \colon f(x_i)_0 = f(x_j)_0$.

For $f \in \widetilde{\Pi}$, let $Bad(f) := \exists i \neq j \colon f(x_i)_0 = f(x_j)_0$.

Claim 16

 $\Pr_{f\leftarrow\widetilde{\Pi}}\left[\textit{Bad}(f)\right] \leq \frac{\binom{q}{2}}{2^n} \leq \frac{q^2}{2^n}$

For $f \in \widetilde{\Pi}$, let $Bad(f) := \exists i \neq j \colon f(x_i)_0 = f(x_j)_0$.

Claim 16

 $\Pr_{f \leftarrow \widetilde{\Pi}} \left[\textit{Bad}(f) \right] \leq \frac{\binom{q}{2}}{2^n} \leq \frac{q^2}{2^n}$

Proof: ?

For $f \in \widetilde{\Pi}$, let $Bad(f) := \exists i \neq j \colon f(x_i)_0 = f(x_j)_0$.

Claim 16 $\Pr_{f \leftarrow \widetilde{\Pi}} \left[Bad(f) \right] \le \frac{\binom{q}{2}}{2^n} \le \frac{q^2}{2^n}$

Proof: ?

Claim 17

 $\left((f(x_0),\ldots,f(x_q)); f \leftarrow \widetilde{\Pi} \mid \neg \operatorname{Bad}(f)\right) \equiv \textit{Distinct}$

For $f \in \widetilde{\Pi}$, let $Bad(f) := \exists i \neq j \colon f(x_i)_0 = f(x_j)_0$.

Claim 16 $\Pr_{f \leftarrow \widetilde{\Pi}} \left[Bad(f) \right] \le \frac{\binom{q}{2}}{2^n} \le \frac{q^2}{2^n}$

Proof: ?

Claim 17

$$\left((f(x_0),\ldots,f(x_q));f\leftarrow\widetilde{\Pi}\mid\neg \operatorname{Bad}(f)\right)\equiv \textit{Distinct}$$

Proof: ?

For $f \in \widetilde{\Pi}$, let $Bad(f) := \exists i \neq j \colon f(x_i)_0 = f(x_j)_0$.

Claim 16 $\Pr_{f \leftarrow \widetilde{\Pi}} \left[Bad(f) \right] \le \frac{\binom{q}{2}}{2^n} \le \frac{q^2}{2^n}$

Proof: ?

Claim 17

$$\left((f(x_0),\ldots,f(x_q));f\leftarrow\widetilde{\mathsf{\Pi}}\mid\neg\operatorname{\mathsf{Bad}}(f)
ight)\equiv \textit{Distinct}$$

Proof: ?

By Fact 15, $(f(x_0), \ldots, f(x_q))_{f \leftarrow \widetilde{\Pi}}$ is $\frac{q^2}{2^n}$ close to *Distinct*

 $(f(x_0), \ldots, f(x_q))_{f \leftarrow \mathsf{LR}^3(\Pi_n)}$ is close to *Distinct*

 $(f(x_0),\ldots,f(x_q))_{f\leftarrow LR^3(\Pi_n)}$ is close to *Distinct*

Let $(\ell_1^0, r_1^0), \ldots, (\ell_q^0, r_q^0) = (x_1, \ldots, x_k).$

$(f(x_0), \ldots, f(x_q))_{f \leftarrow LR^3(\Pi_n)}$ is close to *Distinct*

Let $(\ell_1^0, r_1^0), \ldots, (\ell_q^0, r_q^0) = (x_1, \ldots, x_k).$

The following rv's are defined w.r.t. $(f^1, f^2, f^3) \leftarrow \prod_{n=1}^{3} (f^2, f^3)$

where $\ell_b^j = r_b^{j-1}$ and $r_b^j = f^j(r_b^{j-1}) \oplus \ell_b^{j-1}$.

Let $(\ell_1^0, r_1^0), \ldots, (\ell_q^0, r_q^0) = (x_1, \ldots, x_k).$

The following rv's are defined w.r.t. $(f^1, f^2, f^3) \leftarrow \Pi_n^3$.

where
$$\ell_b^j = r_b^{j-1}$$
 and $r_b^j = f^j(r_b^{j-1}) \oplus \ell_b^{j-1}$.

$$\mathsf{Pr}_{f^{1} \leftarrow \Pi_{n}} \left[\mathsf{Bad}^{1} := \exists i \neq j \colon r_{i}^{1} = r_{j}^{1} \right] \leq \frac{\binom{q}{2}}{2^{n}}$$

Let $(\ell_1^0, r_1^0), \ldots, (\ell_q^0, r_q^0) = (x_1, \ldots, x_k).$

The following rv's are defined w.r.t. $(f^1, f^2, f^3) \leftarrow \prod_{n=1}^{3} (f^2, f^3)$

where
$$\ell_b^j = r_b^{j-1}$$
 and $r_b^j = f^j(r_b^{j-1}) \oplus \ell_b^{j-1}$.

Claim 18

 $\Pr_{f^{1} \leftarrow \Pi_{n}} \left[\mathsf{Bad}^{1} := \exists i \neq j \colon r_{i}^{1} = r_{j}^{1} \right] \leq \frac{\binom{q}{2}}{2^{n}}$

Let $(\ell_1^0, r_1^0), \ldots, (\ell_q^0, r_q^0) = (x_1, \ldots, x_k).$

The following rv's are defined w.r.t. $(f^1, f^2, f^3) \leftarrow \Pi_n^3$.

where
$$\ell_b^j = r_b^{j-1}$$
 and $r_b^j = f^j(r_b^{j-1}) \oplus \ell_b^{j-1}$.

Proof: $r_i^0 = r_i^0 \implies \overline{r_i}^* \neq r_i^*$

$$\mathsf{Pr}_{f^{1} \leftarrow \Pi_{n}} \left[\mathsf{Bad}^{1} := \exists i \neq j \colon r_{i}^{1} = r_{j}^{1} \right] \leq \frac{\binom{q}{2}}{2^{n}}$$

Let $(\ell_1^0, r_1^0), \ldots, (\ell_q^0, r_q^0) = (x_1, \ldots, x_k).$

The following rv's are defined w.r.t. $(f^1, f^2, f^3) \leftarrow \prod_{n=1}^{3} (f^2, f^3)$

where
$$\ell_b^j = r_b^{j-1}$$
 and $r_b^j = f^j(r_b^{j-1}) \oplus \ell_b^{j-1}$.

$$\mathsf{Pr}_{f^{1} \leftarrow \Pi_{n}} \left[\mathsf{Bad}^{1} := \exists i \neq j \colon r_{i}^{1} = r_{j}^{1} \right] \leq \frac{\binom{q}{2}}{2^{n}}$$

Let $(\ell_1^0, r_1^0), \ldots, (\ell_q^0, r_q^0) = (x_1, \ldots, x_k).$

The following rv's are defined w.r.t. $(f^1, f^2, f^3) \leftarrow \prod_{n=1}^{3} \Pi_n^3$

$$\mathsf{Pr}_{(f^1, f^2) \leftarrow \Pi_n^2} \left[\mathsf{Bad}^2 := \exists i \neq j \colon r_i^1 = r_j^1 \lor r_i^2 = r_j^2 \right] \le 2 \cdot \frac{\binom{q}{2}}{2^n} \in O(\frac{q^2}{2^n})$$

Let $(\ell_1^0, r_1^0), \ldots, (\ell_q^0, r_q^0) = (x_1, \ldots, x_k).$

The following rv's are defined w.r.t. $(f^1, f^2, f^3) \leftarrow \prod_{n=1}^{3} (f^2, f^3)$

Let $(\ell_1^0, r_1^0), \ldots, (\ell_q^0, r_q^0) = (x_1, \ldots, x_k).$

The following rv's are defined w.r.t. $(f^1, f^2, f^3) \leftarrow \prod_{n=1}^{3} f^{n-1}$

Let $(\ell_1^0, r_1^0), \ldots, (\ell_a^0, r_a^0) = (x_1, \ldots, x_k).$

Let $(\ell_1^0, r_1^0), \ldots, (\ell_a^0, r_a^0) = (x_1, \ldots, x_k).$

Let $S = \{(z_1, ..., z_q) \in (\{0, 1\}^n)^q : \forall i \neq j : z_i \neq z_j\}.$

Let $\mathcal{S} = \{(z_1, \ldots, z_q) \in (\{0, 1\}^n)^q \colon \forall i \neq j \colon z_i \neq z_j\}.$

Claim 21

 $\left((\ell_1^3,\ldots,\ell_q^3)\mid \neg \operatorname{Bad}^2\right)$ is uniform over $\mathcal{S}.$

Let $\mathcal{S} = \{(z_1, \ldots, z_q) \in (\{0, 1\}^n)^q \colon \forall i \neq j \colon z_i \neq z_j\}.$

Claim 21

 $\left(\left(\ell_1^3,\ldots,\ell_q^3\right)\mid \neg \operatorname{Bad}^2\right)$ is uniform over \mathcal{S} .

Proof:

Let $\mathcal{S} = \{(z_1, \ldots, z_q) \in (\{0, 1\}^n)^q \colon \forall i \neq j \colon z_i \neq z_j\}.$

Claim 21

 $\left(\left(\ell_1^3,\ldots,\ell_q^3\right)\mid\neg\operatorname{Bad}^2\right)$ is uniform over \mathcal{S} .

Proof: For any $\mathbf{z} = (z_1, \dots, z_q) \in (\{0, 1\}^n)^q$ and $\pi \in \Pi_n$:

 $\Pr\left[(\ell_1^3,\ldots,\ell_q^3)=\mathbf{Z}\right]=\Pr\left[(\ell_1^3,\ldots,\ell_q^3)=\pi(\mathbf{Z}):=(\pi(z_1),\ldots,\pi(z_q))\right]\Box$

Section 3 Applications

Benny Applebaum & Iftach Haitner (TAU)

Foundation of Cryptography

December 1, 2016 31/35

General paradigm

Design a scheme assuming that you have random functions, and the realize them using PRFs.

Subsection 1

Private-key Encryption

Private-key Encryption

Construction 22 (PRF-based encryption)

Given an (efficient) PRF F, define the encryption scheme (Gen, E, D)):

Key generation: Gen (1^n) returns $k \leftarrow \mathcal{F}_n$

Encryption: $E_k(m)$ returns $U_n, k(U_n) \oplus m$

Decryption: $D_k(c = (c_1, c_n))$ returns $k(c_1) \oplus c_2$

Private-key Encryption

Construction 22 (PRF-based encryption)

Given an (efficient) PRF F, define the encryption scheme (Gen, E, D)):

```
Key generation: Gen(1^n) returns k \leftarrow \mathcal{F}_n
```

Encryption: $E_k(m)$ returns $U_n, k(U_n) \oplus m$

Decryption: $D_k(c = (c_1, c_n))$ returns $k(c_1) \oplus c_2$

Advantages over the PRG based scheme?

Private-key Encryption

Construction 22 (PRF-based encryption)

Given an (efficient) PRF F, define the encryption scheme (Gen, E, D)):

```
Key generation: Gen(1^n) returns k \leftarrow \mathcal{F}_n
```

Encryption: $E_k(m)$ returns $U_n, k(U_n) \oplus m$

Decryption: $D_k(c = (c_1, c_n))$ returns $k(c_1) \oplus c_2$

- Advantages over the PRG based scheme?
- Proof of security?

Conclusion

 We constructed PRFs and PRPs from length-doubling PRG (and thus from one-way functions)

Conclusion

- We constructed PRFs and PRPs from length-doubling PRG (and thus from one-way functions)
- Main question: find a simpler, more efficient construction

Conclusion

- We constructed PRFs and PRPs from length-doubling PRG (and thus from one-way functions)
- Main question: find a simpler, more efficient construction

or at least, a less adaptive one