Foundation of Cryptography, Lecture 7 Non-Interactive ZK and Proof of Knowledge

Benny Applebaum \& Iftach Haitner, Tel Aviv University

Tel Aviv University.
December 29, 2016

Part I

Non-Interactive Zero Knowledge

Interaction is crucial for $\mathcal{Z K}$

Claim 1

Assume that $\mathcal{L} \subseteq\{0,1\}^{*}$ has a one-message $\mathcal{Z K}$ proof (even computational), with standard completeness and soundness, ${ }^{a}$ then $\mathcal{L} \in \mathcal{B P P}$.

[^0]
Interaction is crucial for $\mathcal{Z K}$

Claim 1

Assume that $\mathcal{L} \subseteq\{0,1\}^{*}$ has a one-message $\mathcal{Z K}$ proof (even computational), with standard completeness and soundness, ${ }^{a}$ then $\mathcal{L} \in \mathcal{B P P}$.

$$
{ }^{a} \text { That is, the completeness is } \frac{2}{3} \text { and soundness error is } \frac{1}{3} \text {. }
$$

Proof: HW

Interaction is crucial for $\mathcal{Z K}$

Claim 1

Assume that $\mathcal{L} \subseteq\{0,1\}^{*}$ has a one-message $\mathcal{Z K}$ proof (even computational), with standard completeness and soundness, ${ }^{a}$ then $\mathcal{L} \in \mathcal{B P P}$.
${ }^{a}$ That is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.
Proof: HW
(1) To reduce interaction, we relax the zero-knowledge requirement

Interaction is crucial for $\mathcal{Z K}$

Claim 1

Assume that $\mathcal{L} \subseteq\{0,1\}^{*}$ has a one-message $\mathcal{Z K}$ proof (even computational), with standard completeness and soundness, ${ }^{a}$ then $\mathcal{L} \in \mathcal{B P P}$.
${ }^{\text {a }}$ That is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.
Proof: HW
(1) To reduce interaction, we relax the zero-knowledge requirement
(1) Witness Indistinguishability

$$
\left\{\left\langle\left(\mathrm{P}\left(w_{x}^{1}\right), \mathrm{V}^{*}\right)(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\left\{\left\langle\left(\mathrm{P}\left(w_{x}^{2}\right), \mathrm{V}^{*}\right)(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}},
$$

$$
\text { for any }\left\{w_{x}^{1} \in R_{\mathcal{L}}(x)\right\}_{x \in \mathcal{L}} \text { and }\left\{w_{x}^{2} \in R_{\mathcal{L}}(x)\right\}_{x \in \mathcal{L}}
$$

Interaction is crucial for $\mathcal{Z K}$

Claim 1

Assume that $\mathcal{L} \subseteq\{0,1\}^{*}$ has a one-message $\mathcal{Z K}$ proof (even computational), with standard completeness and soundness, ${ }^{a}$ then $\mathcal{L} \in \mathcal{B P P}$.
${ }^{\text {a }}$ That is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.
Proof: HW
(1) To reduce interaction, we relax the zero-knowledge requirement
(1) Witness Indistinguishability

$$
\left\{\left\langle\left(\mathrm{P}\left(w_{x}^{1}\right), \mathrm{V}^{*}\right)(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\left\{\left\langle\left(\mathrm{P}\left(w_{x}^{2}\right), \mathrm{V}^{*}\right)(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}},
$$

$$
\text { for any }\left\{w_{x}^{1} \in R_{\mathcal{L}}(x)\right\}_{x \in \mathcal{L}} \text { and }\left\{w_{x}^{2} \in R_{\mathcal{L}}(x)\right\}_{x \in \mathcal{L}}
$$

(2) Witness hiding

Interaction is crucial for $\mathcal{Z K}$

Claim 1

Assume that $\mathcal{L} \subseteq\{0,1\}^{*}$ has a one-message $\mathcal{Z K}$ proof (even computational), with standard completeness and soundness, ${ }^{a}$ then $\mathcal{L} \in \mathcal{B P P}$.
${ }^{\text {a }}$ That is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.
Proof: HW
(1) To reduce interaction, we relax the zero-knowledge requirement
(1) Witness Indistinguishability
$\left\{\left\langle\left(\mathrm{P}\left(w_{x}^{1}\right), \mathrm{V}^{*}\right)(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\left\{\left\langle\left(\mathrm{P}\left(w_{x}^{2}\right), \mathrm{V}^{*}\right)(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}}$, for any $\left\{w_{x}^{1} \in R_{\mathcal{L}}(x)\right\}_{x \in \mathcal{L}}$ and $\left\{w_{x}^{2} \in R_{\mathcal{L}}(x)\right\}_{x \in \mathcal{L}}$
(2) Witness hiding
(3) Non-interactive "zero knowledge"

Non-Interactive Zero Knowledge ($\mathcal{N I Z K}$)

Definition 2 ($\mathcal{N} \mathcal{I Z K}$)
A pair of non interactive PPTM's (P, V) is a $\mathcal{N} \mathcal{I Z K}$ for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if $\exists \ell \in$ poly s.t.

- Completeness: $\operatorname{Pr}_{c \leftarrow\{0,1\}^{(||x|)}}[\mathrm{V}(x, c, \mathrm{P}(x, w(x), c))=1] \geq 2 / 3$, for any $x \in \mathcal{L}$ and $w(x) \in R_{\mathcal{L}}(x)$.
- Soundness: $\operatorname{Pr}_{c \leftarrow\{0,1\} e(|x|)}\left[\mathrm{V}\left(x, c, \mathrm{P}^{*}(x, c)\right)=1\right] \leq 1 / 3$, for any P^{*} and $x \notin \mathcal{L}$.
- Zero knowledge: \exists PPTM S s.t. $\left\{(x, c, P(x, w(x), c))_{c \leftarrow\{0,1\}^{\ell(|x|)}}\right\}_{x \in \mathcal{L}} \approx_{c}\{x, \mathrm{~S}(x)\}_{x \in \mathcal{L}}$ for any poly-bounded function w with $w(x) \in R_{\mathcal{L}}(x)$.

Non-Interactive Zero Knowledge ($\mathcal{N I Z K}$)

Definition 2 ($\mathcal{N} \mathcal{Z} \mathcal{K}$)
A pair of non interactive PPTM's (P, V) is a $\mathcal{N} \mathcal{I Z K}$ for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if $\exists \ell \in$ poly s.t.

- Completeness: $\operatorname{Pr}_{c \leftarrow\{0,1\}^{(||x|)}}[\mathrm{V}(x, c, \mathrm{P}(x, w(x), c))=1] \geq 2 / 3$, for any $x \in \mathcal{L}$ and $w(x) \in R_{\mathcal{L}}(x)$.
- Soundness: $\operatorname{Pr}_{c \leftarrow\{0,1\} e(|x|)}\left[\mathrm{V}\left(x, c, \mathrm{P}^{*}(x, c)\right)=1\right] \leq 1 / 3$, for any P^{*} and $x \notin \mathcal{L}$.
- Zero knowledge: \exists РPTM S s.t. $\left\{(x, c, P(x, w(x), c))_{c \leftarrow\{0,1\}^{\ell(|x|)}}\right\}_{x \in \mathcal{L}} \approx_{c}\{x, \mathrm{~S}(x)\}_{x \in \mathcal{L}}$ for any poly-bounded function w with $w(x) \in R_{\mathcal{L}}(x)$.
- c-common (random) reference string (CRS)

Non-Interactive Zero Knowledge ($\mathcal{N I Z K}$)

Definition 2 (NIZK)
A pair of non interactive PPTM's (P, V) is a $\mathcal{N} \mathcal{I Z K}$ for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if $\exists \ell \in$ poly s.t.

- Completeness: $\operatorname{Pr}_{c \leftarrow\{0,1\}^{(||x|)}}[\mathrm{V}(x, c, \mathrm{P}(x, w(x), c))=1] \geq 2 / 3$, for any $x \in \mathcal{L}$ and $w(x) \in R_{\mathcal{L}}(x)$.
- Soundness: $\operatorname{Pr}_{c \leftarrow\{0,1\} e(|x|)}\left[\mathrm{V}\left(x, c, \mathrm{P}^{*}(x, c)\right)=1\right] \leq 1 / 3$, for any P^{*} and $x \notin \mathcal{L}$.
- Zero knowledge: \exists РPTM S s.t. $\left\{(x, c, P(x, w(x), c))_{c \leftarrow\{0,1\}^{\ell(|x|)}}\right\}_{x \in \mathcal{L}} \approx_{c}\{x, \mathrm{~S}(x)\}_{x \in \mathcal{L}}$ for any poly-bounded function w with $w(x) \in R_{\mathcal{L}}(x)$.
- c-common (random) reference string (CRS)
- In the ZK part, CRS is chosen by the simulator.

Non-Interactive Zero Knowledge ($\mathcal{N I Z K}$)

Definition 2 ($\mathcal{N} \mathcal{Z} \mathcal{K}$)
A pair of non interactive PPTM's (P, V) is a $\mathcal{N} \mathcal{I Z K}$ for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if $\exists \ell \in$ poly s.t.

- Completeness: $\operatorname{Pr}_{c \leftarrow\{0,1\}^{(l|x|)}}[\mathrm{V}(x, c, \mathrm{P}(x, w(x), c))=1] \geq 2 / 3$, for any $x \in \mathcal{L}$ and $w(x) \in R_{\mathcal{L}}(x)$.
- Soundness: $\operatorname{Pr}_{c \leftarrow\{0,1\} e(|x|)}\left[\mathrm{V}\left(x, c, \mathrm{P}^{*}(x, c)\right)=1\right] \leq 1 / 3$, for any P^{*} and $x \notin \mathcal{L}$.
- Zero knowledge: \exists РPTM S s.t. $\left\{(x, c, P(x, w(x), c))_{c \leftarrow\{0,1\}^{\ell(|x|)}}\right\}_{x \in \mathcal{L}} \approx_{c}\{x, \mathrm{~S}(x)\}_{x \in \mathcal{L}}$ for any poly-bounded function w with $w(x) \in R_{\mathcal{L}}(x)$.
- c-common (random) reference string (CRS)
- In the ZK part, CRS is chosen by the simulator.
- What does this definition (intuitively) mean?

Non-Interactive Zero Knowledge ($\mathcal{N I Z K}$)

Definition 2 ($\mathcal{N} \mathcal{Z} \mathcal{K}$)
A pair of non interactive PPTM's (P, V) is a $\mathcal{N} \mathcal{I Z K}$ for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if $\exists \ell \in$ poly s.t.

- Completeness: $\operatorname{Pr}_{c \leftarrow\{0,1\}^{(||x|)}}[\mathrm{V}(x, c, \mathrm{P}(x, w(x), c))=1] \geq 2 / 3$, for any $x \in \mathcal{L}$ and $w(x) \in R_{\mathcal{L}}(x)$.
- Soundness: $\operatorname{Pr}_{c \leftarrow\{0,1\} \ell(|x|)}\left[\mathrm{V}\left(x, c, \mathrm{P}^{*}(x, c)\right)=1\right] \leq 1 / 3$, for any P^{*} and $x \notin \mathcal{L}$.
- Zero knowledge: \exists РPTM S s.t. $\left\{(x, c, P(x, w(x), c))_{c \leftarrow\{0,1\}^{\ell(|x|)}}\right\}_{x \in \mathcal{L}} \approx_{c}\{x, S(x)\}_{x \in \mathcal{L}}$ for any poly-bounded function w with $w(x) \in R_{\mathcal{L}}(x)$.
- c-common (random) reference string (CRS)
- In the ZK part, CRS is chosen by the simulator.
- What does this definition (intuitively) mean?
- Auxiliary information.

Non-Interactive Zero Knowledge ($\mathcal{N I Z K}$)

Definition 2 ($\mathcal{N} \mathcal{Z} \mathcal{K}$)
A pair of non interactive PPTM's (P, V) is a $\mathcal{N} \mathcal{I Z K}$ for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if $\exists \ell \in$ poly s.t.

- Completeness: $\operatorname{Pr}_{c \leftarrow\{0,1\}^{(||x|)}}[\mathrm{V}(x, c, \mathrm{P}(x, w(x), c))=1] \geq 2 / 3$, for any $x \in \mathcal{L}$ and $w(x) \in R_{\mathcal{L}}(x)$.
- Soundness: $\operatorname{Pr}_{c \leftarrow\{0,1\} \ell(|x|)}\left[\mathrm{V}\left(x, c, \mathrm{P}^{*}(x, c)\right)=1\right] \leq 1 / 3$, for any P^{*} and $x \notin \mathcal{L}$.
- Zero knowledge: \exists PPTM S s.t. $\left\{(x, c, P(x, w(x), c))_{c \leftarrow\{0,1\}^{\ell(|x|)}}\right\}_{x \in \mathcal{L}} \approx_{c}\{x, S(x)\}_{x \in \mathcal{L}}$ for any poly-bounded function w with $w(x) \in R_{\mathcal{L}}(x)$.
- c-common (random) reference string (CRS)
- In the ZK part, CRS is chosen by the simulator.
- What does this definition (intuitively) mean?
- Auxiliary information.
- Amplification?

Non-Interactive Zero Knowledge ($\mathcal{N I Z K}$)

Definition 2 ($\mathcal{N} \mathcal{Z} \mathcal{K}$)
A pair of non interactive PPTM's (P, V) is a $\mathcal{N} \mathcal{I Z} \mathcal{K}$ for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if $\exists \ell \in$ poly s.t.

- Completeness: $\operatorname{Pr}_{c \leftarrow\{0,1\}^{(||x|)}}[\mathrm{V}(x, c, \mathrm{P}(x, w(x), c))=1] \geq 2 / 3$, for any $x \in \mathcal{L}$ and $w(x) \in R_{\mathcal{L}}(x)$.
- Soundness: $\operatorname{Pr}_{c \leftarrow\{0,1\} \ell(|x|)}\left[\mathrm{V}\left(x, c, \mathrm{P}^{*}(x, c)\right)=1\right] \leq 1 / 3$, for any P^{*} and $x \notin \mathcal{L}$.
- Zero knowledge: \exists РPTM S s.t. $\left\{(x, c, P(x, w(x), c))_{c \leftarrow\{0,1\}^{\ell(|x|)}}\right\}_{x \in \mathcal{L}} \approx_{c}\{x, S(x)\}_{x \in \mathcal{L}}$ for any poly-bounded function w with $w(x) \in R_{\mathcal{L}}(x)$.
- c-common (random) reference string (CRS)
- In the ZK part, CRS is chosen by the simulator.
- What does this definition (intuitively) mean?
- Auxiliary information.
- Amplification?
- What happens when applying S on $x \notin \mathcal{L}$?

Non-Interactive Zero Knowledge, cont.

- Statistical/Perfect zero knowledge?

Non-Interactive Zero Knowledge, cont.

- Statistical/Perfect zero knowledge?
- Non-interactive Witness Hiding (WI)

Section 1

NIZK in HBM

Hidden Bits Model (HBM)

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.

Hidden Bits Model (HBM)

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.
Let c^{H} be the "hidden" CRS:

Hidden Bits Model (HBM)

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.
Let c^{H} be the "hidden" CRS:
(1) Prover sees c^{H}, and outputs a proof π and a set of indices \mathcal{I}.

Hidden Bits Model (HBM)

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.
Let c^{H} be the "hidden" CRS:
(1) Prover sees c^{H}, and outputs a proof π and a set of indices \mathcal{I}.
(2) Verifier only sees π and the bits in c^{H} indexed by \mathcal{I}.

Hidden Bits Model (HBM)

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.
Let c^{H} be the "hidden" CRS:
(1) Prover sees c^{H}, and outputs a proof π and a set of indices \mathcal{I}.
(2) Verifier only sees π and the bits in c^{H} indexed by \mathcal{I}.
(3) Simulator outputs a proof π, a set of indices \mathcal{I} and a partially hidden CRS c^{H}.

Hidden Bits Model (HBM)

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.
Let c^{H} be the "hidden" CRS:
(1) Prover sees c^{H}, and outputs a proof π and a set of indices \mathcal{I}.
(2) Verifier only sees π and the bits in c^{H} indexed by \mathcal{I}.
(3) Simulator outputs a proof π, a set of indices \mathcal{I} and a partially hidden CRS c^{H}.

Hidden Bits Model (HBM)

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.
Let c^{H} be the "hidden" CRS:
(1) Prover sees c^{H}, and outputs a proof π and a set of indices \mathcal{I}.
(2) Verifier only sees π and the bits in c^{H} indexed by \mathcal{I}.
(3) Simulator outputs a proof π, a set of indices \mathcal{I} and a partially hidden CRS c^{H}.

Soundness, completeness and ZK are naturally defined.

Hidden Bits Model (HBM)

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.
Let c^{H} be the "hidden" CRS:
(1) Prover sees c^{H}, and outputs a proof π and a set of indices \mathcal{I}.
(2) Verifier only sees π and the bits in c^{H} indexed by \mathcal{I}.
(3) Simulator outputs a proof π, a set of indices \mathcal{I} and a partially hidden CRS c^{H}.

Soundness, completeness and ZK are naturally defined.

- We give a $\mathcal{N I Z K}$ for $\mathcal{H C}$, Directed Graph Hamiltonicity, in the HBM, and then transfer it into a $\mathcal{N I Z K}$ for $\mathcal{H C}$ in the standard model.

Hidden Bits Model (HBM)

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.
Let c^{H} be the "hidden" CRS:
(1) Prover sees c^{H}, and outputs a proof π and a set of indices \mathcal{I}.
(2) Verifier only sees π and the bits in c^{H} indexed by \mathcal{I}.
(3) Simulator outputs a proof π, a set of indices \mathcal{I} and a partially hidden CRS c^{H}.

Soundness, completeness and ZK are naturally defined.

- We give a $\mathcal{N I Z K}$ for $\mathcal{H C}$, Directed Graph Hamiltonicity, in the HBM, and then transfer it into a $\mathcal{N} \mathcal{I Z K}$ for $\mathcal{H C}$ in the standard model.
- The latter implies a $\mathcal{N} \mathcal{I Z K}$ for all $\mathcal{N} \mathcal{P}$.

Useful matrix

Useful matrix

- Permutation matrix: an $n \times n$ Boolean matrix, each row/column contains a single 1.

Useful matrix

- Permutation matrix: an $n \times n$ Boolean matrix, each row/column contains a single 1.
- Hamiltonian matrix: an $n \times n$ adjacency matrix of a directed graph that is an Hamiltonian cycle of all nodes (note that Hamiltonian matrix is also a permutation matrix).

Useful matrix

- Permutation matrix: an $n \times n$ Boolean matrix, each row/column contains a single 1.
- Hamiltonian matrix: an $n \times n$ adjacency matrix of a directed graph that is an Hamiltonian cycle of all nodes (note that Hamiltonian matrix is also a permutation matrix).
- Useful matrix: an $n^{3} \times n^{3}$ Boolean matrix that contains an Hamiltonian generalized $n \times n$ sub-matrix, and all other entries are zeros.

Useful matrix

- Permutation matrix: an $n \times n$ Boolean matrix, each row/column contains a single 1.
- Hamiltonian matrix: an $n \times n$ adjacency matrix of a directed graph that is an Hamiltonian cycle of all nodes (note that Hamiltonian matrix is also a permutation matrix).
- Useful matrix: an $n^{3} \times n^{3}$ Boolean matrix that contains an Hamiltonian generalized $n \times n$ sub-matrix, and all other entries are zeros.

Useful matrix

- Permutation matrix: an $n \times n$ Boolean matrix, each row/column contains a single 1.
- Hamiltonian matrix: an $n \times n$ adjacency matrix of a directed graph that is an Hamiltonian cycle of all nodes (note that Hamiltonian matrix is also a permutation matrix).
- Useful matrix: an $n^{3} \times n^{3}$ Boolean matrix that contains an Hamiltonian generalized $n \times n$ sub-matrix, and all other entries are zeros.

Claim 3

Let T be a random $n^{3} \times n^{3}$ Boolean matrix s.t. each entry is $1 \mathrm{w} . \mathrm{p} n^{-5}$. Then, $\operatorname{Pr}[T$ is useful $] \in \Omega\left(n^{-3 / 2}\right)$.

Proving $\operatorname{Pr}[T$ is useful $] \in \Omega\left(n^{-3 / 2}\right)$

Proving $\operatorname{Pr}[T$ is useful $] \in \Omega\left(n^{-3 / 2}\right)$

- The expected $\#$ of ones (entries) in T is $n^{6} \cdot n^{-5}=n$.

Proving $\operatorname{Pr}[T$ is useful $] \in \Omega\left(n^{-3 / 2}\right)$

- The expected $\#$ of ones (entries) in T is $n^{6} \cdot n^{-5}=n$.
- By (extended) Chernoff bound, T contains exactly n ones w.p. $\theta(1 / \sqrt{n})$.

Proving $\operatorname{Pr}[T$ is useful $] \in \Omega\left(n^{-3 / 2}\right)$

- The expected $\#$ of ones (entries) in T is $n^{6} \cdot n^{-5}=n$.
- By (extended) Chernoff bound, T contains exactly n ones w.p. $\theta(1 / \sqrt{n})$.
- Each row/colomn of T contain more than a single one entry with probability at most $\binom{n^{3}}{2} \cdot n^{-10}<n^{-4}$.

Proving $\operatorname{Pr}[T$ is useful $] \in \Omega\left(n^{-3 / 2}\right)$

- The expected $\#$ of ones (entries) in T is $n^{6} \cdot n^{-5}=n$.
- By (extended) Chernoff bound, T contains exactly n ones w.p. $\theta(1 / \sqrt{n})$.
- Each row/colomn of T contain more than a single one entry with probability at most $\binom{n^{3}}{2} \cdot n^{-10}<n^{-4}$. Hence, wp at least $1-2 \cdot n^{3} \cdot n^{-4}=1-O\left(n^{-1}\right)$, no raw or column of T contains more than a single one entry.

Proving $\operatorname{Pr}[T$ is useful $] \in \Omega\left(n^{-3 / 2}\right)$

- The expected $\#$ of ones (entries) in T is $n^{6} \cdot n^{-5}=n$.
- By (extended) Chernoff bound, T contains exactly n ones w.p. $\theta(1 / \sqrt{n})$.
- Each row/colomn of T contain more than a single one entry with probability at most $\binom{n^{3}}{2} \cdot n^{-10}<n^{-4}$. Hence, wp at least $1-2 \cdot n^{3} \cdot n^{-4}=1-O\left(n^{-1}\right)$, no raw or column of T contains more than a single one entry.
- Hence, wp $\theta(1 / \sqrt{n})$ the matrix T contains a permutation matrix and all its other entries are zero.

Proving $\operatorname{Pr}[T$ is useful $] \in \Omega\left(n^{-3 / 2}\right)$

- The expected $\#$ of ones (entries) in T is $n^{6} \cdot n^{-5}=n$.
- By (extended) Chernoff bound, T contains exactly n ones w.p. $\theta(1 / \sqrt{n})$.
- Each row/colomn of T contain more than a single one entry with probability at most $\binom{n^{3}}{2} \cdot n^{-10}<n^{-4}$. Hence, wp at least $1-2 \cdot n^{3} \cdot n^{-4}=1-O\left(n^{-1}\right)$, no raw or column of T contains more than a single one entry.
- Hence, wp $\theta(1 / \sqrt{n})$ the matrix T contains a permutation matrix and all its other entries are zero.
- A random permutation matrix forms a cycle wp $1 / n$ (there are n ! permutation matrices and ($n-1$)! of them form a cycle)

$\mathcal{N I Z K}$ for Hamiltonicity in HBM

$\mathcal{N I Z K}$ for Hamiltonicity in HBM

- Common input: a directed graph $G=([n], E)$

$\mathcal{N} \mathcal{I Z K}$ for Hamiltonicity in HBM

- Common input: a directed graph $G=([n], E)$
- We assume wig. that n is a power of 2 (?)

$\mathcal{N} \mathcal{I Z K}$ for Hamiltonicity in HBM

- Common input: a directed graph $G=([n], E)$
- We assume wig. that n is a power of 2 (?)
- Common reference string T viewed as a $n^{3} \times n^{3}$ Boolean matrix, where each entry is 1 w.p n^{-5} (?)

$\mathcal{N} \mathcal{I Z K}$ for Hamiltonicity in HBM

- Common input: a directed graph $G=([n], E)$
- We assume wig. that n is a power of 2 (?)
- Common reference string T viewed as a $n^{3} \times n^{3}$ Boolean matrix, where each entry is 1 w.p n^{-5} (?)

$\mathcal{N} \mathcal{I Z K}$ for Hamiltonicity in HBM

- Common input: a directed graph $G=([n], E)$
- We assume wig. that n is a power of 2 (?)
- Common reference string T viewed as a $n^{3} \times n^{3}$ Boolean matrix, where each entry is 1 w.p n^{-5} (?)

Algorithm 4 (P)

Input: n-node graph $G=([n], E)$ and a cycle C in G.
CRS: $T \in\{0,1\}_{n^{3} \times n^{3}}$.
(1) If T not useful, set $\mathcal{I}=n^{3} \times n^{3}$ (i.e., reveal all T) and $\pi=\perp$.
(2) Otherwise, let H be the (generalized) $n \times n$ sub-matrix containing the hamiltonian cycle in T.
(1) Set $\mathcal{I}=T \backslash H$ (i.e., reveal the bits of T outside of H).
(2) Choose $\phi \leftarrow \Pi_{n}$ s.t. C is mapped to the cycle in H.
(3) Add the entries in H corresponding to non edges in $\mathrm{G}(w r t . \phi)$ to \mathcal{I}.
(3) Output $\pi=\phi$ and \mathcal{I}.

$\mathcal{N} \mathcal{I Z K}$ for Hamiltonicity in HBM cont.

Algorithm 5 (V)

Input: n-node graph $G=([n], E)$, mapping ϕ, index set $\mathcal{I} \subseteq\left[n^{3}\right] \times\left[n^{3}\right]$ and an ordered set $\left\{T_{i}\right\}_{i \in \mathcal{I}}$.

Accept if $\phi=\perp$, all the bits of T are revealed and T is not useful.
Otherwise,
(1) Verify that $\phi \in \Pi_{n}$.
(2) Verify that exists a single $n \times n$ generalized submatrix $H \subseteq T$ s.t. all entries in $T \backslash H$ are zeros.
(3) Verify that all entries of H not corresponding to edges of G according to ϕ, are zeros: $\forall(u, v) \notin E$, the entry $(\phi(u), \phi(v))$ in H is opened to 0 .

$\mathcal{N} \mathcal{I Z K}$ for Hamiltonicity in HBM cont.

Algorithm 5 (V)

Input: n-node graph $G=([n], E)$, mapping ϕ, index set $\mathcal{I} \subseteq\left[n^{3}\right] \times\left[n^{3}\right]$ and an ordered set $\left\{T_{i}\right\}_{i \in \mathcal{I}}$.

Accept if $\phi=\perp$, all the bits of T are revealed and T is not useful.
Otherwise,
(1) Verify that $\phi \in \Pi_{n}$.
(2) Verify that exists a single $n \times n$ generalized submatrix $H \subseteq T$ s.t. all entries in $T \backslash H$ are zeros.
(3) Verify that all entries of H not corresponding to edges of G according to ϕ, are zeros: $\forall(u, v) \notin E$, the entry $(\phi(u), \phi(v))$ in H is opened to 0 .

Claim 6

The above protocol is a perfect $\mathcal{N I Z K}$ for $\mathcal{H C}$ in the HBM, with perfect completeness and soundness error $1-\Omega\left(n^{-3 / 2}\right)$.

Proving Claim 6

- Completeness: Clear.

Proving Claim 6

- Completeness: Clear.
- Soundness: Assume T is useful and V accepts. Then ϕ^{-1} maps the unrevealed "edges" of H to the edges of G.

Proving Claim 6

- Completeness: Clear.
- Soundness: Assume T is useful and V accepts. Then ϕ^{-1} maps the unrevealed "edges" of H to the edges of G.
Hence, ϕ^{-1} maps the cycle in H to an Hamiltonian cycle in G.

Proving Claim 6

- Completeness: Clear.
- Soundness: Assume T is useful and V accepts. Then ϕ^{-1} maps the unrevealed "edges" of H to the edges of G.
Hence, ϕ^{-1} maps the cycle in H to an Hamiltonian cycle in G.
- Zero knowledge?

Algorithm 7 (S)

Input: G
(1) Choose T at random (i.e., each entry is one wp n^{-5}).
(2) If T is not useful, set $\mathcal{I}=n^{3} \times n^{3}$ and $\phi=\perp$.
(3) Otherwise,
(1) Set $\mathcal{I}=T \backslash H$ (where H is the hamiltonian sub-matrix in T).
(2) Let $\phi \leftarrow \Pi_{n}$. Replace all entries of H with zeros.
(3) Add the entries in H corresponding to non edges in G to \mathcal{I}.
(4) Output $\pi=(T, \mathcal{I}, \phi)$.

Algorithm 7 (S)

Input: G
(1) Choose T at random (i.e., each entry is one wp n^{-5}).
(2) If T is not useful, set $\mathcal{I}=n^{3} \times n^{3}$ and $\phi=\perp$.
(3) Otherwise,
(1) Set $\mathcal{I}=T \backslash H$ (where H is the hamiltonian sub-matrix in T).
(2) Let $\phi \leftarrow \Pi_{n}$. Replace all entries of H with zeros.
(3) Add the entries in H corresponding to non edges in G to \mathcal{I}.
(4) Output $\pi=(T, \mathcal{I}, \phi)$.

- Perfect simulation for non-useful T 's.

Algorithm 7 (S)

Input: G
(1) Choose T at random (i.e., each entry is one wp n^{-5}).
(2) If T is not useful, set $\mathcal{I}=n^{3} \times n^{3}$ and $\phi=\perp$.
(3) Otherwise,
(1) Set $\mathcal{I}=T \backslash H$ (where H is the hamiltonian sub-matrix in T).
(2) Let $\phi \leftarrow \Pi_{n}$. Replace all entries of H with zeros.
(3) Add the entries in H corresponding to non edges in G to \mathcal{I}.
(4) Output $\pi=(T, \mathcal{I}, \phi)$.

- Perfect simulation for non-useful T 's.
- For useful T, the location of H is uniform in the real and simulated case.

Algorithm 7 (S)

Input: G
(1) Choose T at random (i.e., each entry is one wp n^{-5}).
(2) If T is not useful, set $\mathcal{I}=n^{3} \times n^{3}$ and $\phi=\perp$.
(3) Otherwise,
(1) Set $\mathcal{I}=T \backslash H$ (where H is the hamiltonian sub-matrix in T).
(2) Let $\phi \leftarrow \Pi_{n}$. Replace all entries of H with zeros.
(3) Add the entries in H corresponding to non edges in G to \mathcal{I}.
(4) Output $\pi=(T, \mathcal{I}, \phi)$.

- Perfect simulation for non-useful T 's.
- For useful T, the location of H is uniform in the real and simulated case.
- ϕ is a random element in Π_{n} in both (real and simulated) cases (?)

Algorithm 7 (S)

Input: G
(1) Choose T at random (i.e., each entry is one wp n^{-5}).
(2) If T is not useful, set $\mathcal{I}=n^{3} \times n^{3}$ and $\phi=\perp$.
(3) Otherwise,
(1) Set $\mathcal{I}=T \backslash H$ (where H is the hamiltonian sub-matrix in T).
(2) Let $\phi \leftarrow \Pi_{n}$. Replace all entries of H with zeros.
(3) Add the entries in H corresponding to non edges in G to \mathcal{I}.
(4) Output $\pi=(T, \mathcal{I}, \phi)$.

- Perfect simulation for non-useful T 's.
- For useful T, the location of H is uniform in the real and simulated case.
- ϕ is a random element in Π_{n} in both (real and simulated) cases (?)
- Hence, the simulation is perfect!

Section 2

From HBM to Standard NIZK

Subsection 1

TDP

Trapdoor permutations

Definition 8 (trapdoor permutations)

A triplet ($\mathrm{G}, f, \operatorname{lnv}$), where G is a PPTM, and f and Inv are poly-time computable, is a family of trapdoor permutation (TDP), if:
(1) On input $1^{n}, \mathrm{G}\left(1^{n}\right)$ outputs a pair ($s k, p k$).
(2) $f_{p k}=f(p k, \cdot)$ is a permutation over $\{0,1\}^{n}$, for every $n \in \mathbb{N}$ and $p k \in \operatorname{Supp}\left(G\left(1^{n}\right)_{2}\right)$.
(3) $\operatorname{lnv}_{s k}=\operatorname{lnv}(s k, \cdot) \equiv f_{p k}^{-1}$ for every $(s k, p k) \in \operatorname{Supp}\left(G\left(1^{n}\right)\right)$
(4) For any РPTM A ,

$$
\operatorname{Pr}_{x \leftarrow\{0,1\}^{n}, p k \leftarrow \mathrm{G}\left(1^{n}\right)_{2}}\left[\mathrm{~A}(p k, x)=f_{p k}^{-1}(x)\right]=\operatorname{neg}(n)
$$

Hardcore Predicates for Trapdoor Permutations

Definition 9 (hardcore predicates for TDP)

A polynomial-time computable $b:\{0,1\}^{n} \mapsto\{0,1\}$ is a hardcore predicate of a TDP (G, f, Inv), if

$$
\underset{p k \leftarrow \mathrm{G}\left(1^{n}\right)_{2}, x \leftarrow\{0,1\}^{n}}{\operatorname{Pr}}\left[\mathrm{P}\left(p k, f_{p k}(x)\right)=b(x)\right] \leq \frac{1}{2}+\operatorname{neg}(n),
$$

for any PPTM P.

Hardcore Predicates for Trapdoor Permutations

Definition 9 (hardcore predicates for TDP)

A polynomial-time computable $b:\{0,1\}^{n} \mapsto\{0,1\}$ is a hardcore predicate of a TDP (G, f, Inv), if

$$
\underset{\left.p k \leftarrow \mathrm{G}(1)^{n}\right)_{2}, x \leftarrow\{0,1\}^{n}}{\operatorname{Pr}}\left[\mathrm{P}\left(p k, f_{p k}(x)\right)=b(x)\right] \leq \frac{1}{2}+\operatorname{neg}(n),
$$

for any PPTM P.
Goldreich-Levin: any TDP has an hardcore predicate (ignoring padding issues)

Example, RSA

In the following $N \in \mathbb{N}$ is a large number (n-bit long) and all operations are modulo N.

Example, RSA

In the following $N \in \mathbb{N}$ is a large number (n-bit long) and all operations are modulo N.

- $\mathbb{Z}_{N}=[N]$ and $\mathbb{Z}_{N}^{*}=\{x \in[N]: \operatorname{gcd}(x, N)=1\}$

Example, RSA

In the following $N \in \mathbb{N}$ is a large number (n-bit long) and all operations are modulo N.

- $\mathbb{Z}_{N}=[N]$ and $\mathbb{Z}_{N}^{*}=\{x \in[N]: \operatorname{gcd}(x, N)=1\}$
- $\phi(N)=\left|\mathbb{Z}_{N}^{*}\right|$ (equals $(P-1)(Q-1)$ for $N=P Q$ with $P, Q \in \mathcal{P}$)

Example, RSA

In the following $N \in \mathbb{N}$ is a large number (n-bit long) and all operations are modulo N.

- $\mathbb{Z}_{N}=[N]$ and $\mathbb{Z}_{N}^{*}=\{x \in[N]: \operatorname{gcd}(x, N)=1\}$
- $\phi(N)=\left|\mathbb{Z}_{N}^{*}\right|$ (equals $(P-1)(Q-1)$ for $N=P Q$ with $P, Q \in \mathcal{P}$)
- For every $e \in \mathbb{Z}_{\phi(N)}^{*}$, the function $f(x) \equiv x^{e} \bmod N$ is a permutation over \mathbb{Z}_{N}^{*}.
In particular, $\left(x^{e}\right)^{d} \equiv x \bmod N$, for every $x \in \mathbb{Z}_{N}^{*}$, where $d \equiv e^{-1} \bmod \phi(N)$

Example, RSA

In the following $N \in \mathbb{N}$ is a large number (n-bit long) and all operations are modulo N.

- $\mathbb{Z}_{N}=[N]$ and $\mathbb{Z}_{N}^{*}=\{x \in[N]: \operatorname{gcd}(x, N)=1\}$
- $\phi(N)=\left|\mathbb{Z}_{N}^{*}\right|$ (equals $(P-1)(Q-1)$ for $N=P Q$ with $P, Q \in \mathcal{P}$)
- For every $e \in \mathbb{Z}_{\phi(N)}^{*}$, the function $f(x) \equiv x^{e} \bmod N$ is a permutation over \mathbb{Z}_{N}^{*}.
In particular, $\left(x^{e}\right)^{d} \equiv x \bmod N$, for every $x \in \mathbb{Z}_{N}^{*}$, where $d \equiv e^{-1} \bmod \phi(N)$

Example, RSA

In the following $N \in \mathbb{N}$ is a large number (n-bit long) and all operations are modulo N.

- $\mathbb{Z}_{N}=[N]$ and $\mathbb{Z}_{N}^{*}=\{x \in[N]: \operatorname{gcd}(x, N)=1\}$
- $\phi(N)=\left|\mathbb{Z}_{N}^{*}\right|$ (equals $(P-1)(Q-1)$ for $N=P Q$ with $P, Q \in \mathcal{P}$)
- For every $e \in \mathbb{Z}_{\phi(N)}^{*}$, the function $f(x) \equiv x^{e} \bmod N$ is a permutation over \mathbb{Z}_{N}^{*}.
In particular, $\left(x^{e}\right)^{d} \equiv x \bmod N$, for every $x \in \mathbb{Z}_{N}^{*}$, where $d \equiv e^{-1} \bmod \phi(N)$

Definition 10 (RSA)

- $G(P, Q)$ sets $p k=(N=P Q, e)$ for some $e \in \mathbb{Z}_{\phi(N)}^{*}$, and $s k=\left(N, d \equiv e^{-1} \bmod \phi(N)\right)$
- $f(p k, x)=x^{e} \bmod N$
- $\operatorname{Inv}(s k, x)=x^{d} \bmod N$

Example, RSA

In the following $N \in \mathbb{N}$ is a large number (n-bit long) and all operations are modulo N.

- $\mathbb{Z}_{N}=[N]$ and $\mathbb{Z}_{N}^{*}=\{x \in[N]: \operatorname{gcd}(x, N)=1\}$
- $\phi(N)=\left|\mathbb{Z}_{N}^{*}\right|$ (equals $(P-1)(Q-1)$ for $N=P Q$ with $P, Q \in \mathcal{P}$)
- For every $e \in \mathbb{Z}_{\phi(N)}^{*}$, the function $f(x) \equiv x^{e} \bmod N$ is a permutation over \mathbb{Z}_{N}^{*}.
In particular, $\left(x^{e}\right)^{d} \equiv x \bmod N$, for every $x \in \mathbb{Z}_{N}^{*}$, where $d \equiv e^{-1} \bmod \phi(N)$

Definition 10 (RSA)

- $G(P, Q)$ sets $p k=(N=P Q, e)$ for some $e \in \mathbb{Z}_{\phi(N)}^{*}$, and $s k=\left(N, d \equiv e^{-1} \bmod \phi(N)\right)$
- $f(p k, x)=x^{e} \bmod N$
- $\operatorname{Inv}(s k, x)=x^{d} \bmod N$

Factoring is easy \Longrightarrow RSA is easy.

Example, RSA

In the following $N \in \mathbb{N}$ is a large number (n-bit long) and all operations are modulo N.

- $\mathbb{Z}_{N}=[N]$ and $\mathbb{Z}_{N}^{*}=\{x \in[N]: \operatorname{gcd}(x, N)=1\}$
- $\phi(N)=\left|\mathbb{Z}_{N}^{*}\right|$ (equals $(P-1)(Q-1)$ for $N=P Q$ with $P, Q \in \mathcal{P}$)
- For every $e \in \mathbb{Z}_{\phi(N)}^{*}$, the function $f(x) \equiv x^{e} \bmod N$ is a permutation over \mathbb{Z}_{N}^{*}.
In particular, $\left(x^{e}\right)^{d} \equiv x \bmod N$, for every $x \in \mathbb{Z}_{N}^{*}$, where $d \equiv e^{-1} \bmod \phi(N)$

Definition 10 (RSA)

- $G(P, Q)$ sets $p k=(N=P Q, e)$ for some $e \in \mathbb{Z}_{\phi(N)}^{*}$, and $s k=\left(N, d \equiv e^{-1} \bmod \phi(N)\right)$
- $f(p k, x)=x^{e} \bmod N$
- $\operatorname{Inv}(s k, x)=x^{d} \bmod N$

Factoring is easy \Longrightarrow RSA is easy. The other direction?

Subsection 2

The Transformation

The transformation

- Let $\left(\mathrm{P}_{H}, \mathrm{~V}_{H}\right)$ be a HBM $\mathcal{N} \mathcal{I Z K}$ for \mathcal{L}, and let $\ell(n)$ be the length of the CRS used for $x \in\{0,1\}^{n}$.

The transformation

- Let $\left(\mathrm{P}_{H}, \mathrm{~V}_{H}\right)$ be a HBM $\mathcal{N} \mathcal{I Z K}$ for \mathcal{L}, and let $\ell(n)$ be the length of the CRS used for $x \in\{0,1\}^{n}$.
- Let ($\mathrm{G}, f, \operatorname{lnv}$) be a TDP and let b be an hardcore bit for it. For simplicity, assume that $\mathrm{G}\left(1^{n}\right)$ chooses ($s k, p k$) as follows:

The transformation

- Let $\left(\mathrm{P}_{H}, \mathrm{~V}_{H}\right)$ be a HBM $\mathcal{N} \mathcal{I Z K}$ for \mathcal{L}, and let $\ell(n)$ be the length of the CRS used for $x \in\{0,1\}^{n}$.
- Let (G, f, lnv) be a TDP and let b be an hardcore bit for it. For simplicity, assume that $\mathrm{G}\left(1^{n}\right)$ chooses ($s k, p k$) as follows:
(1) $s k \leftarrow\{0,1\}^{n}$

The transformation

- Let $\left(\mathrm{P}_{H}, \mathrm{~V}_{H}\right)$ be a HBM $\mathcal{N} \mathcal{I Z K}$ for \mathcal{L}, and let $\ell(n)$ be the length of the CRS used for $x \in\{0,1\}^{n}$.
- Let (G, f, lnv) be a TDP and let b be an hardcore bit for it.

For simplicity, assume that $\mathrm{G}\left(1^{n}\right)$ chooses ($s k, p k$) as follows:
(1) $s k \leftarrow\{0,1\}^{n}$
(2) $p k=P K(s k)$

The transformation

- Let $\left(\mathrm{P}_{H}, \mathrm{~V}_{H}\right)$ be a HBM $\mathcal{N} \mathcal{I Z K}$ for \mathcal{L}, and let $\ell(n)$ be the length of the CRS used for $x \in\{0,1\}^{n}$.
- Let (G, f, lnv) be a TDP and let b be an hardcore bit for it.

For simplicity, assume that $\mathrm{G}\left(1^{n}\right)$ chooses ($s k, p k$) as follows:
(1) $s k \leftarrow\{0,1\}^{n}$
(2) $p k=P K(s k)$

The transformation

- Let $\left(\mathrm{P}_{H}, \mathrm{~V}_{H}\right)$ be a HBM $\mathcal{N} \mathcal{I Z K}$ for \mathcal{L}, and let $\ell(n)$ be the length of the CRS used for $x \in\{0,1\}^{n}$.
- Let (G, f, Inv) be a TDP and let b be an hardcore bit for it. For simplicity, assume that $\mathrm{G}\left(1^{n}\right)$ chooses ($s k, p k$) as follows:
(1) $s k \leftarrow\{0,1\}^{n}$
(2) $p k=P K(s k)$
where $P K$: $\{0,1\}^{n} \mapsto\{0,1\}^{n}$ is a polynomial-time computable function.

The transformation

- Let $\left(\mathrm{P}_{H}, \mathrm{~V}_{H}\right)$ be a HBM $\mathcal{N} \mathcal{I Z K}$ for \mathcal{L}, and let $\ell(n)$ be the length of the CRS used for $x \in\{0,1\}^{n}$.
- Let (G, f, Inv) be a TDP and let b be an hardcore bit for it. For simplicity, assume that $\mathrm{G}\left(1^{n}\right)$ chooses ($s k, p k$) as follows:
(1) $s k \leftarrow\{0,1\}^{n}$
(2) $p k=P K(s k)$
where $P K$: $\{0,1\}^{n} \mapsto\{0,1\}^{n}$ is a polynomial-time computable function.
We construct a $\mathcal{N} \mathcal{I} \mathcal{Z K}(\mathrm{P}, \mathrm{V})$ for \mathcal{L}, with the same completeness and "not too large" soundness error.

The protocol

Algorithm 11 (P)

Input: $x \in \mathcal{L}, w \in R_{\mathcal{L}}(x)$ and $\operatorname{CRS} c=\left(c_{1}, \ldots, c_{\ell}\right) \in\{0,1\}^{n \ell}$, where $n=|x|$ and $\ell=\ell(n)$.
(1) Choose $(s k, p k) \leftarrow \mathrm{G}(s k)$ and compute

$$
c^{H}=\left(b\left(z_{1}=f_{p k}^{-1}\left(c_{1}\right)\right), \ldots, b\left(z_{\ell(n)}=f_{p k}^{-1}\left(c_{\ell}\right)\right)\right)
$$

(2) Let $\left(\pi_{H}, \mathcal{I}\right) \leftarrow \mathrm{P}_{H}\left(x, w, c^{H}\right)$ and output $\left(\pi_{H}, \mathcal{I}, p k,\left\{z_{i}\right\}_{i \in \mathcal{I}}\right)$

The protocol

Algorithm 11 (P)

Input: $x \in \mathcal{L}, w \in R_{\mathcal{L}}(x)$ and CRS $c=\left(c_{1}, \ldots, c_{\ell}\right) \in\{0,1\}^{n \ell}$, where $n=|x|$ and $\ell=\ell(n)$.
(1) Choose ($s k, p k) \leftarrow \mathrm{G}(s k)$ and compute

$$
c^{H}=\left(b\left(z_{1}=f_{p k}^{-1}\left(c_{1}\right)\right), \ldots, b\left(z_{\ell(n)}=f_{p k}^{-1}\left(c_{\ell}\right)\right)\right)
$$

(2) Let $\left(\pi_{H}, \mathcal{I}\right) \leftarrow \mathrm{P}_{H}\left(x, w, c^{H}\right)$ and output $\left(\pi_{H}, \mathcal{I}, p k,\left\{z_{i}\right\}_{i \in \mathcal{I}}\right)$

Algorithm 12 (V)

Input: $x \in \mathcal{L}, \operatorname{CRS} c=\left(c_{1}, \ldots, c_{\ell}\right) \in\{0,1\}^{n p}$, and $\left(\pi_{H}, \mathcal{I}, p k,\left\{z_{i}\right\}_{i \in \mathcal{I}}\right)$, where $n=|x|$ and $\ell=\ell(n)$.
(1) Verify that $p k \in\{0,1\}^{n}$ and that $f_{p k}\left(z_{i}\right)=c_{i}$ for every $i \in \mathcal{I}$
(2) Return $\mathrm{V}_{H}\left(x, \pi_{H}, \mathcal{I}, c^{H}\right)$, where $c_{i}^{H}=b\left(z_{i}\right)$ for every $i \in \mathcal{I}$.

Claim 13

Assuming that $\left(\mathrm{P}_{\mathrm{H}}, \mathrm{V}_{H}\right)$ is a $\mathcal{N \mathcal { I } \mathcal { K }}$ for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a $\mathcal{N} \mathcal{I} \mathcal{K}$ for \mathcal{L} with the same completeness, and soundness error α.

Claim 13

Assuming that $\left(\mathrm{P}_{\mathrm{H}}, \mathrm{V}_{H}\right)$ is a $\mathcal{N \mathcal { I } \mathcal { K }}$ for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a $\mathcal{N} \mathcal{I} \mathcal{K}$ for \mathcal{L} with the same completeness, and soundness error α.

Proof: Assume for simplicity that b is unbiased (i.e., $\operatorname{Pr}\left[b\left(U_{n}\right)=1\right]=\frac{1}{2}$).

Claim 13

Assuming that $\left(\mathrm{P}_{\mathrm{H}}, \mathrm{V}_{H}\right)$ is a $\mathcal{N \mathcal { I } \mathcal { K }}$ for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a $\mathcal{N} \mathcal{I} \mathcal{K}$ for \mathcal{L} with the same completeness, and soundness error α.

Proof: Assume for simplicity that b is unbiased (i.e., $\operatorname{Pr}\left[b\left(U_{n}\right)=1\right]=\frac{1}{2}$). For every $p k \in\{0,1\}^{n}:\left(b\left(f_{p k}^{-1}\left(c_{1}\right)\right), \ldots, b\left(f_{p k}^{-1}\left(c_{\ell}\right)\right)\right)_{c \leftarrow\{0,1\}^{n p}}$ is uniformly distributed in $\{0,1\}^{\ell}$.

Claim 13

Assuming that $\left(\mathrm{P}_{\mathrm{H}}, \mathrm{V}_{H}\right)$ is a $\mathcal{N \mathcal { I } \mathcal { K }}$ for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a $\mathcal{N} \mathcal{I} \mathcal{K}$ for \mathcal{L} with the same completeness, and soundness error α.

Proof: Assume for simplicity that b is unbiased (i.e., $\left.\operatorname{Pr}\left[b\left(U_{n}\right)=1\right]=\frac{1}{2}\right)$. For every $p k \in\{0,1\}^{n}:\left(b\left(f_{p k}^{-1}\left(c_{1}\right)\right), \ldots, b\left(f_{p k}^{-1}\left(c_{\ell}\right)\right)\right)_{c \leftarrow\{0,1\}^{n p}}$ is uniformly distributed in $\{0,1\}^{\ell}$.

- Completeness: clear

Claim 13

 $2^{-n} \cdot \alpha$, then (P, V) is a $\mathcal{N} \mathcal{Z} \mathcal{K}$ for \mathcal{L} with the same completeness, and soundness error α.

Proof: Assume for simplicity that b is unbiased (i.e., $\left.\operatorname{Pr}\left[b\left(U_{n}\right)=1\right]=\frac{1}{2}\right)$. For every $p k \in\{0,1\}^{n}:\left(b\left(f_{p k}^{-1}\left(c_{1}\right)\right), \ldots, b\left(f_{p k}^{-1}\left(c_{\ell}\right)\right)\right)_{c \leftarrow\{0,1\}^{n p}}$ is uniformly distributed in $\{0,1\}^{\ell}$.

- Completeness: clear
- Soundness: follows by a union bound over all possible choice of $p k \in\{0,1\}^{n}$.

Claim 13

Assuming that $\left(\mathrm{P}_{\mathrm{H}}, \mathrm{V}_{H}\right)$ is a $\mathcal{N \mathcal { I } \mathcal { K }}$ for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a $\mathcal{N} \mathcal{I} \mathcal{K}$ for \mathcal{L} with the same completeness, and soundness error α.

Proof: Assume for simplicity that b is unbiased (i.e., $\operatorname{Pr}\left[b\left(U_{n}\right)=1\right]=\frac{1}{2}$). For every $p k \in\{0,1\}^{n}:\left(b\left(f_{p k}^{-1}\left(c_{1}\right)\right), \ldots, b\left(f_{p k}^{-1}\left(c_{\ell}\right)\right)\right)_{c \leftarrow\{0,1\}^{n p}}$ is uniformly distributed in $\{0,1\}^{\ell}$.

- Completeness: clear
- Soundness: follows by a union bound over all possible choice of $p k \in\{0,1\}^{n}$.
- Zero knowledge:?

Proving zero knowledge

Algorithm 14 (S)

Input: $x \in\{0,1\}^{n}$ of length n.

- Let $\left(\pi_{H}, \mathcal{I}, c^{H}\right)=S_{H}(x)$, where S_{H} is the simulator of $\left(\mathrm{P}_{H}, \mathrm{~V}_{H}\right)$
- Output $\left(c,\left(\pi_{H}, \mathcal{I}, p k,\left\{z_{i}\right\}_{i \in \mathcal{I}}\right)\right)$, where
- $p k \leftarrow \mathrm{G}\left(U_{n}\right)$
- Each z_{i} is chosen at random in $\{0,1\}^{n}$ such that $b\left(z_{i}\right)=c_{i}^{H}$
- $c_{i}=f_{p k}\left(z_{i}\right)$ for $i \in \mathcal{I}$, and a random value in $\{0,1\}^{n}$ otherwise.

Proving zero knowledge

Algorithm 14 (S)

Input: $x \in\{0,1\}^{n}$ of length n.

- Let $\left(\pi_{H}, \mathcal{I}, c^{H}\right)=\mathrm{S}_{H}(x)$, where S_{H} is the simulator of $\left(\mathrm{P}_{H}, \mathrm{~V}_{H}\right)$
- Output $\left(c,\left(\pi_{H}, \mathcal{I}, p k,\left\{z_{i}\right\}_{i \in \mathcal{I}}\right)\right)$, where
- $p k \leftarrow \mathrm{G}\left(U_{n}\right)$
- Each z_{i} is chosen at random in $\{0,1\}^{n}$ such that $b\left(z_{i}\right)=c_{i}^{H}$
- $c_{i}=f_{p k}\left(z_{i}\right)$ for $i \in \mathcal{I}$, and a random value in $\{0,1\}^{n}$ otherwise.
- The above implicitly describes an efficient M s.t.

$$
M\left(\mathrm{~S}_{H}(x)\right) \equiv \mathrm{S}(x) \text { and } M\left(\mathrm{P}_{H}(x, w(x))\right) \approx_{c} \mathrm{P}(x, w(x))
$$

Proving zero knowledge

Algorithm 14 (S)

Input: $x \in\{0,1\}^{n}$ of length n.

- Let $\left(\pi_{H}, \mathcal{I}, c^{H}\right)=\mathrm{S}_{H}(x)$, where S_{H} is the simulator of $\left(\mathrm{P}_{H}, \mathrm{~V}_{H}\right)$
- Output $\left(c,\left(\pi_{H}, \mathcal{I}, p k,\left\{z_{i}\right\}_{i \in \mathcal{I}}\right)\right)$, where
- $p k \leftarrow \mathrm{G}\left(U_{n}\right)$
- Each z_{i} is chosen at random in $\{0,1\}^{n}$ such that $b\left(z_{i}\right)=c_{i}^{H}$
- $c_{i}=f_{p k}\left(z_{i}\right)$ for $i \in \mathcal{I}$, and a random value in $\{0,1\}^{n}$ otherwise.
- The above implicitly describes an efficient M s.t. $M\left(\mathrm{~S}_{H}(x)\right) \equiv \mathrm{S}(x)$ and $M\left(\mathrm{P}_{H}(x, w(x))\right) \approx_{c} \mathrm{P}(x, w(x))$
- Hence, distinguishing $\mathrm{P}(x, w(x))$ from $\mathrm{S}(x)$ is hard

Proving zero knowledge

Algorithm 14 (S)

Input: $x \in\{0,1\}^{n}$ of length n.

- Let $\left(\pi_{H}, \mathcal{I}, c^{H}\right)=\mathrm{S}_{H}(x)$, where S_{H} is the simulator of $\left(\mathrm{P}_{H}, \mathrm{~V}_{H}\right)$
- Output $\left(c,\left(\pi_{H}, \mathcal{I}, p k,\left\{z_{i}\right\}_{i \in \mathcal{I}}\right)\right)$, where
- $p k \leftarrow \mathrm{G}\left(U_{n}\right)$
- Each z_{i} is chosen at random in $\{0,1\}^{n}$ such that $b\left(z_{i}\right)=c_{i}^{H}$
- $c_{i}=f_{p k}\left(z_{i}\right)$ for $i \in \mathcal{I}$, and a random value in $\{0,1\}^{n}$ otherwise.
- The above implicitly describes an efficient M s.t. $M\left(\mathrm{~S}_{H}(x)\right) \equiv \mathrm{S}(x)$ and $M\left(\mathrm{P}_{H}(x, w(x))\right) \approx_{c} \mathrm{P}(x, w(x))$
- Hence, distinguishing $\mathrm{P}(x, w(x))$ from $\mathrm{S}(x)$ is hard
- Direct solution for our $\mathcal{N} \mathcal{I Z K}$

Proving zero knowledge

Algorithm 14 (S)

Input: $x \in\{0,1\}^{n}$ of length n.

- Let $\left(\pi_{H}, \mathcal{I}, c^{H}\right)=\mathrm{S}_{H}(x)$, where S_{H} is the simulator of $\left(\mathrm{P}_{H}, \mathrm{~V}_{H}\right)$
- Output $\left(c,\left(\pi_{H}, \mathcal{I}, p k,\left\{z_{i}\right\}_{i \in \mathcal{I}}\right)\right)$, where
- $p k \leftarrow \mathrm{G}\left(U_{n}\right)$
- Each z_{i} is chosen at random in $\{0,1\}^{n}$ such that $b\left(z_{i}\right)=c_{i}^{H}$
- $c_{i}=f_{p k}\left(z_{i}\right)$ for $i \in \mathcal{I}$, and a random value in $\{0,1\}^{n}$ otherwise.
- The above implicitly describes an efficient M s.t. $M\left(\mathrm{~S}_{H}(x)\right) \equiv \mathrm{S}(x)$ and $M\left(\mathrm{P}_{H}(x, w(x))\right) \approx_{c} \mathrm{P}(x, w(x))$
- Hence, distinguishing $\mathrm{P}(x, w(x))$ from $\mathrm{S}(x)$ is hard
- Direct solution for our $\mathcal{N} \mathcal{I Z K}$
- An "adaptive" $\mathcal{N} \mathcal{I Z K}$

Section 3

Adaptive NIZK

Adaptive $\mathcal{N} \mathcal{I Z K}$

x is chosen after the CRS.

Adaptive $\mathcal{N} \mathcal{I Z K}$

x is chosen after the CRS.

- Completeness: $\forall f:\{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap\{0,1\}^{n}$ and $w(x) \in R_{\mathcal{L}}(x)$: $\operatorname{Pr}_{c \leftarrow\{0,1\}^{\ell(n)} ; x=f(c)}[\mathrm{V}(x, c, \mathrm{P}(x, w(x), c))=1] \geq 2 / 3$

Adaptive $\mathcal{N} \mathcal{I Z K}$

x is chosen after the CRS.

- Completeness: $\forall f:\{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap\{0,1\}^{n}$ and $w(x) \in R_{\mathcal{L}}(x)$: $\operatorname{Pr}_{c \leftarrow\{0,1\}^{\ell(n)} ; x=f(c)}[\mathrm{V}(x, c, \mathrm{P}(x, w(x), c))=1] \geq 2 / 3$

Adaptive $\mathcal{N I Z K}$

x is chosen after the CRS.

- Completeness: $\forall f:\{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap\{0,1\}^{n}$ and $w(x) \in R_{\mathcal{L}}(x)$: $\operatorname{Pr}_{c \leftarrow\{0,1\}^{\ell(n)} ; x=f(c)}[\mathrm{V}(x, c, \mathrm{P}(x, w(x), c))=1] \geq 2 / 3$
- Soundness: $\forall f:\{0,1\}^{\ell(n)} \mapsto\{0,1\}^{n}$ and P^{*} $\operatorname{Pr}_{c \leftarrow\{0,1\}(n) ; x=f(c)}\left[\mathrm{V}\left(x, c, \mathrm{P}^{*}(c)\right)=1 \wedge x \notin \mathcal{L}\right] \leq 1 / 3$

Adaptive $\mathcal{N} I Z \mathcal{K}$

x is chosen after the CRS.

- Completeness: $\forall f:\{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap\{0,1\}^{n}$ and $w(x) \in R_{\mathcal{L}}(x)$: $\operatorname{Pr}_{c \leftarrow\{0,1\}^{\ell(n)} ; x=f(c)}[\mathrm{V}(x, c, \mathrm{P}(x, w(x), c))=1] \geq 2 / 3$
- Soundness: $\forall f:\{0,1\}^{\ell(n)} \mapsto\{0,1\}^{n}$ and P^{*}
$\operatorname{Pr}_{c \leftarrow\{0,1\}(n) ; x=f(c)}\left[\mathrm{V}\left(x, c, \mathrm{P}^{*}(c)\right)=1 \wedge x \notin \mathcal{L}\right] \leq 1 / 3$
- ZKK: \exists pair of PPTM's $\left(S_{1}, S_{2}\right)$ s.t. $\forall f:\{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap\{0,1\}^{n}$

$$
\left\{\left(c \leftarrow\{0,1\}^{\ell(n)}, x=f(c), \mathrm{P}(x, w(x))\right)\right\}_{n \in \mathbb{N}} \approx_{c}\left\{\mathrm{~S}^{f}(n)\right\}_{n \in \mathbb{N}} .
$$

where $\mathrm{S}^{f}(n)$ is the output of the following process

Adaptive $\mathcal{N} I Z \mathcal{K}$

x is chosen after the CRS.

- Completeness: $\forall f:\{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap\{0,1\}^{n}$ and $w(x) \in R_{\mathcal{L}}(x)$: $\operatorname{Pr}_{c \leftarrow\{0,1\}^{\ell(n)} ; x=f(c)}[\mathrm{V}(x, c, \mathrm{P}(x, w(x), c))=1] \geq 2 / 3$
- Soundness: $\forall f:\{0,1\}^{\ell(n)} \mapsto\{0,1\}^{n}$ and P^{*}
$\operatorname{Pr}_{c \leftarrow\{0,1\}(n) ; x=f(c)}\left[\mathrm{V}\left(x, c, \mathrm{P}^{*}(c)\right)=1 \wedge x \notin \mathcal{L}\right] \leq 1 / 3$
- ZKK: \exists pair of PPTM's $\left(S_{1}, S_{2}\right)$ s.t. $\forall f:\{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap\{0,1\}^{n}$

$$
\left\{\left(c \leftarrow\{0,1\}^{\ell(n)}, x=f(c), \mathrm{P}(x, w(x))\right)\right\}_{n \in \mathbb{N}} \approx_{c}\left\{\mathrm{~S}^{f}(n)\right\}_{n \in \mathbb{N}} .
$$

where $\mathrm{S}^{f}(n)$ is the output of the following process
(1) $(c, s) \leftarrow \mathrm{S}_{1}\left(1^{n}\right)$

Adaptive $\mathcal{N} I Z \mathcal{K}$

x is chosen after the CRS.

- Completeness: $\forall f:\{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap\{0,1\}^{n}$ and $w(x) \in R_{\mathcal{L}}(x)$: $\operatorname{Pr}_{c \leftarrow\{0,1\}^{\ell(n)} ; x=f(c)}[\mathrm{V}(x, c, \mathrm{P}(x, w(x), c))=1] \geq 2 / 3$
- Soundness: $\forall f:\{0,1\}^{\ell(n)} \mapsto\{0,1\}^{n}$ and P^{*}
$\operatorname{Pr}_{c \leftarrow\{0,1\}(n) ; x=f(c)}\left[\mathrm{V}\left(x, c, \mathrm{P}^{*}(c)\right)=1 \wedge x \notin \mathcal{L}\right] \leq 1 / 3$
- ZKK: \exists pair of PPTM's $\left(S_{1}, S_{2}\right)$ s.t. $\forall f:\{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap\{0,1\}^{n}$

$$
\left\{\left(c \leftarrow\{0,1\}^{\ell(n)}, x=f(c), \mathrm{P}(x, w(x))\right)\right\}_{n \in \mathbb{N}} \approx_{c}\left\{\mathrm{~S}^{f}(n)\right\}_{n \in \mathbb{N}} .
$$

where $\mathrm{S}^{f}(n)$ is the output of the following process
(1) $(c, s) \leftarrow S_{1}\left(1^{n}\right)$
(2) $x=f(c)$

Adaptive $\mathcal{N} I Z \mathcal{K}$

x is chosen after the CRS.

- Completeness: $\forall f:\{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap\{0,1\}^{n}$ and $w(x) \in R_{\mathcal{L}}(x)$: $\operatorname{Pr}_{c \leftarrow\{0,1\}^{\ell(n)} ; x=f(c)}[\mathrm{V}(x, c, \mathrm{P}(x, w(x), c))=1] \geq 2 / 3$
- Soundness: $\forall f:\{0,1\}^{\ell(n)} \mapsto\{0,1\}^{n}$ and P^{*}
$\operatorname{Pr}_{c \leftarrow\{0,1\}(n) ; x=f(c)}\left[\mathrm{V}\left(x, c, \mathrm{P}^{*}(c)\right)=1 \wedge x \notin \mathcal{L}\right] \leq 1 / 3$
- $\mathcal{Z K}: \exists$ pair of PPTM's $\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)$ s.t. $\forall f:\{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap\{0,1\}^{n}$

$$
\left\{\left(c \leftarrow\{0,1\}^{\ell(n)}, x=f(c), \mathrm{P}(x, w(x))\right)\right\}_{n \in \mathbb{N}} \approx_{c}\left\{\mathrm{~S}^{f}(n)\right\}_{n \in \mathbb{N}} .
$$

where $\mathrm{S}^{f}(n)$ is the output of the following process
(1) $(c, s) \leftarrow S_{1}\left(1^{n}\right)$
(2) $x=f(c)$
(3) Output $\left(c, x, \mathrm{~S}_{2}(x, c, s)\right)$

Adaptive $\mathcal{N} I Z \mathcal{K}$

x is chosen after the CRS.

- Completeness: $\forall f:\{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap\{0,1\}^{n}$ and $w(x) \in R_{\mathcal{L}}(x)$: $\operatorname{Pr}_{c \leftarrow\{0,1\}^{\ell(n)} ; x=f(c)}[\mathrm{V}(x, c, \mathrm{P}(x, w(x), c))=1] \geq 2 / 3$
- Soundness: $\forall f:\{0,1\}^{\ell(n)} \mapsto\{0,1\}^{n}$ and P^{*}
$\operatorname{Pr}_{c \leftarrow\{0,1\}(n) ; x=f(c)}\left[\mathrm{V}\left(x, c, \mathrm{P}^{*}(c)\right)=1 \wedge x \notin \mathcal{L}\right] \leq 1 / 3$
- $\mathcal{Z K}: \exists$ pair of PPTM's $\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)$ s.t. $\forall f:\{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap\{0,1\}^{n}$

$$
\left\{\left(c \leftarrow\{0,1\}^{\ell(n)}, x=f(c), \mathrm{P}(x, w(x))\right)\right\}_{n \in \mathbb{N}} \approx_{c}\left\{\mathrm{~S}^{f}(n)\right\}_{n \in \mathbb{N}} .
$$

where $\mathrm{S}^{f}(n)$ is the output of the following process
(1) $(c, s) \leftarrow S_{1}\left(1^{n}\right)$
(2) $x=f(c)$
(3) Output $\left(c, x, \mathrm{~S}_{2}(x, c, s)\right)$

Adaptive \mathcal{N} IZK

x is chosen after the CRS.

- Completeness: $\forall f:\{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap\{0,1\}^{n}$ and $w(x) \in R_{\mathcal{L}}(x)$: $\operatorname{Pr}_{c \leftarrow\{0,1\}^{\ell(n)} ; x=f(c)}[\mathrm{V}(x, c, \mathrm{P}(x, w(x), c))=1] \geq 2 / 3$
- Soundness: $\forall f:\{0,1\}^{\ell(n)} \mapsto\{0,1\}^{n}$ and P^{*}
$\operatorname{Pr}_{c \leftarrow\{0,1\}(n) ; x=f(c)}\left[\mathrm{V}\left(x, c, \mathrm{P}^{*}(c)\right)=1 \wedge x \notin \mathcal{L}\right] \leq 1 / 3$
- ZKK: \exists pair of PPTM's $\left(S_{1}, S_{2}\right)$ s.t. $\forall f:\{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap\{0,1\}^{n}$

$$
\left\{\left(c \leftarrow\{0,1\}^{\ell(n)}, x=f(c), \mathrm{P}(x, w(x))\right)\right\}_{n \in \mathbb{N}} \approx_{c}\left\{\mathrm{~S}^{f}(n)\right\}_{n \in \mathbb{N}} .
$$

where $\mathrm{S}^{f}(n)$ is the output of the following process
(1) $(c, s) \leftarrow S_{1}\left(1^{n}\right)$
(2) $x=f(c)$
(3) Output $\left(c, x, \mathrm{~S}_{2}(x, c, s)\right)$

Why do we need s ?

Adaptive $\mathcal{N} \mathcal{I} \mathcal{Z}$ K, cont.

- Adaptive completeness and soundness are easy to achieve from any non-adaptive $\mathcal{N} \mathcal{I Z K}$.(?)

Adaptive $\mathcal{N} \mathcal{I} \mathcal{Z}$ K, cont.

- Adaptive completeness and soundness are easy to achieve from any non-adaptive $\mathcal{N} \mathcal{I Z K}$.(?)
- Not every $\mathcal{N} \mathcal{I} \mathcal{Z K}$ is adaptive $\mathcal{Z K}$.

Adaptive $\mathcal{N} \mathcal{I} \mathcal{Z}$ K, cont.

- Adaptive completeness and soundness are easy to achieve from any non-adaptive $\mathcal{N} \mathcal{I Z K}$.(?)
- Not every $\mathcal{N} \mathcal{I} \mathcal{Z K}$ is adaptive $\mathcal{Z K}$.

Adaptive $\mathcal{N} \mathcal{I} \mathcal{Z}$ K, cont.

- Adaptive completeness and soundness are easy to achieve from any non-adaptive $\mathcal{N} \mathcal{I Z K}$.(?)
- Not every $\mathcal{N I Z K}$ is adaptive $\mathcal{Z K}$.

Theorem 15

Assume TDP exist, then every $\mathcal{N P}$ language has an adaptive $\mathcal{N I Z K}$ with perfect completeness and negligible soundness error.

Adaptive $\mathcal{N} \mathcal{I} \mathcal{Z}$ K, cont.

- Adaptive completeness and soundness are easy to achieve from any non-adaptive $\mathcal{N} \mathcal{I Z K}$.(?)
- Not every $\mathcal{N I Z K}$ is adaptive $\mathcal{Z K}$.

Theorem 15

Assume TDP exist, then every $\mathcal{N P}$ language has an adaptive $\mathcal{N I Z K}$ with perfect completeness and negligible soundness error.

In the following, when saying adaptive $\mathcal{N I Z K}$, we mean negligible completeness and soundness error.

Section 4

Simulation-Sound NIZK

Simulation soundness

A $\mathcal{N} \mathcal{I} \mathcal{K}$ ́s. system (P, V) for \mathcal{L} has (one-time) simulation soundness, if \exists a pair of PPTM's $S=\left(S_{1}, S_{2}\right)$ that satisfies the $\mathcal{Z K}$ property of P with respect to \mathcal{L}, and in addition

Simulation soundness

A $\mathcal{N} \mathcal{I} \mathcal{K}$ system (P, V) for \mathcal{L} has (one-time) simulation soundness, if \exists a pair of PPTM's $S=\left(S_{1}, S_{2}\right)$ that satisfies the $\mathcal{Z K}$ property of P with respect to \mathcal{L}, and in addition

$$
\operatorname{Pr}_{\left(c, x, \pi, x^{\prime}, \pi^{\prime}\right) \leftarrow \operatorname{Expp}_{\mathrm{V}, \mathrm{~s}, \mathrm{P} *}}\left[x^{\prime} \notin \mathcal{L} \wedge \mathrm{V}\left(x^{\prime}, \pi^{\prime}, c\right)=1 \wedge\left(x^{\prime}, \pi^{\prime}\right) \neq(x, \pi)\right]=\operatorname{neg}(n)
$$ for any pair of PPTM's $\mathrm{P}^{*}=\left(\mathrm{P}_{1}^{*}, \mathrm{P}_{2}^{*}\right)$.

Experiment $16\left(\operatorname{Exp}_{\mathrm{V}, \mathrm{s}, \mathrm{P} *}^{n}\right)$

(1) $(c, s) \leftarrow \mathrm{S}_{1}\left(1^{n}\right)$
(2) $(x, p) \leftarrow \mathrm{P}_{1}^{*}\left(1^{n}, c\right)$
(3) $\pi \leftarrow \mathrm{S}_{2}(x, c, s)$
(4) $\left(x^{\prime}, \pi^{\prime}\right) \leftarrow \mathrm{P}_{2}^{*}(p, \pi)$
(5) Output $\left(c, x, \pi, x^{\prime}, \pi^{\prime}\right)$

Simulation soundness

A $\mathcal{N} \mathcal{I} \mathcal{K}$ system (P, V) for \mathcal{L} has (one-time) simulation soundness, if \exists a pair of PPTM's $S=\left(S_{1}, S_{2}\right)$ that satisfies the $\mathcal{Z K}$ property of P with respect to \mathcal{L}, and in addition

$$
\operatorname{Pr}_{\left(c, x, \pi, x^{\prime}, \pi^{\prime}\right) \leftarrow \operatorname{Expp}_{\mathrm{V}, \mathrm{~s}, \mathrm{P} *}}\left[x^{\prime} \notin \mathcal{L} \wedge \mathrm{V}\left(x^{\prime}, \pi^{\prime}, c\right)=1 \wedge\left(x^{\prime}, \pi^{\prime}\right) \neq(x, \pi)\right]=\operatorname{neg}(n)
$$ for any pair of PPTM's $\mathrm{P}^{*}=\left(\mathrm{P}_{1}^{*}, \mathrm{P}_{2}^{*}\right)$.

Experiment $16\left(\operatorname{Exp}_{\mathrm{V}, \mathrm{s}, \mathrm{P} *}^{n}\right)$

(1) $(c, s) \leftarrow \mathrm{S}_{1}\left(1^{n}\right)$
(2) $(x, p) \leftarrow \mathrm{P}_{1}^{*}\left(1^{n}, c\right)$
(3) $\pi \leftarrow \mathrm{S}_{2}(x, c, s)$
(4) $\left(x^{\prime}, \pi^{\prime}\right) \leftarrow \mathrm{P}_{2}^{*}(p, \pi)$
(5) Output $\left(c, x, \pi, x^{\prime}, \pi^{\prime}\right)$

Simulation soundness, cont.

- After seeing a simulated (possibly false) proof, hard to generate an additional false proof

Simulation soundness, cont.

- After seeing a simulated (possibly false) proof, hard to generate an additional false proof
- Definition only considers efficient provers

Simulation soundness, cont.

- After seeing a simulated (possibly false) proof, hard to generate an additional false proof
- Definition only considers efficient provers
- (P, V) might be adaptive or non-adaptive

Simulation soundness, cont.

- After seeing a simulated (possibly false) proof, hard to generate an additional false proof
- Definition only considers efficient provers
- (P, V) might be adaptive or non-adaptive
- Standard $\mathcal{N I Z K}$ guarantees weak type of simulation soundness (hard to fake proofs for simulated CRS and predefined x^{\prime}) (?)

Simulation soundness, cont.

- After seeing a simulated (possibly false) proof, hard to generate an additional false proof
- Definition only considers efficient provers
- (P, V) might be adaptive or non-adaptive
- Standard $\mathcal{N I Z K}$ guarantees weak type of simulation soundness (hard to fake proofs for simulated CRS and predefined x^{\prime}) (?)
- Does the adaptive \mathcal{N} IZK we seen have simulation soundness?

Construction

We present a simulation sound $\mathcal{N} \mathcal{I Z K}(\mathrm{P}, \mathrm{V})$ for $\mathcal{L} \in \mathcal{N P}$

Construction

We present a simulation sound $\mathcal{N} \mathcal{I Z K}(\mathrm{P}, \mathrm{V})$ for $\mathcal{L} \in \mathcal{N P}$
Ingredients:
(1) Strong signature scheme (Gen, Sign, Vrfy) (one-time scheme suffices)

Construction

We present a simulation sound $\mathcal{N} \mathcal{I Z K}(\mathrm{P}, \mathrm{V})$ for $\mathcal{L} \in \mathcal{N P}$
Ingredients:
(1) Strong signature scheme (Gen, Sign, Vrfy) (one-time scheme suffices)
(2) Non-interactive, perfectly-binding commitment Com.

Construction

We present a simulation sound $\mathcal{N} \mathcal{I Z K}(\mathrm{P}, \mathrm{V})$ for $\mathcal{L} \in \mathcal{N P}$

Ingredients:

(1) Strong signature scheme (Gen, Sign, Vrfy) (one-time scheme suffices)
(2) Non-interactive, perfectly-binding commitment Com.

- Pseudorandom range: for some $\ell \in$ poly

$$
\left\{\operatorname{Com}\left(w, r \leftarrow\{0,1\}^{\ell(|w|)}\right)\right\}_{w \in\{0,1\}^{*}} \approx_{c}\left\{u \leftarrow\{0,1\}^{\ell(|w|)}\right\}_{w \in\{0,1\}^{*}}
$$

Construction

We present a simulation sound $\mathcal{N} \mathcal{I Z K}(\mathrm{P}, \mathrm{V})$ for $\mathcal{L} \in \mathcal{N P}$

Ingredients:

(1) Strong signature scheme (Gen, Sign, Vrfy) (one-time scheme suffices)
(2) Non-interactive, perfectly-binding commitment Com.

- Pseudorandom range: for some $\ell \in$ poly $\left\{\operatorname{Com}\left(w, r \leftarrow\{0,1\}^{\ell(|w|)}\right)\right\}_{w \in\{0,1\}^{*}} \approx_{c}\left\{u \leftarrow\{0,1\}^{\ell(|w|)}\right\}_{w \in\{0,1\}^{*}}$
* achieved by the standard OWP (or TDP) based perfectly-binding commitment.

Construction

We present a simulation sound $\mathcal{N} \mathcal{I Z K}(\mathrm{P}, \mathrm{V})$ for $\mathcal{L} \in \mathcal{N P}$

Ingredients:

(1) Strong signature scheme (Gen, Sign, Vrfy) (one-time scheme suffices)
(2) Non-interactive, perfectly-binding commitment Com.

- Pseudorandom range: for some $\ell \in$ poly $\left\{\operatorname{Com}\left(w, r \leftarrow\{0,1\}^{\ell(|w|)}\right)\right\}_{w \in\{0,1\}^{*}} \approx_{c}\left\{u \leftarrow\{0,1\}^{\ell(|w|)}\right\}_{w \in\{0,1\}^{*}}$
* achieved by the standard OWP (or TDP) based perfectly-binding commitment.
- Negligible support: a random string is a valid commitment only with negligible probability.

Construction

We present a simulation sound $\mathcal{N I Z K}(\mathrm{P}, \mathrm{V})$ for $\mathcal{L} \in \mathcal{N P}$

Ingredients:

(1) Strong signature scheme (Gen, Sign, Vrfy) (one-time scheme suffices)
(2) Non-interactive, perfectly-binding commitment Com.

- Pseudorandom range: for some $\ell \in$ poly $\left\{\operatorname{Com}\left(w, r \leftarrow\{0,1\}^{\ell(|w|)}\right)\right\}_{w \in\{0,1\}^{*}} \approx_{c}\left\{u \leftarrow\{0,1\}^{\ell(|w|)}\right\}_{w \in\{0,1\}^{*}}$
* achieved by the standard OWP (or TDP) based perfectly-binding commitment.
- Negligible support: a random string is a valid commitment only with negligible probability.
* achieved by using the standard OWP (or TDP) based perfectly-binding commitment, and committing to the same value many times.

Construction

We present a simulation sound $\mathcal{N I Z K}(\mathrm{P}, \mathrm{V})$ for $\mathcal{L} \in \mathcal{N P}$

Ingredients:

(1) Strong signature scheme (Gen, Sign, Vrfy) (one-time scheme suffices)
(2) Non-interactive, perfectly-binding commitment Com.

- Pseudorandom range: for some $\ell \in$ poly $\left\{\operatorname{Com}\left(w, r \leftarrow\{0,1\}^{\ell(|w|)}\right)\right\}_{w \in\{0,1\}^{*}} \approx_{c}\left\{u \leftarrow\{0,1\}^{\ell(|w|)}\right\}_{w \in\{0,1\}^{*}}$
* achieved by the standard OWP (or TDP) based perfectly-binding commitment.
- Negligible support: a random string is a valid commitment only with negligible probability.
* achieved by using the standard OWP (or TDP) based perfectly-binding commitment, and committing to the same value many times.
(3) Adaptive $\mathcal{N} \mathcal{I Z K}\left(\mathrm{P}_{A}, \mathrm{~V}_{A}\right)$ for $\mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\} \in \mathcal{N P}$

Construction

We present a simulation sound $\mathcal{N I Z K}(\mathrm{P}, \mathrm{V})$ for $\mathcal{L} \in \mathcal{N P}$

Ingredients:

(1) Strong signature scheme (Gen, Sign, Vrfy) (one-time scheme suffices)
(2) Non-interactive, perfectly-binding commitment Com.

- Pseudorandom range: for some $\ell \in$ poly $\left\{\operatorname{Com}\left(w, r \leftarrow\{0,1\}^{\ell(|w|)}\right)\right\}_{w \in\{0,1\}^{*}} \approx_{c}\left\{u \leftarrow\{0,1\}^{\ell(|w|)}\right\}_{w \in\{0,1\}^{*}}$
* achieved by the standard OWP (or TDP) based perfectly-binding commitment.
- Negligible support: a random string is a valid commitment only with negligible probability.
* achieved by using the standard OWP (or TDP) based perfectly-binding commitment, and committing to the same value many times.
(3) Adaptive $\mathcal{N I Z K}\left(\mathrm{P}_{A}, \mathrm{~V}_{A}\right)$ for $\mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\} \in \mathcal{N P}$
* adaptive WI suffices

Construction, cont.

$$
\text { Recall } \mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\} .
$$

Construction, cont.

Recall $\mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\}$.

Algorithm 17 (P)

Input: $x \in \mathcal{L}$ and $w \in R_{\mathcal{L}}(x)$, and $\mathrm{CRS} c=\left(c_{1}, c_{2}\right)$
(1) $(s k, v k) \leftarrow \operatorname{Gen}\left(1^{|x|}\right)$
(2) $\pi_{A} \leftarrow \mathrm{P}_{A}\left(\left(x, c_{1}, v k\right), w, c_{2}\right)$
(3) $\sigma \leftarrow \operatorname{Sign}_{s k}\left(x, \pi_{A}\right)$
(4) Output $\pi=\left(v k, \pi_{A}, \sigma\right)$

Construction, cont.

Recall $\mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\}$.

Algorithm 17 (P)

Input: $x \in \mathcal{L}$ and $w \in R_{\mathcal{L}}(x)$, and $\mathrm{CRS} c=\left(c_{1}, c_{2}\right)$
(1) $(s k, v k) \leftarrow \operatorname{Gen}\left(1^{|x|}\right)$
(2) $\pi_{A} \leftarrow \mathrm{P}_{A}\left(\left(x, c_{1}, v k\right), w, c_{2}\right)$
(3) $\sigma \leftarrow \operatorname{Sign}_{s k}\left(x, \pi_{A}\right)$
(4) Output $\pi=\left(v k, \pi_{A}, \sigma\right)$

Algorithm 18 (V)

Input: $x \in\{0,1\}^{*}, \pi=\left(v k, \pi_{A}, \sigma\right)$ and a CRS $c=\left(c_{1}, c_{2}\right)$
Verify that $\operatorname{Vrfy}_{v k}\left(\left(x, \pi_{A}\right), \sigma\right)=1$ and $\mathrm{V}_{A}\left(\left(x, c_{1}, v k\right), c_{2}, \pi_{A}\right)=1$

Construction, cont.

Recall $\mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\}$.

Algorithm 17 (P)

Input: $x \in \mathcal{L}$ and $w \in R_{\mathcal{L}}(x)$, and $\operatorname{CRS} c=\left(c_{1}, c_{2}\right)$
(1) $(s k, v k) \leftarrow \operatorname{Gen}\left(1^{|x|}\right)$
(2) $\pi_{A} \leftarrow \mathrm{P}_{A}\left(\left(x, c_{1}, v k\right), w, c_{2}\right)$
(3) $\sigma \leftarrow \operatorname{Sign}_{s k}\left(x, \pi_{A}\right)$
(4) Output $\pi=\left(v k, \pi_{A}, \sigma\right)$

Algorithm 18 (V)

Input: $x \in\{0,1\}^{*}, \pi=\left(v k, \pi_{A}, \sigma\right)$ and a CRS $c=\left(c_{1}, c_{2}\right)$
Verify that $\operatorname{Vrfy}_{v k}\left(\left(x, \pi_{A}\right), \sigma\right)=1$ and $\mathrm{V}_{A}\left(\left(x, c_{1}, v k\right), c_{2}, \pi_{A}\right)=1$

Claim 19

The proof system (P, V) is an adaptive $\mathcal{N I Z K}$ for \mathcal{L}, with one-time simulation soundness.

Proving Claim 19

Recall $\mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\}$.

Proving Claim 19

Recall $\mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\}$.

- Adaptive completeness: Follows by the adaptive completeness of $\left(P_{A}, V_{A}\right)$.

Proving Claim 19

$$
\text { Recall } \mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\} .
$$

- Adaptive completeness: Follows by the adaptive completeness of $\left(\mathrm{P}_{\mathrm{A}}, \mathrm{V}_{A}\right)$.
- Adaptive $\mathcal{Z K}$:

Proving Claim 19

Recall $\mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\}$.

- Adaptive completeness: Follows by the adaptive completeness of $\left(\mathrm{P}_{\mathrm{A}}, \mathrm{V}_{A}\right)$.
- Adaptive $\mathcal{Z K}$:
- $S_{1}\left(1^{n}\right)$:

Proving Claim 19

Recall $\mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\}$.

- Adaptive completeness: Follows by the adaptive completeness of ($\mathrm{P}_{\mathrm{A}}, \mathrm{V}_{A}$).
- Adaptive $\mathcal{Z K}$:
- $\mathrm{S}_{1}\left(1^{n}\right)$:
(1) Let $(s k, v k) \leftarrow \operatorname{Gen}\left(1^{n}\right), z \leftarrow\{0,1\}^{\ell(n)}$ and $c_{1}=\operatorname{Com}(v k, z)$.

Proving Claim 19

$$
\text { Recall } \mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\}
$$

- Adaptive completeness: Follows by the adaptive completeness of ($\mathrm{P}_{\mathrm{A}}, \mathrm{V}_{A}$).
- Adaptive $\mathcal{Z K}$:
- $S_{1}\left(1^{n}\right)$:
(1) Let $(s k, v k) \leftarrow \operatorname{Gen}\left(1^{n}\right), z \leftarrow\{0,1\}^{\ell(n)}$ and $c_{1}=\operatorname{Com}(v k, z)$.
(2) Output $\left(c=\left(c_{1}, c_{2}\right), s=(z, s k, v k)\right.$), where c_{2} is chosen uniformly at random.

Proving Claim 19

$$
\text { Recall } \mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\}
$$

- Adaptive completeness: Follows by the adaptive completeness of ($\mathrm{P}_{\mathrm{A}}, \mathrm{V}_{A}$).
- Adaptive $\mathcal{Z K}$:
- $S_{1}\left(1^{n}\right)$:
(1) Let $(s k, v k) \leftarrow \operatorname{Gen}\left(1^{n}\right), z \leftarrow\{0,1\}^{\ell(n)}$ and $c_{1}=\operatorname{Com}(v k, z)$.
(2) Output $\left(c=\left(c_{1}, c_{2}\right), s=(z, s k, v k)\right)$, where c_{2} is chosen uniformly at random.
- $\mathrm{S}_{2}\left(x, c=\left(c_{1}, c_{2}\right), s=(z, s k, v k)\right):$

Proving Claim 19

$$
\text { Recall } \mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\}
$$

- Adaptive completeness: Follows by the adaptive completeness of ($\mathrm{P}_{\mathrm{A}}, \mathrm{V}_{A}$).
- Adaptive $\mathcal{Z K}$:
- $S_{1}\left(1^{n}\right)$:
(1) Let $(s k, v k) \leftarrow \operatorname{Gen}\left(1^{n}\right), z \leftarrow\{0,1\}^{\ell(n)}$ and $c_{1}=\operatorname{Com}(v k, z)$.
(2) Output $\left(c=\left(c_{1}, c_{2}\right), s=(z, s k, v k)\right)$, where c_{2} is chosen uniformly at random.
- $\mathrm{S}_{2}\left(x, c=\left(c_{1}, c_{2}\right), s=(z, s k, v k)\right):$
(1) Let $\pi_{A} \leftarrow \mathrm{P}_{A}\left(\left(x, c_{1}, v k\right), z, c_{2}\right)$

Proving Claim 19

$$
\text { Recall } \mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\}
$$

- Adaptive completeness: Follows by the adaptive completeness of ($\mathrm{P}_{\mathrm{A}}, \mathrm{V}_{A}$).
- Adaptive $\mathcal{Z K}$:
- $S_{1}\left(1^{n}\right)$:
(1) Let $(s k, v k) \leftarrow \operatorname{Gen}\left(1^{n}\right), z \leftarrow\{0,1\}^{\ell(n)}$ and $c_{1}=\operatorname{Com}(v k, z)$.
(2) Output $\left(c=\left(c_{1}, c_{2}\right), s=(z, s k, v k)\right)$, where c_{2} is chosen uniformly at random.
- $\mathrm{S}_{2}\left(x, C=\left(c_{1}, c_{2}\right), s=(z, s k, v k)\right):$
(1) Let $\pi_{A} \leftarrow \mathrm{P}_{A}\left(\left(x, c_{1}, v k\right), z, c_{2}\right)$
(2) $\sigma \leftarrow \operatorname{Sign}_{\text {sk }}\left(x, \pi_{A}\right)$

Proving Claim 19

$$
\text { Recall } \mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\}
$$

- Adaptive completeness: Follows by the adaptive completeness of ($\mathrm{P}_{\mathrm{A}}, \mathrm{V}_{A}$).
- Adaptive $\mathcal{Z K}$:
- $\mathrm{S}_{1}\left(1^{n}\right)$:
(1) Let $(s k, v k) \leftarrow \operatorname{Gen}\left(1^{n}\right), z \leftarrow\{0,1\}^{\ell(n)}$ and $c_{1}=\operatorname{Com}(v k, z)$.
(2) Output $\left(c=\left(c_{1}, c_{2}\right), s=(z, s k, v k)\right)$, where c_{2} is chosen uniformly at random.
- $\mathrm{S}_{2}\left(x, C=\left(c_{1}, c_{2}\right), s=(z, s k, v k)\right):$
(1) Let $\pi_{A} \leftarrow \mathrm{P}_{A}\left(\left(x, c_{1}, v k\right), z, c_{2}\right)$
(2) $\sigma \leftarrow \operatorname{Sign}_{s k}\left(x, \pi_{A}\right)$
(3) Output $\pi=\left(v k, \pi_{A}, \sigma\right)$

Proving Claim 19

$$
\text { Recall } \mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\}
$$

- Adaptive completeness: Follows by the adaptive completeness of ($\mathrm{P}_{\mathrm{A}}, \mathrm{V}_{A}$).
- Adaptive $\mathcal{Z K}$:
- $\mathrm{S}_{1}\left(1^{n}\right)$:
(1) Let $(s k, v k) \leftarrow \operatorname{Gen}\left(1^{n}\right), z \leftarrow\{0,1\}^{\ell(n)}$ and $c_{1}=\operatorname{Com}(v k, z)$.
(2) Output $\left(c=\left(c_{1}, c_{2}\right), s=(z, s k, v k)\right)$, where c_{2} is chosen uniformly at random.
- $\mathrm{S}_{2}\left(x, C=\left(c_{1}, c_{2}\right), s=(z, s k, v k)\right):$
(1) Let $\pi_{A} \leftarrow \mathrm{P}_{A}\left(\left(x, c_{1}, v k\right), z, c_{2}\right)$
(2) $\sigma \leftarrow \operatorname{Sign}_{s k}\left(x, \pi_{A}\right)$
(3) Output $\pi=\left(v k, \pi_{A}, \sigma\right)$

Proving Claim 19

$$
\text { Recall } \mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\}
$$

- Adaptive completeness: Follows by the adaptive completeness of ($\mathrm{P}_{\mathrm{A}}, \mathrm{V}_{A}$).
- Adaptive $\mathcal{Z K}$:
- $\mathrm{S}_{1}\left(1^{n}\right)$:
(1) Let $(s k, v k) \leftarrow \operatorname{Gen}\left(1^{n}\right), z \leftarrow\{0,1\}^{\ell(n)}$ and $c_{1}=\operatorname{Com}(v k, z)$.
(2) Output $\left(c=\left(c_{1}, c_{2}\right), s=(z, s k, v k)\right)$, where c_{2} is chosen uniformly at random.
- $\mathrm{S}_{2}\left(x, c=\left(c_{1}, c_{2}\right), s=(z, s k, v k)\right):$
(1) Let $\pi_{A} \leftarrow \mathrm{P}_{A}\left(\left(x, c_{1}, v k\right), z, c_{2}\right)$
(2) $\sigma \leftarrow \operatorname{Sign}_{s k}\left(x, \pi_{A}\right)$
(3) Output $\pi=\left(v k, \pi_{A}, \sigma\right)$

Proof follows by the adaptive WI of $\left(\mathrm{P}_{A}, \mathrm{~V}_{A}\right)$ and the pseudorandomness of Com

Proving Claim 19

$$
\text { Recall } \mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\} .
$$

- Adaptive completeness: Follows by the adaptive completeness of ($\mathrm{P}_{\mathrm{A}}, \mathrm{V}_{A}$).
- Adaptive $\mathcal{Z K}$:
- $\mathrm{S}_{1}\left(1^{n}\right)$:
(1) Let $(s k, v k) \leftarrow \operatorname{Gen}\left(1^{n}\right), z \leftarrow\{0,1\}^{\ell(n)}$ and $c_{1}=\operatorname{Com}(v k, z)$.
(2) Output $\left(c=\left(c_{1}, c_{2}\right), s=(z, s k, v k)\right)$, where c_{2} is chosen uniformly at random.
- $\mathrm{S}_{2}\left(x, c=\left(c_{1}, c_{2}\right), s=(z, s k, v k)\right)$:
(1) Let $\pi_{A} \leftarrow \mathrm{P}_{A}\left(\left(x, c_{1}, v k\right), z, c_{2}\right)$
(2) $\sigma \leftarrow \operatorname{Sign}_{s k}\left(x, \pi_{A}\right)$
(3) Output $\pi=\left(v k, \pi_{A}, \sigma\right)$

Proof follows by the adaptive WI of $\left(\mathrm{P}_{A}, \mathrm{~V}_{A}\right)$ and the pseudorandomness of Com

- Adaptive soundness: Implicit in the proof of simulation soundness, given next slide.

Proving simulation soundness

$$
\text { Recall } \mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\} .
$$

Proving simulation soundness

Recall $\mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\}$.
Let $\mathrm{P}^{*}=\left(\mathrm{P}_{1}^{*}, \mathrm{P}_{2}^{*}\right)$ be a pair of PPTM's attacking the simulation soundness of (V, S) with respect to \mathcal{L}, and let $c=\left(c_{1}, c_{2}\right), x, \pi, x^{\prime}$ and $\pi^{\prime}=\left(v k^{\prime}, \pi_{A}^{\prime}, \sigma^{\prime}\right)$ be the values generated by a random execution of $\operatorname{Exp}_{\mathrm{V}, \mathrm{S}, \mathrm{P}^{*}}^{n}$.

Proving simulation soundness

Recall $\mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\}$.
Let $\mathrm{P}^{*}=\left(\mathrm{P}_{1}^{*}, \mathrm{P}_{2}^{*}\right)$ be a pair of PPTM's attacking the simulation soundness of (V, S) with respect to \mathcal{L}, and let $c=\left(c_{1}, c_{2}\right), x, \pi, x^{\prime}$ and $\pi^{\prime}=\left(v k^{\prime}, \pi_{A}^{\prime}, \sigma^{\prime}\right)$ be the values generated by a random execution of $\operatorname{Exp}_{\mathrm{V}, \mathrm{S}, \mathrm{P}^{*}}^{n}$.

Proving simulation soundness

Recall $\mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\}$.
Let $\mathrm{P}^{*}=\left(\mathrm{P}_{1}^{*}, \mathrm{P}_{2}^{*}\right)$ be a pair of PPTM's attacking the simulation soundness of (V, S) with respect to \mathcal{L}, and let $c=\left(c_{1}, c_{2}\right), x, \pi, x^{\prime}$ and $\pi^{\prime}=\left(v k^{\prime}, \pi_{A}^{\prime}, \sigma^{\prime}\right)$ be the values generated by a random execution of $\operatorname{Exp}_{\mathrm{V}, \mathrm{S}, \mathrm{P}^{*}}^{n}$.

Then with all but negligible probability:

- $v k^{\prime}$ is not the verification key appeared in π ((Gen, Sign, Vrfy) is a strong signature)

Proving simulation soundness

Recall $\mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\}$.
Let $\mathrm{P}^{*}=\left(\mathrm{P}_{1}^{*}, \mathrm{P}_{2}^{*}\right)$ be a pair of PPTM's attacking the simulation soundness of (V, S) with respect to \mathcal{L}, and let $c=\left(c_{1}, c_{2}\right), x, \pi, x^{\prime}$ and $\pi^{\prime}=\left(v k^{\prime}, \pi_{A}^{\prime}, \sigma^{\prime}\right)$ be the values generated by a random execution of $\operatorname{Exp}_{\mathrm{V}, \mathrm{S}, \mathrm{P}^{*}}^{n}$.

Assume $\operatorname{Vrfy}_{v k^{\prime}}\left(\left(x^{\prime}, \pi_{A}^{\prime}\right), \sigma^{\prime}\right)=1, x^{\prime} \notin \mathcal{L}$ and $\left(x^{\prime}, \pi^{\prime}\right) \neq(x, \pi)$.
Then with all but negligible probability:

- $v k^{\prime}$ is not the verification key appeared in π ((Gen, Sign, Vrfy) is a strong signature)

$$
\Longrightarrow \nexists r \in\{0,1\}^{*} \text { s.t. } c_{1}=\operatorname{Com}\left(v k^{\prime}, r\right) \quad \text { (Com is perfectly binding) }
$$

Proving simulation soundness

Recall $\mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\}$.
Let $\mathrm{P}^{*}=\left(\mathrm{P}_{1}^{*}, \mathrm{P}_{2}^{*}\right)$ be a pair of РРтм's attacking the simulation soundness of (V, S) with respect to \mathcal{L}, and let $c=\left(c_{1}, c_{2}\right), x, \pi, x^{\prime}$ and $\pi^{\prime}=\left(v k^{\prime}, \pi_{A}^{\prime}, \sigma^{\prime}\right)$ be the values generated by a random execution of $\operatorname{Exp}_{\mathrm{V}, \mathrm{S}, \mathrm{P}^{*}}^{n}$.

Assume $\operatorname{Vrfy}_{v k^{\prime}}\left(\left(x^{\prime}, \pi_{A}^{\prime}\right), \sigma^{\prime}\right)=1, x^{\prime} \notin \mathcal{L}$ and $\left(x^{\prime}, \pi^{\prime}\right) \neq(x, \pi)$.
Then with all but negligible probability:

- $v k^{\prime}$ is not the verification key appeared in π ((Gen, Sign, Vrfy) is a strong signature)

$$
\begin{aligned}
& \Longrightarrow \nexists r \in\{0,1\}^{*} \text { s.t. } c_{1}=\operatorname{Com}\left(v k^{\prime}, r\right) \quad \text { (Com is perfectly binding) } \\
& \left.\Longrightarrow x_{A}^{\prime}=\left(x^{\prime}, c_{1}, v k^{\prime}\right) \notin \mathcal{L}_{A} \quad \text { (above and } x^{\prime} \notin \mathcal{L}\right)
\end{aligned}
$$

Proving simulation soundness

Recall $\mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\}$.
Let $\mathrm{P}^{*}=\left(\mathrm{P}_{1}^{*}, \mathrm{P}_{2}^{*}\right)$ be a pair of РРтм's attacking the simulation soundness of (V, S) with respect to \mathcal{L}, and let $c=\left(c_{1}, c_{2}\right), x, \pi, x^{\prime}$ and $\pi^{\prime}=\left(v k^{\prime}, \pi_{A}^{\prime}, \sigma^{\prime}\right)$ be the values generated by a random execution of $\operatorname{Exp}_{\mathrm{V}, \mathrm{S}, \mathrm{P}^{*}}^{n}$.

Assume $\operatorname{Vrfy}_{v k^{\prime}}\left(\left(x^{\prime}, \pi_{A}^{\prime}\right), \sigma^{\prime}\right)=1, x^{\prime} \notin \mathcal{L}$ and $\left(x^{\prime}, \pi^{\prime}\right) \neq(x, \pi)$.
Then with all but negligible probability:

- $v k^{\prime}$ is not the verification key appeared in π ((Gen, Sign, Vrfy) is a strong signature)

$$
\begin{aligned}
& \Longrightarrow \nexists r \in\{0,1\}^{*} \text { s.t. } c_{1}=\operatorname{Com}\left(v k^{\prime}, r\right) \quad \text { (Com is perfectly binding) } \\
& \left.\Longrightarrow x_{A}^{\prime}=\left(x^{\prime}, c_{1}, v k^{\prime}\right) \notin \mathcal{L}_{A} \quad \text { (above and } x^{\prime} \notin \mathcal{L}\right)
\end{aligned}
$$

Proving simulation soundness

Recall $\mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\}$.
Let $\mathrm{P}^{*}=\left(\mathrm{P}_{1}^{*}, \mathrm{P}_{2}^{*}\right)$ be a pair of PPTM's attacking the simulation soundness of (V, S) with respect to \mathcal{L}, and let $c=\left(c_{1}, c_{2}\right), x, \pi, x^{\prime}$ and $\pi^{\prime}=\left(v k^{\prime}, \pi_{A}^{\prime}, \sigma^{\prime}\right)$ be the values generated by a random execution of $\operatorname{Exp}_{\mathrm{V}, \mathrm{S}, \mathrm{P}^{*}}^{n}$.

Assume $\operatorname{Vrfy}_{v k^{\prime}}\left(\left(x^{\prime}, \pi_{A}^{\prime}\right), \sigma^{\prime}\right)=1, x^{\prime} \notin \mathcal{L}$ and $\left(x^{\prime}, \pi^{\prime}\right) \neq(x, \pi)$.
Then with all but negligible probability:

- $v k^{\prime}$ is not the verification key appeared in π ((Gen, Sign, Vrfy) is a strong signature)

$$
\begin{aligned}
& \Longrightarrow \nexists r \in\{0,1\}^{*} \text { s.t. } c_{1}=\operatorname{Com}\left(v k^{\prime}, r\right) \quad \text { (Com is perfectly binding) } \\
& \left.\Longrightarrow x_{A}^{\prime}=\left(x^{\prime}, c_{1}, v k^{\prime}\right) \notin \mathcal{L}_{A} \quad \text { (above and } x^{\prime} \notin \mathcal{L}\right)
\end{aligned}
$$

Since c_{2} was chosen at random by S_{1}, the adaptive soundness of $\left(P_{A}, V_{A}\right)$ yields that $\operatorname{Pr}\left[\mathrm{V}_{A}\left(x_{A}^{\prime}, c_{2}, \pi_{A}^{\prime}\right)=1\right]=\operatorname{neg}(n)$.

Proving simulation soundness

Recall $\mathcal{L}_{A}:=\left\{(x, \operatorname{com}, w): x \in \mathcal{L} \vee \exists r \in\{0,1\}^{*}: \operatorname{com}=\operatorname{Com}(w, r)\right\}$.
Let $\mathrm{P}^{*}=\left(\mathrm{P}_{1}^{*}, \mathrm{P}_{2}^{*}\right)$ be a pair of PPTM's attacking the simulation soundness of (V, S) with respect to \mathcal{L}, and let $c=\left(c_{1}, c_{2}\right), x, \pi, x^{\prime}$ and $\pi^{\prime}=\left(v k^{\prime}, \pi_{A}^{\prime}, \sigma^{\prime}\right)$ be the values generated by a random execution of $\operatorname{Exp}_{\mathrm{V}, \mathrm{s}, \mathrm{P} *}^{n}$.

Assume $\operatorname{Vrfy}_{v k^{\prime}}\left(\left(x^{\prime}, \pi_{A}^{\prime}\right), \sigma^{\prime}\right)=1, x^{\prime} \notin \mathcal{L}$ and $\left(x^{\prime}, \pi^{\prime}\right) \neq(x, \pi)$.
Then with all but negligible probability:

- $v k^{\prime}$ is not the verification key appeared in π ((Gen, Sign, Vrfy) is a strong signature)

$$
\begin{aligned}
& \Longrightarrow \nexists r \in\{0,1\}^{*} \text { s.t. } c_{1}=\operatorname{Com}\left(v k^{\prime}, r\right) \quad \text { (Com is perfectly binding) } \\
& \left.\Longrightarrow x_{A}^{\prime}=\left(x^{\prime}, c_{1}, v k^{\prime}\right) \notin \mathcal{L}_{A} \quad \text { (above and } x^{\prime} \notin \mathcal{L}\right)
\end{aligned}
$$

Since c_{2} was chosen at random by S_{1}, the adaptive soundness of $\left(P_{A}, V_{A}\right)$ yields that $\operatorname{Pr}\left[\mathrm{V}_{A}\left(x_{A}^{\prime}, c_{2}, \pi_{A}^{\prime}\right)=1\right]=\operatorname{neg}(n)$.

Adaptive soundness?

Part II

Proof of Knowledge

Proof of Knowledge

The protocol (P, V) is a proof of knowledge for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if a P^{*} convinces V to accept x, then P^{*} "knows" $w \in R_{\mathcal{L}}(x)$.

Proof of Knowledge

The protocol (P, V) is a proof of knowledge for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if a P^{*} convinces V to accept x, then P^{*} "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 20 (knowledge extractor)

Let (P, V) be an interactive proof for $\mathcal{L} \in \mathcal{N} \mathcal{P}$. A probabilistic algorithm E is a knowledge extractor for (P, V) and $R_{\mathcal{L}}$ with error $\eta: \mathbb{N} \mapsto \mathbb{R}$, if $\exists t \in$ poly s.t. $\forall x \in \mathcal{L}$ and deterministic algorithm $\mathrm{P}^{*}, \mathrm{E}^{\mathrm{P}^{*}}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x)-\eta(|x|)}$ and outputs $w \in R_{\mathcal{L}}(x)$, where $\delta(x)=\operatorname{Pr}\left[\left(\mathrm{P}^{*}, \mathrm{~V}\right)(x)=1\right]$.
(P, V) is a proof of knowledge for \mathcal{L} with error η,

Proof of Knowledge

The protocol (P, V) is a proof of knowledge for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if a P^{*} convinces V to accept x, then P^{*} "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 20 (knowledge extractor)

Let (P, V) be an interactive proof for $\mathcal{L} \in \mathcal{N} \mathcal{P}$. A probabilistic algorithm E is a knowledge extractor for (P, V) and $R_{\mathcal{L}}$ with error $\eta: \mathbb{N} \mapsto \mathbb{R}$, if $\exists t \in$ poly s.t. $\forall x \in \mathcal{L}$ and deterministic algorithm $\mathrm{P}^{*}, \mathrm{E}^{\mathrm{P}^{*}}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x)-\eta(|x|)}$ and outputs $w \in R_{\mathcal{L}}(x)$, where $\delta(x)=\operatorname{Pr}\left[\left(\mathrm{P}^{*}, \mathrm{~V}\right)(x)=1\right]$.
(P, V) is a proof of knowledge for \mathcal{L} with error η,

- A property of V

Proof of Knowledge

The protocol (P, V) is a proof of knowledge for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if a P^{*} convinces V to accept x, then P^{*} "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 20 (knowledge extractor)

Let (P, V) be an interactive proof for $\mathcal{L} \in \mathcal{N} \mathcal{P}$. A probabilistic algorithm E is a knowledge extractor for (P, V) and $R_{\mathcal{L}}$ with error $\eta: \mathbb{N} \mapsto \mathbb{R}$, if $\exists t \in$ poly s.t. $\forall x \in \mathcal{L}$ and deterministic algorithm $\mathrm{P}^{*}, \mathrm{E}^{\mathrm{P}^{*}}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x)-\eta(|x|)}$ and outputs $w \in R_{\mathcal{L}}(x)$, where $\delta(x)=\operatorname{Pr}\left[\left(\mathrm{P}^{*}, \mathrm{~V}\right)(x)=1\right]$.
(P, V) is a proof of knowledge for \mathcal{L} with error η,

- A property of V
- Why do we need it?

Proof of Knowledge

The protocol (P, V) is a proof of knowledge for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if a P^{*} convinces V to accept x, then P^{*} "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 20 (knowledge extractor)

Let (P, V) be an interactive proof for $\mathcal{L} \in \mathcal{N} \mathcal{P}$. A probabilistic algorithm E is a knowledge extractor for (P, V) and $R_{\mathcal{L}}$ with error $\eta: \mathbb{N} \mapsto \mathbb{R}$, if $\exists t \in$ poly s.t. $\forall x \in \mathcal{L}$ and deterministic algorithm $\mathrm{P}^{*}, \mathrm{E}^{\mathrm{P}^{*}}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x)-\eta(|x|)}$ and outputs $w \in R_{\mathcal{L}}(x)$, where $\delta(x)=\operatorname{Pr}\left[\left(\mathrm{P}^{*}, \mathrm{~V}\right)(x)=1\right]$.
(P, V) is a proof of knowledge for \mathcal{L} with error η,

- A property of V
- Why do we need it?

Proof of Knowledge

The protocol (P, V) is a proof of knowledge for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if a P^{*} convinces V to accept x, then P^{*} "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 20 (knowledge extractor)

Let (P, V) be an interactive proof for $\mathcal{L} \in \mathcal{N} \mathcal{P}$. A probabilistic algorithm E is a knowledge extractor for (P, V) and $R_{\mathcal{L}}$ with error $\eta: \mathbb{N} \mapsto \mathbb{R}$, if $\exists t \in$ poly s.t. $\forall x \in \mathcal{L}$ and deterministic algorithm $\mathrm{P}^{*}, \mathrm{E}^{\mathrm{P}^{*}}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x)-\eta(|x|)}$ and outputs $w \in R_{\mathcal{L}}(x)$, where $\delta(x)=\operatorname{Pr}\left[\left(\mathrm{P}^{*}, \mathrm{~V}\right)(x)=1\right]$.
(P, V) is a proof of knowledge for \mathcal{L} with error η,

- A property of V
- Why do we need it? Authentication schmes

Proof of Knowledge

The protocol (P, V) is a proof of knowledge for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if a P^{*} convinces V to accept x, then P^{*} "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 20 (knowledge extractor)

Let (P, V) be an interactive proof for $\mathcal{L} \in \mathcal{N} \mathcal{P}$. A probabilistic algorithm E is a knowledge extractor for (P, V) and $R_{\mathcal{L}}$ with error $\eta: \mathbb{N} \mapsto \mathbb{R}$, if $\exists t \in$ poly s.t. $\forall x \in \mathcal{L}$ and deterministic algorithm $\mathrm{P}^{*}, \mathrm{E}^{\mathrm{P}^{*}}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x)-\eta(|x|)}$ and outputs $w \in R_{\mathcal{L}}(x)$, where $\delta(x)=\operatorname{Pr}\left[\left(\mathrm{P}^{*}, \mathrm{~V}\right)(x)=1\right]$.
(P, V) is a proof of knowledge for \mathcal{L} with error η,

- A property of V
- Why do we need it? Authentication schmes
- Why only deterministic P^{*} ?

Examples

Claim 21

The $\mathcal{Z K}$ proof we've seen in class for $\mathcal{G I}$, has a knowledge extractor with error $\frac{1}{2}$.

Examples

Claim 21

The $\mathcal{Z K}$ proof we've seen in class for $\mathcal{G I}$, has a knowledge extractor with error $\frac{1}{2}$.

Proof: ?

Examples

Claim 21

The $\mathcal{Z K}$ proof we've seen in class for $\mathcal{G I}$, has a knowledge extractor with error $\frac{1}{2}$.

Proof: ?

Claim 22

The $\mathcal{Z K}$ proof we've seen in class for 3COL, has a knowledge extractor with error $\frac{1}{|E|}$.

Examples

Claim 21

The $\mathcal{Z K}$ proof we've seen in class for $\mathcal{G I}$, has a knowledge extractor with error $\frac{1}{2}$.

Proof: ?

Claim 22

The $\mathcal{Z K}$ proof we've seen in class for 3COL, has a knowledge extractor with error $\frac{1}{|E|}$.

Proof: ?

[^0]: ${ }^{a}$ That is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

