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Informal Discussion
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Motivation discussion

1. We've seen a small set of objects: { G(x)}xeqo,137, that “looks like" a
larger set of objects: {X},c (0,132
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Motivation discussion

1. We've seen a small set of objects: { G(x)}xeqo,137, that “looks like" a
larger set of objects: {X},c (0,132

2. We want small set of objects: efficient function families, that looks like a
huge set of objects: the set of all functions.

Solution
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Subsection 1

Function Families
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Function families

1. F = {Fn}nen, Where F, = {f: {0,1}™(" s {0,114}
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Function families

1. F = {Fn}nen, where F, = {f: {0, 1}m(n) — {0, 1 }Z(n)}
2. We write F = {.Fn: {0, 1}m(n) = {0’ 1}l(n)}
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Function families

1. F = {Fn}nen, Where F, = {f: {0,1}7(" s {0, 1}/()}
2. We write F = {F,: {0,1}7(") — {0,1}4"}

3. If m(n) = ¢(n) = n, we omit it from the notation
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Function families

1. F = {Fn}nen, Where F, = {f: {0,1}7(" s {0,1}4(M}
2. We write F = {F,: {0,1}7)  {0,1}4"M}
3. If m(n) = ¢(n) = n, we omit it from the notation

4. We identify function with their description
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Random functions

Definition 1 (random functions)

For n, k € N, let M, x be the family of all functions from {0, 1}" to {0, 1}*.
Let I_In = I-In7n.
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Random functions

Definition 1 (random functions)

For n, k € N, let M, x be the family of all functions from {0,1}" to {0, 1}.
Let I_In = rln7n.

» 1+ I, is a “random access" source of randomness

» Parties with access to a common 7 « I, can do a lot
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Random functions

Definition 1 (random functions)

For n, k € N, let M, x be the family of all functions from {0,1}" to {0, 1}.
Let I_In = I-ln7n.

> 7« I,is a “random access" source of randomness

» Parties with access to a common = + I, can do a lot

» How long does it take to describe = € M1,? 2" - n bits
» The truth table of = < N, is a uniform string of length 2" - n

> For integer function m, we will consider the function family {1, iy }-
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Subsection 2

Efficient Function Families
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Efficient function families

Definition 2 (efficient function family)

An ensemble of function families 7 = {F,}nen is efficient, if:

Samplable. F is samplable in polynomial-time: there exists a PPT that given
17, outputs (the description of) a uniform element in 7.

Efficient. There exists a polynomial-time algorithm that given x € {0,1}"
and (a description of) f € F,, outputs f(x).
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Subsection 3

Pseudorandom Functions
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Pseudorandom Functions

Definition 3 (pseudorandom functions (PRFs))
An efficient ensemble F = {F,: {0,1}7" — {0,1}*M} is pseudorandom, if

| Pr DM =1]= _Pr [D"(17) =1]| = neg(n),
f<Fn 7= m(ny, e(n)
for any oracle-aided PPT D.
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Pseudorandom Functions

Definition 3 (pseudorandom functions (PRFs))

An efficient ensemble F = {F,: {0,1}7" — {0,1}*M} is pseudorandom, if
| Pr DM =1]= _Pr [D"(17) =1]| = neg(n),

for any oracle-aided PPT D.

f<Fn

7<=m(n), e(n)

~
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» Why “oracle-aided"?

D(1™)

» Easy to construct (no assumption!) with logarithmic input length
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Pseudorandom Functions

Definition 3 (pseudorandom functions (PRFs))
An efficient ensemble F = {F,: {0,1}7" — {0,1}*M} is pseudorandom, if

frqany __ o Tr40y .
| B [P0 =1] = e BT = 1] = nee()

for any oracle-aided PPT D.
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» Why “oracle-aided"?

» Easy to construct (no assumption!) with logarithmic input length
»> PRFs of super logarithmic input length, which is the interesting case, imply PRGs
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Pseudorandom Functions

Definition 3 (pseudorandom functions (PRFs))
An efficient ensemble F = {F,: {0,1}7(") {0 1}‘3(")} is pseudorandom, if
frq4ny o 7r _ _
|, Pr [D(17) =1] L Pr D7) = 1]] = neg(n),
for any oracle-aided PPT D.
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» Why “oracle-aided"?

» Easy to construct (no assumption!) with logarithmic input length

»> PRFs of super logarithmic input length, which is the interesting case, imply PRGs
> We will mainly focus on the case m(n) = ¢(n) = n
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Definition 3 (pseudorandom functions (PRFs))
An efficient ensemble F = {F,: {0,1}7(") {0 1}‘3(")} is pseudorandom, if
frq4ny o 7r _ _
| Pe D =1] = pr D717 = 1] = negn)

for any oracle-aided PPT D.
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Why “oracle-aided"?

Easy to construct (no assumption!) with logarithmic input length

PRFs of super logarithmic input length, which is the interesting case, imply PRGs
We will mainly focus on the case m(n) = ¢(n) = n

We write D7 to stand for (D);_ .
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Section 2

PRF from OWF
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Naive Construction
Let G: {0,1}"+ {0,1}?", and for s € {0,1}" define fs: {0,1} — {0,1}" by
> £,(0) = G(5);

2n-

-----
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Let G: {0,1}" — {0,1}?", and for s € {0, 1}" define fs: {0,1} — {0,1}" by
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Naive Construction
Let G: {0,1}" — {0,1}?", and for s € {0, 1}" define fs: {0,1} — {0,1}" by
> f(0) = G(s);

2n-

-----

Claim 4
Assume G is a PRG, then {7, = {fs}sc{o0,1}7}nen is @ PRF. J

Proof:
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Naive Construction
Let G: {0,1}" — {0,1}?", and for s € {0, 1}" define fs: {0,1} — {0,1}" by
> fs(o) - G(5)1 ,,,,, n

2n-

-----

Claim 4
Assume G is a PRG, then {7, = {fs}sc{o0,1}7}nen is @ PRF. J

Proof: The truth table of f < F, is G(U,), where the truth table of 7 < Iy , is
UZnD
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Naive Construction
Let G: {0,1}" — {0,1}?", and for s € {0, 1}" define fs: {0,1} — {0,1}" by
> fs(o) - G(5)1 ,,,,, n

2n-

7777

Claim 4
Assume G is a PRG, then {7, = {fs}sc{o0,1}7}nen is @ PRF. J

Proof: The truth table of f < F, is G(U,), where the truth table of 7 < Iy , is
UZnD

» Naturally extends to input of length O(log n) :-)
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Naive Construction

Let G: {0,1}" — {0,1}2", and for s € {0,1}" define f;: {0,1} — {0,1}" by
> 5(0) = G()1,....n
> fs(1) = G(S)n+1,...2n-

Claim 4
Assume G is a PRG, then {7, = {fs}sc{o0,1}7}nen is @ PRF. J

Proof: The truth table of f < F, is G(U,), where the truth table of 7 < Iy , is
UZnD

» Naturally extends to input of length O(log n) :-)

» Miserably fails for longer length (which is the only interesting case) :-(
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Naive Construction

Let G: {0,1}"+ {0,1}?", and for s € {0,1}" define fs: {0,1} — {0,1}" by
> £5(0) = G(8)1....n
> fs(1) = G(S)n+1,...2n-

Claim 4
Assume G is a PRG, then {7, = {fs}sc{o0,1}7}nen is @ PRF. J

Proof: The truth table of f < F, is G(U,), where the truth table of 7 < Iy , is
Uop0

» Naturally extends to input of length O(log n) :-)
» Miserably fails for longer length (which is the only interesting case) :-(

» Problem, we are constructing the whole truth table, even to compute a
single output
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Subsection 1

The GGM Construction
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The GGM Construction

Construction 5 (GGM)

For G: {0,1}" — {0,1}?" and s € {0,1}",
> Go(s) = G(S),...n
> Gi(s) = G(S)n+1,...2n

For x € {0, 1} let fs(x) = Gy, (fs(x1.... k—1)),
letting fs() = s.
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The GGM Construction

Construction 5 (GGM)

For G: {0,1}" — {0,1}?" and s € {0,1}",
> Go(s) = G(S),...n
> Gi(s) = G(S)n+1,...2n

For x € {0, 1} let fs(x) = Gy, (fs(x1.... k—1)),
letting fs() = s.

Sx = fs(X)
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The GGM Construction

Construction 5 (GGM)

For G: {0,1}" — {0,1}?" and s € {0,1}",
> Go(s) = G(S),...n
> Gi(s) = G(S)n+1,...2n

For x € {0, 1} let fs(x) = Gy, (fs(x1.... k—1)),
letting fs() = s.

V.

> Example: f3(001) = Spo01 = G1(S()0) = G1(Go(30)) = G1(Go(G()(S)))
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The GGM Construction

Construction 5 (GGM)

For G: {0,1}" — {0,1}?" and s € {0,1}",
> Go(s) = G(S),...n
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For x € {0, 1} let fs(x) = Gy, (fs(x1.... k—1)),
letting fs() = s.
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The GGM Construction

Construction 5 (GGM)

For G: {0,1}" — {0,1}?" and s € {0,1}",
> Go(s) = G(S),...n
> Gi(s) = G(S)n+1,...2n

For x € {0, 1} let fs(x) = Gy, (fs(x1.... k—1)),
letting fs() = s.

v

» Example: 15(001) = Sgo1 = G1(So0) = Gi1(Go(S0)) = G1(Go(Go(S)))
» Gis poly-time — F :={F,={f: s€{0,1}"}} is efficient

Theorem 6 (Goldreich-Goldwasser-Micali (GGM))
If G is a PRG then F is a PRF. J
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The GGM Construction

Construction 5 (GGM)

For G: {0,1}" — {0,1}?" and s € {0,1}",
> Go(s) = G(S),...n
> Gi(s) = G(S)n+1,...2n

For x € {0, 1} let fs(x) = Gy, (fs(x1.... k—1)),
letting fs() = s.

v

» Example: 15(001) = Sgo1 = G1(So0) = Gi1(Go(S0)) = G1(Go(Go(S)))
» Gis poly-time — F :={F,={f: s€{0,1}"}} is efficient

If G is a PRG then F is a PRF. OWFs imply PRFs.

Theorem 6 (Goldreich-Goldwasser-Micali (GGM)) J Corollary 7 J
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Subsection 2

Proof
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Proof Idea

Assume 3 PPT D, p € poly and infinite set Z C N with

|Pr[D77(17) = 1] — Pr[D""(17) = 1]| > ﬁ, (1)

forany ne 7.
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Proof Idea
Assume 3 PPT D, p € poly and infinite set Z C N with

1
r Fn(4ny — — Pr Magqny —
|Pr[D77(1") = 1] — Pr[D"(17) 1]|2—p(n), (1)
forany ne 7.

Fix n € N and let t = t(n) be a bound on the running time of D(17).
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Proof Idea

Assume 3 PPT D, p € poly and infinite set Z C N with

IPHDF(17) = 1] — PADM(17) = 1]| > — (1)

p(n)’

forany ne 7.

Fix n € N and let t = t(n) be a bound on the running time of D(1”). We use D
to construct a PPT D’ such that

)

! ’ B 1
Pr[D'((Uzn)') = 1] — Pr[D'(G(Up))") = 1| > o

where (Uz,)! = US), ... U and G(U,)t = G(USY), ..., GLUT).
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Proof Idea
Assume 3 PPT D, p € poly and infinite set Z C N with

IPHDF(17) = 1] — PADM(17) = 1]| > —

p(r) W

forany ne 7.

Fix n € N and let t = t(n) be a bound on the running time of D(1”). We use D
to construct a PPT D’ such that

L
np(n)

where (Uz,)! = US), ... U and G(U,)t = G(USY), ..., GLUT).

|Pr[D'((Uzn)") = 1] = Pr[D'(G(Un))") = 1| >

)

Hence, D’ violates the security of G.(?)
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The Hybrid
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The Hybrid

> 7;: all the nodes of depth smaller than i are labeled by random strings. Other nodes are
labeled as before (by applying PRG to the father and taking right/left half).

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 17/35



The Hybrid

> 7;: all the nodes of depth smaller than i are labeled by random strings. Other nodes are
labeled as before (by applying PRG to the father and taking right/left half).

» What family is H+?

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 17/35



The Hybrid

> 7;: all the nodes of depth smaller than i are labeled by random strings. Other nodes are
labeled as before (by applying PRG to the father and taking right/left half).

» What family is H+?

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 17/35



The Hybrid

> 7;: all the nodes of depth smaller than i are labeled by random strings. Other nodes are
labeled as before (by applying PRG to the father and taking right/left half).

» What family is H1? Fn.
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The Hybrid

> 7;: all the nodes of depth smaller than i are labeled by random strings. Other nodes are
labeled as before (by applying PRG to the father and taking right/left half).
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The Hybrid

= Hy « H,
[ [ ] [ [ ]
AREEEEEEREEEEEEN

> 7;: all the nodes of depth smaller than i are labeled by random strings. Other nodes are
labeled as before (by applying PRG to the father and taking right/left half).

» What family is H1? Fn. What is Hn?
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The Hybrid

= Hy « H,
[ [ ] [ [ ]
AREEEEEEREEEEEEN

> 7;: all the nodes of depth smaller than i are labeled by random strings. Other nodes are
labeled as before (by applying PRG to the father and taking right/left half).

» What family is H1? Fpn. What is Hp? Mp.
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The Hybrid

= Hy « H,
[ [ ] [ [ ]
AREEEEEEREEEEEEN

> 7;: all the nodes of depth smaller than i are labeled by random strings. Other nodes are
labeled as before (by applying PRG to the father and taking right/left half).

» What family is H1? Fpn. What is Hp? Mp.
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The Hybrid

ot Hy < 3,
[ [ ] [ [ ]
ENEEEEEEEEEEEEEE

H, « H,

> H;: all the nodes of depth smaller than i are labeled by random strings. Other nodes are
labeled as before (by applying PRG to the father and taking right/left half).

» What family is H1? Fpn. What is Hp? Mp.

» Forsome i€ {1,...,n— 1}, algorithm D distinguishes #; from #,, 1 by #(n)

Hy < H; | Hip1 < My
[T ]
---=---
EEEEEEEEEEEEEEEN | [ [ LTI T[]
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The Hybrid cont.
We focus on the case where D distinguishes between H,_¢ and H,
[ | Hp1 < Hiy [ | Hy « Hy
[ [ ]
| [ [ [ ]
[ [ | [ [ |
EEEEEEEEEEEEENEN
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The Hybrid cont.

We focus on the case where D distinguishes between H,_1 and H,

» D distinguishes (via t samples) between

> R —a uniform string of length 27 - n, and
» P -astring generated by 2"~ independent calls to G
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The Hybrid cont.

We focus on the case where D distinguishes between H,_1 and H,

» D distinguishes (via t samples) between

» R —auniform string of length 2" - n, and
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The Hybrid cont.
We focus on the case where D distinguishes between H,_¢ and H,
[ | Hp1 < Hiy [ | Hy « Hy
[ [ ]
| [ [ [ ]
[ [ | [ [ |
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The Hybrid cont.

We focus on the case where D distinguishes between H,_1 and H,

] ]
Algorithm 8 (D’ on yy, ..., y; € ({0, 1}2™)})
Emulate D. Initialize a counter k = 0. On the i’th query g; made by D:

> If the cell queries by g;’'th is non-empty, answer with the content of the cell.

»> Else increment k by 1 and do:

> If g; is a left son, fill its cell with the left half of y, and use the right half of y to fill the

right brother of g;.
» If g; is a right son, fill its cell with the right half of yx and use the left half of y to fill the

cell of left brother of g;.
v
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> D/(Usp)t)/ D'(G(U))!) emulates D with access to R/ P
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Pseudorandom Permutations
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Formal Definition
Let I, be the set of all permutations over {0, 1}".
Definition 9 (pseudorandom permutations (PRPs))

A permutation ensemble F = {F, : {0,1}" — {0,1}"} is a pseudorandom
permutation, if

Pr[D7(17) = 1] — Pr[D™(17) = 1| = neg(n), )

for any oracle-aided PPT D
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permutation, if
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» Hence, PRPs are indistinguishable from PRFs...

» If no one can distinguish between PRFs and PRPs, let's use PRFs
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Subsection 1

PRP from PRF
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Feistel permutation

How does one turn a function into a permutation?
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Feistel permutation
How does one turn a function into a permutation?

Definition 10 (LR)
For f: {0,1}" +— {0,1}", let LR;: {0,1}2" > {0,1}2"
be defined by

LRs(¢,r) = (r,f(r) ® ¢).
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How does one turn a function into a permutation?

Definition 10 (LR)
For f: {0,1}" +— {0,1}", let LR;: {0,1}2" > {0,1}2"
be defined by

LRs(¢,r) = (r,f(r) ® ¢).

X3 %“X%‘l

» LRy is a permutation: LR, (z, w) = (f(z) ® w, z)
» LRy is efficiently computable and invertible given
oracle access to f
> Forie Nand f',....f define LRy q: {0,1}2" — {0,1}2" by
’’’’ fi(f, r) = (I’ii1 s fi(fi71) (&%) ”71 ), for (€i71 s I'i71) = LRf1’.“’fi—1 (é, r).
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Luby-Rackoff Thm.
Recall LR¢(¢,r) = (r,f(r) @ £).
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Definition 11
Given a function family 7 = {F,: {0,1}" +— {0, 1}"}, let
LR'(F) = {LR:, ={LRn__n: f',... f € Fn}},

-----
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and LRy 2(17,0") = LRp(0", f1(0") & 17) = (f1(0") & 17, )
» LR3.?
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Luby-Rackoff Thm.

Recall LR¢(¢,r) = (r, f(r) @ ).

Definition 11

Given a function family 7 = {F,: {0,1}" — {0, 1}"}, let
LR'(F) = {LR:, ={LRn__n: f',... f € Fn}},

77777

> LR} is always a permutation family, and is efficient if F is.
» Is LR’ pseudorandom?
> LR%? LRy 2(0",0") = LR (0", f1(0")) = (f'(0"), ")

and LRy 2(17,0") = LRp(0", f1(0") & 17) = (f1(0") & 17, )
» LR3.?

Theorem 12 (Luby-Rackoff)
Assuming that F is a PRF, then LR%. is a PRP

» LR*(F) is pseudorandom even if inversion queries are allowed
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Proving Luby-Rackoff

It suffices to prove that LR%n is pseudorandom (?)
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2" . 3n, where that of element in MM, is log(22"1) > log ((2—:")22"> >22n.pn
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Proving Luby-Rackoff
It suffices to prove that LR%H is pseudorandom (?)

» How would you prove that?

> Maybe LR3(|'|n) = ﬁg,,? description length of element in LRS(I'I,,) is

2" . 3n, where that of element in MM, is log(22"1) > log ((2—:)22"> >22n.pn
Claim 13
For any g-query D,
| PAD-F(M)(17) = 1] — Pr[D™=r(17)] = 1] € O(¢?/2").

» We assume for simplicity that D is deterministic, non-repeating and
non-adaptive.

> Let x1,...,Xxq be D’s queries.

> We show (f(x1),. f(xq)),HRa(nn) is O(g?/2™) close (i.e., in statistical
distance) to (f(x1) (X))
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Proving Luby-Rackoff
It suffices to prove that LR%H is pseudorandom (?)

» How would you prove that?

> Maybe LR3(|'|n) = ﬁg,,? description length of element in LRS(I'I,,) is

2" . 3n, where that of element in MM, is log(22"1) > log ((2—:)22"> >22n.pn
Claim 13
For any g-query D,
| PAD-F(M)(17) = 1] — Pr[D™=r(17)] = 1] € O(¢?/2").

» We assume for simplicity that D is deterministic, non-repeating and
non-adaptive.

> Let x1,...,Xxq be D’s queries.
> We show (f(x1),. f(xq)),HRg(nn) is O(g?/2™) close (i.e., in statistical
distance) to (f(x1) (X))

» To do that, we show both distributions are O(g?/2") close to
Distinct := ((z1,...2q) + ({0,1}2M9 | Vi # j: (2))o # (Zj)0)-
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Reminder: Statistical Distance

Definition 14
The statistical distance between distributions P and Q over U, is defined by

SD Z |P(u) — Q(u)| = max{Pr[S] Pr(S]}

ueld
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Reminder: Statistical Distance
Definition 14

The statistical distance between distributions P and Q over U, is defined by

SD Z |P(u) — Q(u)| = max{Pr[S] Pr(S]}

ueld

In case SD(P, Q) < ¢, we say that P and Q are ¢ close.

Fact 15

Let £ be an event (i.e., set) and assume SD(P|-¢, Q) < 61 and Prp [€] < d2.
Then SD(P, Q) <61+ do
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Proving Fact 15
For any set S, it holds that

Pr(s] = Prle] - Pris] +Prl-¢] - Pr [S]

> (1-2)- Pr 18]
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Proving Fact 15
For any set S, it holds that

Pr(s] = Prle] - Pris] +Prl-¢] - Pr [S] @)

> (1-0)- Pr [8]

Hence,
PrIS] = Pr[S1 < Prls] = (1= 42) Pr [S] 4)

< _
< Izr [S] Plirg [S] + 02
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Proving Fact 15
For any set S, it holds that

Prls] = Prle] - Pr (] + Pri=e] - Pr [8] 3)

> (1-0)- Pr [8]

Hence,
PrIS] = Br(S] < Pris] = (1 é2) Pr (5] (4)
< %r [S]— Plirg [S]+ 02
Thus,

SD(P,Q) = mgx{lzr [S] — I;r [S]} < mgx{Fér [S] - PF"ﬁrg [S]} + 02 = 01 + 02.
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For f € M, let Bad(f) := 3i # j: f(x;)o = f(X)o-

Claim 16

Pr,. Bad(n] < & < ¢ J
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For f € M, let Bad(f) := 3i # j: f(x;)o = f(X)o-

Claim 16

q
Pry, [Bad(n)] < & < £ }
Proof: ?
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(f(X0), - - -, f(Xq))s._p Is close to Distinct

Recall Distinct := ((z1,...2q) + ({0,1}2")9 | Vi # j: (Zi)o # (Z)o)-

For f € M, let Bad(f) := 3i # j: f(x;)o = f(X)o-
Claim 16

q
2

Pr, - [Bad(f)] < ¥ < &

Proof: ?

Claim 17
((f(xo), X)) f =TT | = Bad(f)) = Distinct
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(f(X0), - - -, f(Xq))s._p Is close to Distinct
Recall Distinct := ((z1,...2zq) + ({0,1}2M)9 | Vi # j: (2))o # (2))o)-

For f € M, let Bad(f) := 3i # j: f(x;)o = f(X)o-

Claim 16

q 2
P g [Bad() < @ < £ J
Proof: ?
Claim 17
((f(xo), X)) f =TT | = Bad(f)) = Distinct J
Proof: ?

By Fact 15, (f(Xo),..-,f(Xq)),. r is & close to Distinct
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(f(x0),-- -, f(xq))ﬂ_LRsmn) is close to Distinct
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(f(x0),-- -, f(xq))ﬂ_LRs(nn) is close to Distinct

Let (€9, r9), ..., (€5,19) = (X1, - -, Xk).
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(f(x0),-- -, f(xq))ﬂ_LRs(nn) is close to Distinct

Let (€9, r9), ..., (€5,19) = (X1, - -, Xk).

The following rv’s are defined w.rt. (', 2, f3) < M3.

Eﬁ’ r1° ég rg fg rg
1 1 1 1 1 1
Gin i ln fg | g
Glnliln ‘o | 7g
61 1 42 I Eq 3

where ¢, =l "and ) = fi(r) Y@ e, .
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J 1 and (=Y @ T
where ¢, =r,~ andry =fi(r, )DL, . Proof:

Claim 18

Pryion, [Bad' =3i#ji ! = 1] <

Benny Applebaum  lftach Haitner (TAU) Foundation of Cryptography
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Let (€9, r9), ..., (€5,19) = (X1, - -, Xk).

The following rv’s are defined w.rt. (', 2, f3) < M3.

Al la]nd o]
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1 I A= o g
where ¢, =r,~ andry =fi(r, )DL, . Proof:rl.O:rjO AT
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(f(x0),-- -, f(xq))ﬂ_LRs(nn) is close to Distinct

Let (€9, r9), ..., (€5,19) = (X1, - -, Xk).

The following rv’s are defined w.rt. (', 2, f3) < M3.
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- 0,0 1_ 1] _o-n
Claim 18 T =>an[f;—f,-]—2 -

Pryion, [Bad' =3i#ji ! = 1] <

Benny Applebaum  lftach Haitner (TAU) Foundation of Cryptography December 1, 2016 29/35



(f(x0),-- -, f(xq))ﬂ_LRs(nn) is close to Distinct

Let (€9, r9), ..., (€5,19) = (X1, - -, Xk).

The following rv’s are defined w.rt. (', 2, f3) < M3.

0T 0 Y 0 0
21 r11 412 r21 £$ r(1,
a1l - Rl
e EREE AN R
£ 1 | Zq I
i 1 Jo— g1 j—1
where ¢, =" andr, = fi(r]" )@ £, . Proof: 10 = f,-o 7T+ M and
. 0,0 1 _ ] —o-n
Claim 18 WA = P [l =r] =20

Pryicn, [Bad' :==3i#ji il =rl] < (Zg)

Claim 19

q
Prin 2y [Bad2 =3i£jrl =rlvre= r]?] <2. (22) € O(gin)

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 29/35



(f(x0),-- -, f(xq))ﬂ_LRs(nn) is close to Distinct

Let (€9, r9), ..., (€5,19) = (X1, - -, Xk).

The following rv’s are defined w.rt. (', 2, f3) < M3.

0T 0 Y 0 0
21 r11 412 r21 £$ r(1,
a1l - Rl
e EREE AN R
£ 1 | Zq I
i 1 Jo— g1 j—1
where ¢, =" andr, = fi(r]" )@ £, . Proof: 10 = f,-o 7T+ M and
. 0,0 1 _ ] —o-n
Claim 18 WA = P [l =r] =20

Pryicn, [Bad' :==3i#ji il =rl] < (Zg)

Proof:
Claim 19

q
Prin 2y [Bad2 =3i£jrl =rlvre= r]?] <2. (22) € O(gin)

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography December 1, 2016 29/35



(f(x0),-- -, f(xq))ﬂ_LRs(nn) is close to Distinct

Let (€9, r9), ..., (€5,19) = (X1, - -, Xk).

The following rv’s are defined w.rt. (', 2, f3) < M3.
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Let (€9, r9), ..., (€5,19) = (X1, - -, Xk).

The following rv’s are defined w.rt. (', 2, f3) < M3.
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Claim 18 T =>an[f;—f,-]—2 -

Pryion, [Bad' =3i#ji ! = 1] <

Proof: similar to the
Claim 19 above

@)

Prin eyeng [Bad? =32l = vi? =] <235 e o)

Claim 20 J

8,r3),...,(¢3,r3) | -Bad?) = Distinct
101 q
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(f(x0),-- -, f(xq))ﬂ_LRs(nn) is close to Distinct

Let (€9, r9), ..., (€5,19) = (X1, - -, Xk).

The following rv’s are defined w.rt. (', 2, f3) < M3.

alrlelr | g
alrleln 0|
Gglrelelnd el
glrlaeln Gl
where ¢, =l "and ) = fi(r) Y@ e, . Proof: rf = f,-o =1, # 1 and
Claim 18 A = P [r =r] =270
oy @)
Pracn, [Bad1 =WE = rl.1] <
Proof: similar to the
Claim 19 above

q
Prin 2y [Bad2 =3i£jrl =rlvre= r]?] <2. (22) € O(gin)
Proof:

Claim 20 J

(E?,rf e (83,18) | = BadZ) = Distinct
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Proving Claim 20
LetS = {(z1,...,29) € ({0,1}")9: Vi # j: zi # z}.

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography



Proving Claim 20

LetS = {(z1,...,29) € ({0,1}")9: Vi # j: zi # z}.
Claim 21

((ﬁ?, L) - Bad2> is uniform over S.
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Proving Claim 20
LetS = {(z1,...,29) € ({0,1}")9: Vi # j: zi # z}.
Claim 21

((ﬁ?, L) - Bad2> is uniform over S.

Proof:
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Proving Claim 20

LetS = {(z1,...,29) € ({0,1}")9: Vi # j: zi # z}.

Claim 21

((E?, L) - Bad2> is uniform over S. }

Proof: Forany z = (z;,...,24) € ({0,1}")? and 7 € Nj:

Pr(e3,.... 68 =2] =Pr[(3,....03) = n(2) .= (w(z1),. .., 7(24))] O
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Section 3

Applications
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General paradigm

Design a scheme assuming that you have random functions, and the realize
them using PRFs.
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Subsection 1

Private-key Encryption
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Private-key Encryption

Construction 22 (PRF-based encryption)

Given an (efficient) PRF F, define the encryption scheme (Gen, E, D)):
Key generation: Gen(1”) returns k < F,

Encryption: Ex(m) returns U,, k(U,) & m

Decryption: D«(c = (cy,cp)) returns k(ci) @ ¢
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Private-key Encryption

Construction 22 (PRF-based encryption)

Given an (efficient) PRF F, define the encryption scheme (Gen, E, D)):
Key generation: Gen(1”) returns k < F,

Encryption: Ex(m) returns U,, k(U,) & m

Decryption: D«(c = (cy,cp)) returns k(ci) @ ¢

» Advantages over the PRG based scheme?
» Proof of security?
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Conclusion

» We constructed PRFs and PRPs from length-doubling PRG (and thus
from one-way functions)
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Conclusion
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Conclusion

» We constructed PRFs and PRPs from length-doubling PRG (and thus
from one-way functions)

» Main question: find a simpler, more efficient construction

or at least, a less adaptive one
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