Foundation of Cryptography, Lecture 7 Non-Interactive ZK and Proof of Knowledge

Benny Applebaum & Iftach Haitner, Tel Aviv University

Tel Aviv University.

December 29, 2016

Part I

Non-Interactive Zero Knowledge

Claim 1

Assume that $\mathcal{L}\subseteq\{0,1\}^*$ has a one-message \mathcal{ZK} proof (even computational), with standard completeness and soundness,^a then $\mathcal{L}\in\mathcal{BPP}$.

^aThat is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

Claim 1

Assume that $\mathcal{L} \subseteq \{0,1\}^*$ has a one-message \mathcal{ZK} proof (even computational), with standard completeness and soundness, a then $\mathcal{L} \in \mathcal{BPP}$.

^aThat is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

Claim 1

Assume that $\mathcal{L} \subseteq \{0,1\}^*$ has a one-message \mathcal{ZK} proof (even computational), with standard completeness and soundness, a then $\mathcal{L} \in \mathcal{BPP}$.

^aThat is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

Proof: HW

To reduce interaction, we relax the zero-knowledge requirement

Claim 1

Assume that $\mathcal{L} \subseteq \{0,1\}^*$ has a one-message \mathcal{ZK} proof (even computational), with standard completeness and soundness, a then $\mathcal{L} \in \mathcal{BPP}$.

^aThat is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

- 1 To reduce interaction, we relax the zero-knowledge requirement
 - Witness Indistinguishability $\{\langle (P(w_x^1), V^*)(x) \rangle_{V^*} \}_{x \in \mathcal{L}} \approx_{\mathcal{C}} \{\langle (P(w_x^2), V^*)(x) \rangle_{V^*} \}_{x \in \mathcal{L}},$ for any $\{w_x^1 \in \mathcal{R}_{\mathcal{L}}(x) \}_{x \in \mathcal{L}}$ and $\{w_x^2 \in \mathcal{R}_{\mathcal{L}}(x) \}_{x \in \mathcal{L}}$

Claim 1

Assume that $\mathcal{L} \subseteq \{0,1\}^*$ has a one-message \mathcal{ZK} proof (even computational), with standard completeness and soundness, a then $\mathcal{L} \in \mathcal{BPP}$.

^aThat is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

- To reduce interaction, we relax the zero-knowledge requirement
 - $\begin{aligned} & \textbf{Witness Indistinguishability} \\ & \{ \langle (\mathsf{P}(w_x^1), \mathsf{V}^*)(x) \rangle_{\mathsf{V}^*} \}_{x \in \mathcal{L}} \approx_{\mathcal{C}} \{ \langle (\mathsf{P}(w_x^2), \mathsf{V}^*)(x) \rangle_{\mathsf{V}^*} \}_{x \in \mathcal{L}}, \\ & \text{for any } \{ w_x^1 \in R_{\mathcal{L}}(x) \}_{x \in \mathcal{L}} \text{ and } \{ w_x^2 \in R_{\mathcal{L}}(x) \}_{x \in \mathcal{L}}. \end{aligned}$
 - Witness hiding

Claim 1

Assume that $\mathcal{L} \subseteq \{0,1\}^*$ has a one-message \mathcal{ZK} proof (even computational), with standard completeness and soundness, a then $\mathcal{L} \in \mathcal{BPP}$.

^aThat is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

- To reduce interaction, we relax the zero-knowledge requirement
 - Witness Indistinguishability $\{\langle (P(w_x^1), V^*)(x) \rangle_{V^*} \}_{x \in \mathcal{L}} \approx_{\mathcal{C}} \{\langle (P(w_x^2), V^*)(x) \rangle_{V^*} \}_{x \in \mathcal{L}},$ for any $\{w_x^1 \in \mathcal{R}_{\mathcal{L}}(x) \}_{x \in \mathcal{L}}$ and $\{w_x^2 \in \mathcal{R}_{\mathcal{L}}(x) \}_{x \in \mathcal{L}}$
 - Witness hiding
 - 3 Non-interactive "zero knowledge"

Definition 2 (\mathcal{NIZK})

- Completeness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}} [V(x,c,P(x,w(x),c)) = 1] \ge 2/3$, for any $x \in \mathcal{L}$ and $w(x) \in \mathcal{R}_{\mathcal{L}}(x)$.
- Soundness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}}[V(x,c,P^*(x,c))=1] \le 1/3$, for any P^* and $x \notin \mathcal{L}$.
- Zero knowledge: ∃ PPTM S s.t.

```
\{(x, c, P(x, w(x), c))_{c \leftarrow \{0,1\}^{\ell(|x|)}}\}_{x \in \mathcal{L}} \approx_c \{x, S(x)\}_{x \in \mathcal{L}} for any poly-bounded function w with w(x) \in \mathcal{R}_{\mathcal{L}}(x).
```

Definition 2 (\mathcal{NIZK})

A pair of non interactive PPTM's (P, V) is a \mathcal{NIZK} for $\mathcal{L} \in \mathcal{NP}$, if $\exists \ell \in \mathsf{poly}\ s.t.$

- Completeness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}} [V(x,c,P(x,w(x),c)) = 1] \ge 2/3$, for any $x \in \mathcal{L}$ and $w(x) \in \mathcal{R}_{\mathcal{L}}(x)$.
- Soundness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}}[V(x,c,P^*(x,c))=1] \le 1/3$, for any P^* and $x \notin \mathcal{L}$.
- Zero knowledge: ∃ PPTM S s.t.

```
\{(x, c, P(x, w(x), c))_{c \leftarrow \{0,1\}^{\ell(|x|)}}\}_{x \in \mathcal{L}} \approx_c \{x, S(x)\}_{x \in \mathcal{L}} for any poly-bounded function w with w(x) \in \mathcal{R}_{\mathcal{L}}(x).
```

c − common (random) reference string (CRS)

Definition 2 (\mathcal{NIZK})

- Completeness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}} [V(x,c,P(x,w(x),c)) = 1] \ge 2/3$, for any $x \in \mathcal{L}$ and $w(x) \in \mathcal{R}_{\mathcal{L}}(x)$.
- Soundness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}}[V(x,c,P^*(x,c))=1] \le 1/3$, for any P^* and $x \notin \mathcal{L}$.
- **Zero knowledge:** \exists PPTM \Diamond s.t. $\{(x, c, P(x, w(x), c))_{c \leftarrow \{0,1\}^{\ell(|x|)}}\}_{x \in \mathcal{L}} \approx_c \{x, S(x)\}_{x \in \mathcal{L}}$ for any poly-bounded function w with $w(x) \in \mathcal{R}_{\mathcal{L}}(x)$.
- c common (random) reference string (CRS)
- In the ZK part, CRS is chosen by the simulator.

Definition 2 (\mathcal{NIZK})

- Completeness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}} [V(x,c,P(x,w(x),c)) = 1] \ge 2/3$, for any $x \in \mathcal{L}$ and $w(x) \in \mathcal{R}_{\mathcal{L}}(x)$.
- Soundness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}}[V(x,c,P^*(x,c))=1] \le 1/3$, for any P^* and $x \notin \mathcal{L}$.
- **Zero knowledge:** \exists PPTM \Diamond s.t. $\{(x, c, P(x, w(x), c))_{c \leftarrow \{0,1\}^{\ell(|x|)}}\}_{x \in \mathcal{L}} \approx_c \{x, S(x)\}_{x \in \mathcal{L}}$ for any poly-bounded function w with $w(x) \in \mathcal{R}_{\mathcal{L}}(x)$.
- c common (random) reference string (CRS)
- In the ZK part, CRS is chosen by the simulator.
- What does this definition (intuitively) mean?

Definition 2 (\mathcal{NIZK})

- Completeness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}} [V(x,c,P(x,w(x),c)) = 1] \ge 2/3$, for any $x \in \mathcal{L}$ and $w(x) \in \mathcal{R}_{\mathcal{L}}(x)$.
- Soundness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}}[V(x,c,P^*(x,c))=1] \le 1/3$, for any P^* and $x \notin \mathcal{L}$.
- Zero knowledge: ∃ PPTM S s.t.

```
\{(x, c, P(x, w(x), c))_{c \leftarrow \{0,1\}^{\ell(|x|)}}\}_{x \in \mathcal{L}} \approx_c \{x, S(x)\}_{x \in \mathcal{L}} for any poly-bounded function w with w(x) \in \mathcal{R}_{\mathcal{L}}(x).
```

- c common (random) reference string (CRS)
- In the ZK part, CRS is chosen by the simulator.
- What does this definition (intuitively) mean?
- Auxiliary information.

Definition 2 (\mathcal{NIZK})

- Completeness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}} \left[V(x,c,P(x,w(x),c)) = 1 \right] \ge 2/3$, for any $x \in \mathcal{L}$ and $w(x) \in \mathcal{R}_{\mathcal{L}}(x)$.
- Soundness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}}[V(x,c,P^*(x,c))=1] \le 1/3$, for any P^* and $x \notin \mathcal{L}$.
- Zero knowledge: ∃ PPTM S s.t.

```
\{(x, c, P(x, w(x), c))_{c \leftarrow \{0,1\}^{\ell(|x|)}}\}_{x \in \mathcal{L}} \approx_c \{x, S(x)\}_{x \in \mathcal{L}} for any poly-bounded function w with w(x) \in \mathcal{R}_{\mathcal{L}}(x).
```

- c common (random) reference string (CRS)
- In the ZK part, CRS is chosen by the simulator.
- What does this definition (intuitively) mean?
- Auxiliary information.
- Amplification?

Definition 2 (\mathcal{NIZK})

- Completeness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}} [V(x,c,P(x,w(x),c)) = 1] \ge 2/3$, for any $x \in \mathcal{L}$ and $w(x) \in \mathcal{R}_{\mathcal{L}}(x)$.
- Soundness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}}[V(x,c,P^*(x,c))=1] \le 1/3$, for any P^* and $x \notin \mathcal{L}$.
- Zero knowledge: $\exists \ PPTM \ S \ s.t.$

```
\{(x, c, P(x, w(x), c))_{c \leftarrow \{0,1\}^{\ell(|x|)}}\}_{x \in \mathcal{L}} \approx_c \{x, S(x)\}_{x \in \mathcal{L}} for any poly-bounded function w with w(x) \in \mathcal{R}_{\mathcal{L}}(x).
```

- c common (random) reference string (CRS)
- In the ZK part, CRS is chosen by the simulator.
- What does this definition (intuitively) mean?
- Auxiliary information.
- Amplification?
- What happens when applying S on $x \notin \mathcal{L}$?

Non-Interactive Zero Knowledge, cont.

Statistical/Perfect zero knowledge?

Non-Interactive Zero Knowledge, cont.

- Statistical/Perfect zero knowledge?
- Non-interactive Witness Hiding (WI)

Section 1

NIZK in HBM

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.

Let c^H be the "hidden" CRS:

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.

Let c^H be the "hidden" CRS:

1 Prover sees c^H , and outputs a proof π and a set of indices \mathcal{I} .

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.

Let c^H be the "hidden" CRS:

- **1** Prover sees c^H , and outputs a proof π and a set of indices \mathcal{I} .
- ② Verifier only sees π and the bits in c^H indexed by \mathcal{I} .

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.

Let c^H be the "hidden" CRS:

- **1** Prover sees c^H , and outputs a proof π and a set of indices \mathcal{I} .
- ② Verifier only sees π and the bits in c^H indexed by \mathcal{I} .
- 3 Simulator outputs a proof π , a set of indices \mathcal{I} and a partially hidden CRS c^H .

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.

Let c^H be the "hidden" CRS:

- **1** Prover sees c^H , and outputs a proof π and a set of indices \mathcal{I} .
- ② Verifier only sees π and the bits in c^H indexed by \mathcal{I} .
- 3 Simulator outputs a proof π , a set of indices \mathcal{I} and a partially hidden CRS c^H .

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.

Let c^H be the "hidden" CRS:

- **1** Prover sees c^H , and outputs a proof π and a set of indices \mathcal{I} .
- ② Verifier only sees π and the bits in c^H indexed by \mathcal{I} .
- 3 Simulator outputs a proof π , a set of indices \mathcal{I} and a partially hidden CRS c^H .

Soundness, completeness and ZK are naturally defined.

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.

Let c^H be the "hidden" CRS:

- **1** Prover sees c^H , and outputs a proof π and a set of indices \mathcal{I} .
- ② Verifier only sees π and the bits in c^H indexed by \mathcal{I} .
- 3 Simulator outputs a proof π , a set of indices \mathcal{I} and a partially hidden CRS c^H .

Soundness, completeness and ZK are naturally defined.

• We give a \mathcal{NIZK} for \mathcal{HC} , Directed Graph Hamiltonicity, in the HBM, and then transfer it into a \mathcal{NIZK} for \mathcal{HC} in the standard model.

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.

Let cH be the "hidden" CRS:

- **1** Prover sees c^H , and outputs a proof π and a set of indices \mathcal{I} .
- ② Verifier only sees π and the bits in c^H indexed by \mathcal{I} .
- 3 Simulator outputs a proof π , a set of indices \mathcal{I} and a partially hidden CRS c^H .

Soundness, completeness and ZK are naturally defined.

- We give a \mathcal{NIZK} for \mathcal{HC} , Directed Graph Hamiltonicity, in the HBM, and then transfer it into a \mathcal{NIZK} for \mathcal{HC} in the standard model.
- The latter implies a \mathcal{NIZK} for all \mathcal{NP} .

• Permutation matrix: an $n \times n$ Boolean matrix, each row/column contains a single 1.

- Permutation matrix: an n × n Boolean matrix, each row/column contains a single 1.
- Hamiltonian matrix: an n x n adjacency matrix of a directed graph that is an Hamiltonian cycle of all nodes (note that Hamiltonian matrix is also a permutation matrix).

- Permutation matrix: an n × n Boolean matrix, each row/column contains a single 1.
- Hamiltonian matrix: an n x n adjacency matrix of a directed graph that is an Hamiltonian cycle of all nodes (note that Hamiltonian matrix is also a permutation matrix).
- Useful matrix: an $n^3 \times n^3$ Boolean matrix that contains an Hamiltonian generalized $n \times n$ sub-matrix, and all other entries are zeros.

- Permutation matrix: an n × n Boolean matrix, each row/column contains a single 1.
- Hamiltonian matrix: an n x n adjacency matrix of a directed graph that is an Hamiltonian cycle of all nodes (note that Hamiltonian matrix is also a permutation matrix).
- Useful matrix: an $n^3 \times n^3$ Boolean matrix that contains an Hamiltonian generalized $n \times n$ sub-matrix, and all other entries are zeros.

- Permutation matrix: an $n \times n$ Boolean matrix, each row/column contains a single 1.
- Hamiltonian matrix: an $n \times n$ adjacency matrix of a directed graph that is an Hamiltonian cycle of all nodes (note that Hamiltonian matrix is also a permutation matrix).
- Useful matrix: an $n^3 \times n^3$ Boolean matrix that contains an Hamiltonian generalized $n \times n$ sub-matrix, and all other entries are zeros.

Claim 3

Let T be a random $n^3 \times n^3$ Boolean matrix s.t. each entry is 1 w.p n^{-5} . Then, $\Pr[T \text{ is useful}] \in \Omega(n^{-3/2})$.

Proving $Pr[T \text{ is useful}] \in \Omega(n^{-3/2})$

Proving $Pr[T \text{ is useful}] \in \Omega(n^{-3/2})$

• The expected # of ones (entries) in T is $n^6 \cdot n^{-5} = n$.

Proving $Pr[T \text{ is useful}] \in \Omega(n^{-3/2})$

- The expected # of ones (entries) in T is $n^6 \cdot n^{-5} = n$.
- By (extended) Chernoff bound, T contains exactly n ones w.p. $\theta(1/\sqrt{n})$.

- The expected # of ones (entries) in T is $n^6 \cdot n^{-5} = n$.
- By (extended) Chernoff bound, *T* contains exactly *n* ones w.p. $\theta(1/\sqrt{n})$.
- Each row/colomn of T contain more than a single one entry with probability at most $\binom{n^3}{2} \cdot n^{-10} < n^{-4}$.

- The expected # of ones (entries) in T is $n^6 \cdot n^{-5} = n$.
- By (extended) Chernoff bound, T contains exactly n ones w.p. $\theta(1/\sqrt{n})$.
- Each row/colomn of T contain more than a single one entry with probability at most $\binom{n^3}{2} \cdot n^{-10} < n^{-4}$.

Hence, wp at least $1 - 2 \cdot n^3 \cdot n^{-4} = 1 - O(n^{-1})$, no raw or column of T contains more than a single one entry.

- The expected # of ones (entries) in T is $n^6 \cdot n^{-5} = n$.
- By (extended) Chernoff bound, T contains exactly n ones w.p. $\theta(1/\sqrt{n})$.
- Each row/colomn of T contain more than a single one entry with probability at most $\binom{n^3}{2} \cdot n^{-10} < n^{-4}$.
 - Hence, wp at least $1 2 \cdot n^3 \cdot n^{-4} = 1 O(n^{-1})$, no raw or column of T contains more than a single one entry.
- Hence, wp $\theta(1/\sqrt{n})$ the matrix T contains a permutation matrix and all its other entries are zero.

- The expected # of ones (entries) in T is $n^6 \cdot n^{-5} = n$.
- By (extended) Chernoff bound, T contains exactly n ones w.p. $\theta(1/\sqrt{n})$.
- Each row/colomn of T contain more than a single one entry with probability at most $\binom{n^3}{2} \cdot n^{-10} < n^{-4}$.
 - Hence, wp at least $1 2 \cdot n^3 \cdot n^{-4} = 1 O(n^{-1})$, no raw or column of T contains more than a single one entry.
- Hence, wp $\theta(1/\sqrt{n})$ the matrix T contains a permutation matrix and all its other entries are zero.
- A random permutation matrix forms a cycle wp 1/n (there are n! permutation matrices and (n-1)! of them form a cycle)

• Common input: a directed graph G = ([n], E)

- Common input: a directed graph G = ([n], E)
- We assume wlg. that n is a power of 2 (?)

- Common input: a directed graph G = ([n], E)
- We assume wlg. that n is a power of 2 (?)
- Common reference string T viewed as a $n^3 \times n^3$ Boolean matrix, where each entry is 1 w.p n^{-5} (?)

- Common input: a directed graph G = ([n], E)
- We assume wlg. that n is a power of 2 (?)
- Common reference string T viewed as a $n^3 \times n^3$ Boolean matrix, where each entry is 1 w.p n^{-5} (?)

- Common input: a directed graph G = ([n], E)
- We assume wlg. that *n* is a power of 2 (?)
- Common reference string T viewed as a $n^3 \times n^3$ Boolean matrix, where each entry is 1 w.p n^{-5} (?)

Algorithm 4 (P)

Input: n-node graph G = ([n], E) and a cycle C in G.

CRS: $T \in \{0, 1\}_{n^3 \times n^3}$.

- If T not useful, set $\mathcal{I} = n^3 \times n^3$ (i.e., reveal all T) and $\pi = \perp$.
- Otherwise, let H be the (generalized) $n \times n$ sub-matrix containing the hamiltonian cycle in T.
 - Set $\mathcal{I} = T \setminus H$ (i.e., reveal the bits of T outside of H).
 - **2** Choose $\phi \leftarrow \Pi_n$ s.t. *C* is mapped to the cycle in *H*.
 - 3 Add the entries in H corresponding to non edges in G (wrt. ϕ) to \mathcal{I} .
- 3 Output $\pi = \phi$ and \mathcal{I} .

Algorithm 5 (V)

Input: n-node graph G = ([n], E), mapping ϕ , index set $\mathcal{I} \subseteq [n^3] \times [n^3]$ and an ordered set $\{T_i\}_{i \in \mathcal{I}}$.

Accept if $\phi = \perp$, all the bits of T are revealed and T is not useful.

Otherwise,

- Verify that $\phi \in \Pi_n$.
- **2** Verify that exists a single $n \times n$ generalized submatrix $H \subseteq T$ s.t. all entries in $T \setminus H$ are zeros.
- Verify that all entries of H not corresponding to edges of G according to ϕ , are zeros: $\forall (u, v) \notin E$, the entry $(\phi(u), \phi(v))$ in H is opened to 0.

Algorithm 5 (V)

Input: n-node graph G = ([n], E), mapping ϕ , index set $\mathcal{I} \subseteq [n^3] \times [n^3]$ and an ordered set $\{T_i\}_{i \in \mathcal{I}}$.

Accept if $\phi = \perp$, all the bits of T are revealed and T is not useful.

Otherwise,

- Verify that $\phi \in \Pi_n$.
- Verify that exists a single $n \times n$ generalized submatrix $H \subseteq T$ s.t. all entries in $T \setminus H$ are zeros.
- Verify that all entries of H not corresponding to edges of G according to ϕ , are zeros: $\forall (u, v) \notin E$, the entry $(\phi(u), \phi(v))$ in H is opened to 0.

Claim 6

The above protocol is a perfect \mathcal{NIZK} for \mathcal{HC} in the HBM, with perfect completeness and soundness error $1 - \Omega(n^{-3/2})$.

Completeness: Clear.

- Completeness: Clear.
- Soundness: Assume T is useful and V accepts. Then ϕ^{-1} maps the unrevealed "edges" of H to the edges of G.

- Completeness: Clear.
- Soundness: Assume T is useful and V accepts. Then ϕ^{-1} maps the unrevealed "edges" of H to the edges of G.

Hence, ϕ^{-1} maps the cycle in H to an Hamiltonian cycle in G.

- Completeness: Clear.
- Soundness: Assume T is useful and V accepts. Then ϕ^{-1} maps the unrevealed "edges" of H to the edges of G.
 - Hence, ϕ^{-1} maps the cycle in H to an Hamiltonian cycle in G.
- Zero knowledge?

- Choose T at random (i.e., each entry is one wp n^{-5}).
- 2 If *T* is not useful, set $\mathcal{I} = n^3 \times n^3$ and $\phi = \perp$.
- Otherwise,
 - Set $\mathcal{I} = T \setminus H$ (where H is the hamiltonian sub-matrix in T).
 - **2** Let $\phi \leftarrow \Pi_n$. Replace all entries of H with zeros.
 - 3 Add the entries in H corresponding to non edges in G to \mathcal{I} .
- Output $\pi = (T, \mathcal{I}, \phi)$.

- Choose T at random (i.e., each entry is one wp n^{-5}).
- 2 If *T* is not useful, set $\mathcal{I} = n^3 \times n^3$ and $\phi = \perp$.
- Otherwise,
 - Set $\mathcal{I} = T \setminus H$ (where H is the hamiltonian sub-matrix in T).
 - **2** Let $\phi \leftarrow \Pi_n$. Replace all entries of H with zeros.
 - 3 Add the entries in H corresponding to non edges in G to \mathcal{I} .
- Output $\pi = (T, \mathcal{I}, \phi)$.
 - Perfect simulation for non-useful T's.

- **1** Choose T at random (i.e., each entry is one wp n^{-5}).
- 2 If T is not useful, set $\mathcal{I} = n^3 \times n^3$ and $\phi = \perp$.
- Otherwise,
 - Set $\mathcal{I} = T \setminus H$ (where H is the hamiltonian sub-matrix in T).
 - **2** Let $\phi \leftarrow \Pi_n$. Replace all entries of H with zeros.
 - 3 Add the entries in H corresponding to non edges in G to \mathcal{I} .
- **①** Output $\pi = (T, \mathcal{I}, \phi)$.
- Perfect simulation for non-useful T's.
- For useful *T*, the location of *H* is uniform in the real and simulated case.

- **1** Choose T at random (i.e., each entry is one wp n^{-5}).
- 2 If *T* is not useful, set $\mathcal{I} = n^3 \times n^3$ and $\phi = \perp$.
- Otherwise,
 - Set $\mathcal{I} = T \setminus H$ (where H is the hamiltonian sub-matrix in T).
 - **2** Let $\phi \leftarrow \Pi_n$. Replace all entries of H with zeros.
 - 3 Add the entries in H corresponding to non edges in G to \mathcal{I} .
- **①** Output $\pi = (T, \mathcal{I}, \phi)$.
 - Perfect simulation for non-useful T's.
- For useful *T*, the location of *H* is uniform in the real and simulated case.
- ϕ is a random element in Π_n in both (real and simulated) cases (?)

- Input: G
 - Choose T at random (i.e., each entry is one wp n^{-5}).
 - 2 If *T* is not useful, set $\mathcal{I} = n^3 \times n^3$ and $\phi = \perp$.
 - Otherwise,
 - Set $\mathcal{I} = T \setminus H$ (where H is the hamiltonian sub-matrix in T).
 - **2** Let $\phi \leftarrow \Pi_n$. Replace all entries of H with zeros.
 - **3** Add the entries in H corresponding to non edges in G to I.
 - **4** Output $\pi = (T, \mathcal{I}, \phi)$.
 - Perfect simulation for non-useful T's.
 - For useful *T*, the location of *H* is uniform in the real and simulated case.
 - ϕ is a random element in Π_n in both (real and simulated) cases (?)
 - Hence, the simulation is perfect!

Section 2

From HBM to Standard NIZK

Subsection 1

TDP

Trapdoor permutations

Definition 8 (trapdoor permutations)

A triplet (G, f, Inv), where G is a PPTM, and f and Inv are poly-time computable, is a family of trapdoor permutation (TDP), if:

- ① On input 1^n , $G(1^n)$ outputs a pair (sk, pk).
- 2 $f_{pk} = f(pk, \cdot)$ is a permutation over $\{0, 1\}^n$, for every $n \in \mathbb{N}$ and $pk \in \text{Supp}(G(1^n)_2)$.
- 1 Inv_{sk} = Inv(sk, ·) $\equiv f_{pk}^{-1}$ for every (sk, pk) \in Supp(G(1ⁿ))
- For any PPTM A, $\Pr_{x \leftarrow \{0,1\}^n, pk \leftarrow G(1^n)_2} \left[A(pk, x) = f_{pk}^{-1}(x) \right] = \text{neg}(n)$

Hardcore Predicates for Trapdoor Permutations

Definition 9 (hardcore predicates for TDP)

A polynomial-time computable $b: \{0,1\}^n \mapsto \{0,1\}$ is a hardcore predicate of a TDP (G,f,Inv), if

$$\Pr_{pk \leftarrow G(1^n)_2, x \leftarrow \{0,1\}^n} [P(pk, f_{pk}(x)) = b(x)] \le \frac{1}{2} + \text{neg}(n),$$

for any PPTM P.

Hardcore Predicates for Trapdoor Permutations

Definition 9 (hardcore predicates for TDP)

A polynomial-time computable $b: \{0,1\}^n \mapsto \{0,1\}$ is a hardcore predicate of a TDP (G,f,Inv), if

$$\Pr_{pk \leftarrow G(1^n)_2, x \leftarrow \{0,1\}^n} [P(pk, f_{pk}(x)) = b(x)] \le \frac{1}{2} + \text{neg}(n),$$

for any PPTM P.

Goldreich-Levin: any TDP has an hardcore predicate (ignoring padding issues)

In the following $N \in \mathbb{N}$ is a large number (*n*-bit long) and all operations are modulo N.

In the following $N \in \mathbb{N}$ is a large number (*n*-bit long) and all operations are modulo N.

 $\bullet \ \mathbb{Z}_N = [N] \text{ and } \mathbb{Z}_N^* = \{x \in [N] \colon \gcd(x, N) = 1\}$

In the following $N \in \mathbb{N}$ is a large number (n-bit long) and all operations are modulo N.

- $\bullet \ \mathbb{Z}_N = [N] \text{ and } \mathbb{Z}_N^* = \{x \in [N] \colon \gcd(x, N) = 1\}$
- $\phi(N) = |\mathbb{Z}_N^*|$ (equals (P-1)(Q-1) for N = PQ with $P, Q \in \mathcal{P}$)

In the following $N \in \mathbb{N}$ is a large number (*n*-bit long) and all operations are modulo N.

- $\mathbb{Z}_N = [N] \text{ and } \mathbb{Z}_N^* = \{x \in [N] : \gcd(x, N) = 1\}$
- $\phi(N) = |\mathbb{Z}_N^*|$ (equals (P-1)(Q-1) for N = PQ with $P, Q \in \mathcal{P}$)
- For every $e \in \mathbb{Z}_{\phi(N)}^*$, the function $f(x) \equiv x^e \mod N$ is a permutation over \mathbb{Z}_N^* .

In particular, $(x^e)^d \equiv x \mod N$, for every $x \in \mathbb{Z}_N^*$, where $d \equiv e^{-1} \mod \phi(N)$

In the following $N \in \mathbb{N}$ is a large number (*n*-bit long) and all operations are modulo N.

- $\mathbb{Z}_N = [N] \text{ and } \mathbb{Z}_N^* = \{x \in [N] : \gcd(x, N) = 1\}$
- $\phi(N) = |\mathbb{Z}_N^*|$ (equals (P-1)(Q-1) for N = PQ with $P, Q \in \mathcal{P}$)
- For every $e \in \mathbb{Z}_{\phi(N)}^*$, the function $f(x) \equiv x^e \mod N$ is a permutation over \mathbb{Z}_N^* .

In particular, $(x^e)^d \equiv x \mod N$, for every $x \in \mathbb{Z}_N^*$, where $d \equiv e^{-1} \mod \phi(N)$

In the following $N \in \mathbb{N}$ is a large number (n-bit long) and all operations are modulo N.

- $\mathbb{Z}_N = [N] \text{ and } \mathbb{Z}_N^* = \{x \in [N] : \gcd(x, N) = 1\}$
- $\phi(N) = |\mathbb{Z}_N^*|$ (equals (P-1)(Q-1) for N = PQ with $P, Q \in \mathcal{P}$)
- For every $e \in \mathbb{Z}_{\phi(N)}^*$, the function $f(x) \equiv x^e \mod N$ is a permutation over \mathbb{Z}_N^* .

In particular, $(x^e)^d \equiv x \mod N$, for every $x \in \mathbb{Z}_N^*$, where $d \equiv e^{-1} \mod \phi(N)$

Definition 10 (RSA)

- G(P, Q) sets pk = (N = PQ, e) for some $e \in \mathbb{Z}_{\phi(N)}^*$, and $sk = (N, d \equiv e^{-1} \mod \phi(N))$
- $f(pk, x) = x^e \mod N$
- $Inv(sk, x) = x^d \mod N$

In the following $N \in \mathbb{N}$ is a large number (*n*-bit long) and all operations are modulo N.

- $\mathbb{Z}_N = [N]$ and $\mathbb{Z}_N^* = \{x \in [N] : \gcd(x, N) = 1\}$
- $\phi(N) = |\mathbb{Z}_N^*|$ (equals (P-1)(Q-1) for N = PQ with $P, Q \in \mathcal{P}$)
- For every $e \in \mathbb{Z}_{\phi(N)}^*$, the function $f(x) \equiv x^e \mod N$ is a permutation over \mathbb{Z}_{N}^{*} .

In particular, $(x^e)^d \equiv x \mod N$, for every $x \in \mathbb{Z}_N^*$, where $d \equiv e^{-1} \mod \phi(N)$

Definition 10 (RSA)

- G(P,Q) sets pk = (N = PQ, e) for some $e \in \mathbb{Z}_{\phi(N)}^*$, and $sk = (N, d \equiv e^{-1} \mod \phi(N))$
- \bullet $f(pk, x) = x^e \mod N$
- $Inv(sk, x) = x^d \mod N$

Factoring is easy \implies RSA is easy.

In the following $N \in \mathbb{N}$ is a large number (*n*-bit long) and all operations are modulo N.

- $\mathbb{Z}_N = [N]$ and $\mathbb{Z}_N^* = \{x \in [N] : \gcd(x, N) = 1\}$
- $\phi(N) = |\mathbb{Z}_N^*|$ (equals (P-1)(Q-1) for N = PQ with $P, Q \in \mathcal{P}$)
- For every $e \in \mathbb{Z}_{\phi(N)}^*$, the function $f(x) \equiv x^e \mod N$ is a permutation over \mathbb{Z}_{N}^{*} .

In particular, $(x^e)^d \equiv x \mod N$, for every $x \in \mathbb{Z}_N^*$, where $d \equiv e^{-1} \mod \phi(N)$

Definition 10 (RSA)

- G(P,Q) sets pk = (N = PQ, e) for some $e \in \mathbb{Z}_{\phi(N)}^*$, and $sk = (N, d \equiv e^{-1} \mod \phi(N))$
- \bullet $f(pk, x) = x^e \mod N$
- $Inv(sk, x) = x^d \mod N$

Factoring is easy \implies RSA is easy. The other direction?

Subsection 2

The Transformation

The transformation

• Let (P_H, V_H) be a HBM \mathcal{NIZK} for \mathcal{L} , and let $\ell(n)$ be the length of the CRS used for $x \in \{0, 1\}^n$.

- Let (P_H, V_H) be a HBM \mathcal{NIZK} for \mathcal{L} , and let $\ell(n)$ be the length of the CRS used for $x \in \{0, 1\}^n$.
- Let (G, f, Inv) be a TDP and let b be an hardcore bit for it.
 For simplicity, assume that G(1ⁿ) chooses (sk, pk) as follows:

- Let (P_H, V_H) be a HBM \mathcal{NIZK} for \mathcal{L} , and let $\ell(n)$ be the length of the CRS used for $x \in \{0, 1\}^n$.
- Let (G, f, Inv) be a TDP and let b be an hardcore bit for it.
 For simplicity, assume that G(1ⁿ) chooses (sk, pk) as follows:
 - **1** sk $\leftarrow \{0,1\}^n$

- Let (P_H, V_H) be a HBM \mathcal{NIZK} for \mathcal{L} , and let $\ell(n)$ be the length of the CRS used for $x \in \{0, 1\}^n$.
- Let (G, f, Inv) be a TDP and let b be an hardcore bit for it.
 For simplicity, assume that G(1ⁿ) chooses (sk, pk) as follows:
 - **1** sk $\leftarrow \{0,1\}^n$

- Let (P_H, V_H) be a HBM \mathcal{NIZK} for \mathcal{L} , and let $\ell(n)$ be the length of the CRS used for $x \in \{0, 1\}^n$.
- Let (G, f, Inv) be a TDP and let b be an hardcore bit for it.
 For simplicity, assume that G(1ⁿ) chooses (sk, pk) as follows:
 - **1** sk $\leftarrow \{0,1\}^n$

- Let (P_H, V_H) be a HBM \mathcal{NIZK} for \mathcal{L} , and let $\ell(n)$ be the length of the CRS used for $x \in \{0, 1\}^n$.
- Let (G, f, Inv) be a TDP and let b be an hardcore bit for it.
 For simplicity, assume that G(1ⁿ) chooses (sk, pk) as follows:
 - **1** $sk \leftarrow \{0,1\}^n$

where $PK: \{0,1\}^n \mapsto \{0,1\}^n$ is a polynomial-time computable function.

- Let (P_H, V_H) be a HBM \mathcal{NIZK} for \mathcal{L} , and let $\ell(n)$ be the length of the CRS used for $x \in \{0, 1\}^n$.
- Let (G, f, Inv) be a TDP and let b be an hardcore bit for it.
 For simplicity, assume that G(1ⁿ) chooses (sk, pk) as follows:
 - 1 $sk \leftarrow \{0,1\}^n$ 2 pk = PK(sk)

where $PK: \{0,1\}^n \mapsto \{0,1\}^n$ is a polynomial-time computable function.

We construct a \mathcal{NIZK} (P,V) for \mathcal{L} , with the same completeness and "not too large" soundness error.

The protocol

Algorithm 11 (P)

Input: $x \in \mathcal{L}$, $w \in R_{\mathcal{L}}(x)$ and CRS $c = (c_1, \dots, c_{\ell}) \in \{0, 1\}^{n\ell}$, where n = |x| and $\ell = \ell(n)$.

- **①** Choose (sk, pk) ← G(sk) and compute $c^H = (b(z_1 = f_{pk}^{-1}(c_1)), \dots, b(z_{\ell(n)} = f_{pk}^{-1}(c_{\ell})))$
- 2 Let $(\pi_H, \mathcal{I}) \leftarrow \mathsf{P}_H(x, w, c^H)$ and output $(\pi_H, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}})$

The protocol

Algorithm 11 (P)

Input: $x \in \mathcal{L}$, $w \in R_{\mathcal{L}}(x)$ and CRS $c = (c_1, \dots, c_\ell) \in \{0, 1\}^{n\ell}$, where n = |x| and $\ell = \ell(n)$.

- Ohoose $(sk, pk) \leftarrow G(sk)$ and compute $c^H = (b(z_1 = f_{pk}^{-1}(c_1)), \dots, b(z_{\ell(n)} = f_{pk}^{-1}(c_\ell)))$
- 2 Let $(\pi_H, \mathcal{I}) \leftarrow \mathsf{P}_H(x, w, c^H)$ and output $(\pi_H, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}})$

Algorithm 12 (V)

Input: $x \in \mathcal{L}$, CRS $c = (c_1, \dots, c_\ell) \in \{0, 1\}^{np}$, and $(\pi_H, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}})$, where n = |x| and $\ell = \ell(n)$.

- **1** Verify that $pk \in \{0,1\}^n$ and that $f_{pk}(z_i) = c_i$ for every $i \in \mathcal{I}$
- 2 Return $V_H(x, \pi_H, \mathcal{I}, c^H)$, where $c_i^H = b(z_i)$ for every $i \in \mathcal{I}$.

Assuming that (P_H, V_H) is a \mathcal{NIZK} for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a \mathcal{NIZK} for \mathcal{L} with the same completeness, and soundness error α .

Assuming that (P_H, V_H) is a \mathcal{NIZK} for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a \mathcal{NIZK} for \mathcal{L} with the same completeness, and soundness error α .

Proof: Assume for simplicity that *b* is unbiased (i.e., $\Pr[b(U_n) = 1] = \frac{1}{2}$).

Assuming that (P_H, V_H) is a \mathcal{NIZK} for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a \mathcal{NIZK} for \mathcal{L} with the same completeness, and soundness error α .

Proof: Assume for simplicity that b is unbiased (i.e., $\Pr[b(U_n) = 1] = \frac{1}{2}$). For every $pk \in \{0,1\}^n$: $\left(b(f_{pk}^{-1}(c_1)), \ldots, b(f_{pk}^{-1}(c_\ell))\right)_{c \leftarrow \{0,1\}^{np}}$ is uniformly distributed in $\{0,1\}^\ell$.

Assuming that (P_H, V_H) is a \mathcal{NIZK} for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a \mathcal{NIZK} for \mathcal{L} with the same completeness, and soundness error α .

Proof: Assume for simplicity that b is unbiased (i.e., $\Pr[b(U_n) = 1] = \frac{1}{2}$). For every $pk \in \{0,1\}^n$: $\left(b(f_{pk}^{-1}(c_1)), \ldots, b(f_{pk}^{-1}(c_\ell))\right)_{c \leftarrow \{0,1\}^{np}}$ is uniformly distributed in $\{0,1\}^\ell$.

Completeness: clear

Assuming that (P_H, V_H) is a \mathcal{NIZK} for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a \mathcal{NIZK} for \mathcal{L} with the same completeness, and soundness error α .

Proof: Assume for simplicity that b is unbiased (i.e., $\Pr[b(U_n) = 1] = \frac{1}{2}$). For every $pk \in \{0,1\}^n$: $\left(b(f_{pk}^{-1}(c_1)), \ldots, b(f_{pk}^{-1}(c_\ell))\right)_{c \leftarrow \{0,1\}^{np}}$ is uniformly distributed in $\{0,1\}^\ell$.

- Completeness: clear
- Soundness: follows by a union bound over all possible choice of $pk \in \{0,1\}^n$.

Assuming that (P_H, V_H) is a \mathcal{NIZK} for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a \mathcal{NIZK} for \mathcal{L} with the same completeness, and soundness error α .

Proof: Assume for simplicity that b is unbiased (i.e., $\Pr[b(U_n) = 1] = \frac{1}{2}$). For every $pk \in \{0,1\}^n$: $\left(b(f_{pk}^{-1}(c_1)), \ldots, b(f_{pk}^{-1}(c_\ell))\right)_{c \leftarrow \{0,1\}^{np}}$ is uniformly distributed in $\{0,1\}^\ell$.

- Completeness: clear
- Soundness: follows by a union bound over all possible choice of $pk \in \{0,1\}^n$.
- Zero knowledge:?

Algorithm 14 (S)

- Let $(\pi_H, \mathcal{I}, \mathbf{c}^H) = S_H(x)$, where S_H is the simulator of (P_H, V_H)
- Output $(c, (\pi_H, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}}))$, where
 - ▶ $pk \leftarrow G(U_n)$
 - ► Each z_i is chosen at random in $\{0,1\}^n$ such that $b(z_i) = c_i^H$
 - ▶ $c_i = f_{pk}(z_i)$ for $i \in \mathcal{I}$, and a random value in $\{0,1\}^n$ otherwise.

Algorithm 14 (S)

- Let $(\pi_H, \mathcal{I}, \mathbf{c}^H) = S_H(x)$, where S_H is the simulator of (P_H, V_H)
- Output $(c, (\pi_H, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}}))$, where
 - ▶ $pk \leftarrow G(U_n)$
 - ► Each z_i is chosen at random in $\{0,1\}^n$ such that $b(z_i) = c_i^H$
 - ▶ $c_i = f_{pk}(z_i)$ for $i \in \mathcal{I}$, and a random value in $\{0,1\}^n$ otherwise.
- The above implicitly describes an efficient M s.t. $M(S_H(x)) \equiv S(x)$ and $M(P_H(x, w(x))) \approx_c P(x, w(x))$

Algorithm 14 (S)

- Let $(\pi_H, \mathcal{I}, \mathbf{c}^H) = S_H(x)$, where S_H is the simulator of (P_H, V_H)
- Output $(c, (\pi_H, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}}))$, where
 - ▶ $pk \leftarrow G(U_n)$
 - ► Each z_i is chosen at random in $\{0,1\}^n$ such that $b(z_i) = c_i^H$
 - ▶ $c_i = f_{pk}(z_i)$ for $i \in \mathcal{I}$, and a random value in $\{0,1\}^n$ otherwise.
- The above implicitly describes an efficient M s.t. $M(S_H(x)) \equiv S(x)$ and $M(P_H(x, w(x))) \approx_c P(x, w(x))$
- Hence, distinguishing P(x, w(x)) from S(x) is hard

Algorithm 14 (S)

- Let $(\pi_H, \mathcal{I}, \mathbf{c}^H) = S_H(x)$, where S_H is the simulator of (P_H, V_H)
- Output $(c, (\pi_H, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}}))$, where
 - ▶ $pk \leftarrow G(U_n)$
 - ► Each z_i is chosen at random in $\{0,1\}^n$ such that $b(z_i) = c_i^H$
 - ▶ $c_i = f_{pk}(z_i)$ for $i \in \mathcal{I}$, and a random value in $\{0,1\}^n$ otherwise.
- The above implicitly describes an efficient M s.t. $M(S_H(x)) \equiv S(x)$ and $M(P_H(x, w(x))) \approx_c P(x, w(x))$
- Hence, distinguishing P(x, w(x)) from S(x) is hard
- Direct solution for our NIZK

Algorithm 14 (S)

- Let $(\pi_H, \mathcal{I}, c^H) = S_H(x)$, where S_H is the simulator of (P_H, V_H)
- Output $(c, (\pi_H, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}}))$, where
 - ▶ $pk \leftarrow G(U_n)$
 - ► Each z_i is chosen at random in $\{0,1\}^n$ such that $b(z_i) = c_i^H$
 - ▶ $c_i = f_{pk}(z_i)$ for $i \in \mathcal{I}$, and a random value in $\{0,1\}^n$ otherwise.
- The above implicitly describes an efficient M s.t. $M(S_H(x)) \equiv S(x)$ and $M(P_H(x, w(x))) \approx_c P(x, w(x))$
- Hence, distinguishing P(x, w(x)) from S(x) is hard
- Direct solution for our NIZK
- An "adaptive" NIZK

Section 3

Adaptive NIZK

x is chosen after the CRS.

x is chosen after the CRS.

• Completeness: $\forall f : \{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0,1\}^n \text{ and } w(x) \in R_{\mathcal{L}}(x) : \Pr_{c \leftarrow \{0,1\}^{\ell(n)}; x = f(c)}[V(x,c,P(x,w(x),c)) = 1] \ge 2/3$

x is chosen after the CRS.

• Completeness: $\forall f : \{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0,1\}^n \text{ and } w(x) \in R_{\mathcal{L}}(x) : \Pr_{c \leftarrow \{0,1\}^{\ell(n)}; x = f(c)}[V(x,c,P(x,w(x),c)) = 1] \ge 2/3$

x is chosen after the CRS.

- Completeness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0,1\}^n \text{ and } w(x) \in R_{\mathcal{L}}(x) \colon \Pr_{c \leftarrow \{0,1\}^{\ell(n)}; x = f(c)}[V(x,c,P(x,w(x),c)) = 1] \ge 2/3$
- Soundness: $\forall f : \{0,1\}^{\ell(n)} \mapsto \{0,1\}^n \text{ and } \mathsf{P}^* \\ \mathsf{Pr}_{c \leftarrow \{0,1\}^{\ell(n)}; x = f(c)}[\mathsf{V}(x,c,\mathsf{P}^*(c)) = 1 \land x \notin \mathcal{L}] \le 1/3$

x is chosen after the CRS.

- Completeness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0,1\}^n \text{ and } w(x) \in R_{\mathcal{L}}(x) \colon \Pr_{c \leftarrow \{0,1\}^{\ell(n)}; x = f(c)}[V(x,c,P(x,w(x),c)) = 1] \ge 2/3$
- Soundness: $\forall f : \{0,1\}^{\ell(n)} \mapsto \{0,1\}^n \text{ and } \mathsf{P}^*$ $\mathsf{Pr}_{c \leftarrow \{0,1\}^{\ell(n)}; x = f(c)}[\mathsf{V}(x,c,\mathsf{P}^*(c)) = 1 \land x \notin \mathcal{L}] \le 1/3$
- \mathcal{ZK} : \exists pair of PPTM's (S_1, S_2) s.t. $\forall f : \{0, 1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0, 1\}^n$

$$\{(c \leftarrow \{0,1\}^{\ell(n)}, x = f(c), P(x, w(x)))\}_{n \in \mathbb{N}} \approx_c \{S^f(n)\}_{n \in \mathbb{N}}.$$

x is chosen after the CRS.

- Completeness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0,1\}^n \text{ and } w(x) \in R_{\mathcal{L}}(x) \colon \Pr_{c \leftarrow \{0,1\}^{\ell(n)}; x = f(c)}[V(x,c,P(x,w(x),c)) = 1] \ge 2/3$
- Soundness: $\forall f : \{0,1\}^{\ell(n)} \mapsto \{0,1\}^n \text{ and } \mathsf{P}^*$ $\mathsf{Pr}_{c \leftarrow \{0,1\}^{\ell(n)}; x = f(c)}[\mathsf{V}(x,c,\mathsf{P}^*(c)) = 1 \land x \notin \mathcal{L}] \le 1/3$
- \mathcal{ZK} : \exists pair of PPTM's (S_1, S_2) s.t. $\forall f : \{0, 1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0, 1\}^n$

$$\{(c \leftarrow \{0,1\}^{\ell(n)}, x = f(c), P(x, w(x)))\}_{n \in \mathbb{N}} \approx_c \{S^f(n)\}_{n \in \mathbb{N}}.$$

x is chosen after the CRS.

- Completeness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0,1\}^n \text{ and } w(x) \in R_{\mathcal{L}}(x) \colon \Pr_{c \leftarrow \{0,1\}^{\ell(n)}; x = f(c)}[V(x,c,P(x,w(x),c)) = 1] \ge 2/3$
- Soundness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \{0,1\}^n \text{ and } \mathsf{P}^* \\ \mathsf{Pr}_{c \leftarrow \{0,1\}^{\ell(n)}; x = f(c)}[\mathsf{V}(x,c,\mathsf{P}^*(c)) = 1 \land x \notin \mathcal{L}] \le 1/3$
- \mathcal{ZK} : \exists pair of PPTM's (S_1, S_2) s.t. $\forall f : \{0, 1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0, 1\}^n$

$$\{(c \leftarrow \{0,1\}^{\ell(n)}, x = f(c), P(x, w(x)))\}_{n \in \mathbb{N}} \approx_c \{S^f(n)\}_{n \in \mathbb{N}}.$$

- **1** $(c, s) \leftarrow S_1(1^n)$

x is chosen after the CRS.

- Completeness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0,1\}^n \text{ and } w(x) \in R_{\mathcal{L}}(x) \colon \Pr_{c \leftarrow \{0,1\}^{\ell(n)}; x = f(c)}[V(x,c,P(x,w(x),c)) = 1] \ge 2/3$
- Soundness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \{0,1\}^n \text{ and } \mathsf{P}^* \\ \mathsf{Pr}_{c \leftarrow \{0,1\}^{\ell(n)}; x = f(c)}[\mathsf{V}(x,c,\mathsf{P}^*(c)) = 1 \land x \notin \mathcal{L}] \le 1/3$
- \mathcal{ZK} : \exists pair of PPTM's (S_1, S_2) s.t. $\forall f : \{0, 1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0, 1\}^n$

$$\{(c \leftarrow \{0,1\}^{\ell(n)}, x = f(c), P(x, w(x)))\}_{n \in \mathbb{N}} \approx_c \{S^f(n)\}_{n \in \mathbb{N}}.$$

- 2 x = f(c)

x is chosen after the CRS.

- Completeness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0,1\}^n \text{ and } w(x) \in R_{\mathcal{L}}(x) \colon \Pr_{c \leftarrow \{0,1\}^{\ell(n)}; x = f(c)}[V(x,c,P(x,w(x),c)) = 1] \ge 2/3$
- Soundness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \{0,1\}^n \text{ and } \mathsf{P}^* \\ \mathsf{Pr}_{c \leftarrow \{0,1\}^{\ell(n)}; x = f(c)}[\mathsf{V}(x,c,\mathsf{P}^*(c)) = 1 \land x \notin \mathcal{L}] \le 1/3$
- \mathcal{ZK} : \exists pair of PPTM's (S_1, S_2) s.t. $\forall f : \{0, 1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0, 1\}^n$

$$\{(c \leftarrow \{0,1\}^{\ell(n)}, x = f(c), P(x, w(x)))\}_{n \in \mathbb{N}} \approx_c \{S^f(n)\}_{n \in \mathbb{N}}.$$

- 2 x = f(c)

x is chosen after the CRS.

- Completeness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0,1\}^n \text{ and } w(x) \in R_{\mathcal{L}}(x) \colon \Pr_{c \leftarrow \{0,1\}^{\ell(n)}; x = f(c)}[V(x,c,P(x,w(x),c)) = 1] \ge 2/3$
- Soundness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \{0,1\}^n \text{ and } \mathsf{P}^* \\ \mathsf{Pr}_{c \leftarrow \{0,1\}^{\ell(n)}; x = f(c)}[\mathsf{V}(x,c,\mathsf{P}^*(c)) = 1 \land x \notin \mathcal{L}] \le 1/3$
- \mathcal{ZK} : \exists pair of PPTM's (S_1, S_2) s.t. $\forall f : \{0, 1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0, 1\}^n$

$$\{(c \leftarrow \{0,1\}^{\ell(n)}, x = f(c), P(x, w(x)))\}_{n \in \mathbb{N}} \approx_c \{S^f(n)\}_{n \in \mathbb{N}}.$$

where $S^{f}(n)$ is the output of the following process

- 2 x = f(c)

Why do we need s?

 Adaptive completeness and soundness are easy to achieve from any non-adaptive NIZK.(?)

- Adaptive completeness and soundness are easy to achieve from any non-adaptive NIZK.(?)
- Not every \mathcal{NIZK} is adaptive \mathcal{ZK} .

- Adaptive completeness and soundness are easy to achieve from any non-adaptive NIZK.(?)
- Not every \mathcal{NIZK} is adaptive \mathcal{ZK} .

- Adaptive completeness and soundness are easy to achieve from any non-adaptive NIZK.(?)
- Not every \mathcal{NIZK} is adaptive \mathcal{ZK} .

Theorem 15

Assume TDP exist, then every \mathcal{NP} language has an adaptive \mathcal{NIZK} with perfect completeness and negligible soundness error.

- Adaptive completeness and soundness are easy to achieve from any non-adaptive NIZK.(?)
- Not every \mathcal{NIZK} is adaptive \mathcal{ZK} .

Theorem 15

Assume TDP exist, then every \mathcal{NP} language has an adaptive \mathcal{NIZK} with perfect completeness and negligible soundness error.

In the following, when saying adaptive $\mathcal{NIZK},$ we mean negligible completeness and soundness error.

Section 4

Simulation-Sound NIZK

Simulation soundness

A \mathcal{NIZK} system (P,V) for $\mathcal L$ has (one-time) simulation soundness, if \exists a pair of PPTM's $S=(S_1,S_2)$ that satisfies the $\mathcal Z\mathcal K$ property of P with respect to $\mathcal L$, and in addition

Simulation soundness

A \mathcal{NIZK} system (P,V) for \mathcal{L} has (one-time) simulation soundness, if \exists a pair of PPTM's $S=(S_1,S_2)$ that satisfies the \mathcal{ZK} property of P with respect to \mathcal{L} , and in addition

$$\Pr_{(c,x,\pi,x',\pi')\leftarrow \mathsf{Exp}^n_{\mathsf{V},\mathsf{S},\mathsf{P}^*}}[x'\notin \mathcal{L} \wedge \mathsf{V}(x',\pi',c) = 1 \wedge (x',\pi') \neq (x,\pi)] = \mathsf{neg}(\textit{n})$$

for any pair of PPTM's $P^* = (P_1^*, P_2^*)$.

Experiment 16 (Exp_{V,S,P^*}^n)

- 2 $(x, p) \leftarrow P_1^*(1^n, c)$
- **4** $(x', \pi') \leftarrow P_2^*(p, \pi)$
- Output (c, x, π, x', π')

Simulation soundness

A \mathcal{NIZK} system (P,V) for \mathcal{L} has (one-time) simulation soundness, if \exists a pair of PPTM's $S=(S_1,S_2)$ that satisfies the \mathcal{ZK} property of P with respect to \mathcal{L} , and in addition

$$\Pr_{(c,x,\pi,x',\pi')\leftarrow \mathsf{Exp}^n_{\mathsf{V},\mathsf{S},\mathsf{P}^*}}[x'\notin \mathcal{L} \wedge \mathsf{V}(x',\pi',c) = 1 \wedge (x',\pi') \neq (x,\pi)] = \mathsf{neg}(\textit{n})$$

for any pair of PPTM's $P^* = (P_1^*, P_2^*)$.

Experiment 16 (Exp_{V,S,P^*}^n)

- 2 $(x, p) \leftarrow P_1^*(1^n, c)$
- **4** $(x', \pi') \leftarrow P_2^*(p, \pi)$
- Output (c, x, π, x', π')

 After seeing a simulated (possibly false) proof, hard to generate an additional false proof

- After seeing a simulated (possibly false) proof, hard to generate an additional false proof
- Definition only considers efficient provers

- After seeing a simulated (possibly false) proof, hard to generate an additional false proof
- Definition only considers efficient provers
- (P, V) might be adaptive or non-adaptive

- After seeing a simulated (possibly false) proof, hard to generate an additional false proof
- Definition only considers efficient provers
- (P, V) might be adaptive or non-adaptive
- Standard NIZK guarantees weak type of simulation soundness (hard to fake proofs for simulated CRS and predefined x') (?)

- After seeing a simulated (possibly false) proof, hard to generate an additional false proof
- Definition only considers efficient provers
- (P, V) might be adaptive or non-adaptive
- Standard NIZK guarantees weak type of simulation soundness (hard to fake proofs for simulated CRS and predefined x') (?)
- Does the adaptive NIZK we seen have simulation soundness?

We present a simulation sound \mathcal{NIZK} (P,V) for $\mathcal{L}\in\mathcal{NP}$

We present a simulation sound \mathcal{NIZK} (P, V) for $\mathcal{L} \in \mathcal{NP}$

Ingredients:

Strong signature scheme (Gen, Sign, Vrfy) (one-time scheme suffices)

We present a simulation sound \mathcal{NIZK} (P, V) for $\mathcal{L} \in \mathcal{NP}$

- Strong signature scheme (Gen, Sign, Vrfy) (one-time scheme suffices)
- Non-interactive, perfectly-binding commitment Com.

We present a simulation sound \mathcal{NIZK} (P, V) for $\mathcal{L} \in \mathcal{NP}$

- Strong signature scheme (Gen, Sign, Vrfy) (one-time scheme suffices)
- Non-interactive, perfectly-binding commitment Com.
 - ▶ Pseudorandom range: for some $\ell \in \text{poly}$ $\{\text{Com}(w, r \leftarrow \{0, 1\}^{\ell(|w|)})\}_{w \in \{0, 1\}^*} \approx_c \{u \leftarrow \{0, 1\}^{\ell(|w|)}\}_{w \in \{0, 1\}^*}$

We present a simulation sound \mathcal{NIZK} (P, V) for $\mathcal{L} \in \mathcal{NP}$

- Strong signature scheme (Gen, Sign, Vrfy) (one-time scheme suffices)
- Non-interactive, perfectly-binding commitment Com.
 - ▶ Pseudorandom range: for some $\ell \in \text{poly}$ $\{\text{Com}(w, r \leftarrow \{0, 1\}^{\ell(|w|)})\}_{w \in \{0, 1\}^*} \approx_c \{u \leftarrow \{0, 1\}^{\ell(|w|)}\}_{w \in \{0, 1\}^*}$
 - * achieved by the standard OWP (or TDP) based perfectly-binding commitment.

We present a simulation sound \mathcal{NIZK} (P, V) for $\mathcal{L} \in \mathcal{NP}$

- Strong signature scheme (Gen, Sign, Vrfy) (one-time scheme suffices)
- Non-interactive, perfectly-binding commitment Com.
 - ▶ Pseudorandom range: for some $\ell \in \text{poly}$ $\{\text{Com}(w, r \leftarrow \{0, 1\}^{\ell(|w|)})\}_{w \in \{0, 1\}^*} \approx_c \{u \leftarrow \{0, 1\}^{\ell(|w|)}\}_{w \in \{0, 1\}^*}$
 - * achieved by the standard OWP (or TDP) based perfectly-binding commitment.
 - Negligible support: a random string is a valid commitment only with negligible probability.

We present a simulation sound \mathcal{NIZK} (P, V) for $\mathcal{L} \in \mathcal{NP}$

- Strong signature scheme (Gen, Sign, Vrfy) (one-time scheme suffices)
- Non-interactive, perfectly-binding commitment Com.
 - ▶ Pseudorandom range: for some $\ell \in \text{poly}$ $\{\text{Com}(w, r \leftarrow \{0, 1\}^{\ell(|w|)})\}_{w \in \{0, 1\}^*} \approx_c \{u \leftarrow \{0, 1\}^{\ell(|w|)}\}_{w \in \{0, 1\}^*}$
 - * achieved by the standard OWP (or TDP) based perfectly-binding commitment.
 - Negligible support: a random string is a valid commitment only with negligible probability.
 - * achieved by using the standard OWP (or TDP) based perfectly-binding commitment, and committing to the same value many times.

We present a simulation sound \mathcal{NIZK} (P, V) for $\mathcal{L} \in \mathcal{NP}$

- Strong signature scheme (Gen, Sign, Vrfy) (one-time scheme suffices)
- Non-interactive, perfectly-binding commitment Com.
 - ▶ Pseudorandom range: for some $\ell \in \text{poly}$ $\{\text{Com}(w, r \leftarrow \{0, 1\}^{\ell(|w|)})\}_{w \in \{0, 1\}^*} \approx_c \{u \leftarrow \{0, 1\}^{\ell(|w|)}\}_{w \in \{0, 1\}^*}$
 - * achieved by the standard OWP (or TDP) based perfectly-binding commitment.
 - Negligible support: a random string is a valid commitment only with negligible probability.
 - * achieved by using the standard OWP (or TDP) based perfectly-binding commitment, and committing to the same value many times.
- $\textbf{3} \ \, \mathsf{Adaptive} \, \, \mathcal{NIZK} \, \left(\mathsf{P}_A, \mathsf{V}_A\right) \, \mathsf{for} \\ \mathcal{L}_A := \left\{ (x, \mathsf{com}, w) \colon x \in \mathcal{L} \vee \exists r \in \{0, 1\}^* \colon \, \mathsf{com} = \mathsf{Com}(w, r) \right\} \in \mathcal{NP}$

We present a simulation sound \mathcal{NIZK} (P, V) for $\mathcal{L} \in \mathcal{NP}$

- Strong signature scheme (Gen, Sign, Vrfy) (one-time scheme suffices)
- Non-interactive, perfectly-binding commitment Com.
 - ▶ Pseudorandom range: for some $\ell \in \text{poly}$ $\{\text{Com}(w, r \leftarrow \{0, 1\}^{\ell(|w|)})\}_{w \in \{0, 1\}^*} \approx_c \{u \leftarrow \{0, 1\}^{\ell(|w|)}\}_{w \in \{0, 1\}^*}$
 - * achieved by the standard OWP (or TDP) based perfectly-binding commitment.
 - Negligible support: a random string is a valid commitment only with negligible probability.
 - * achieved by using the standard OWP (or TDP) based perfectly-binding commitment, and committing to the same value many times.
- 3 Adaptive \mathcal{NIZK} (P_A, V_A) for $\mathcal{L}_A := \{(x, \text{com}, w) : x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* : \text{com} = \text{Com}(w, r)\} \in \mathcal{NP}$
 - * adaptive WI suffices

Recall $\mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.$

Recall $\mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.$

Algorithm 17 (P)

Input: $x \in \mathcal{L}$ and $w \in R_{\mathcal{L}}(x)$, and CRS $c = (c_1, c_2)$

Recall $\mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.$

Algorithm 17 (P)

Input: $x \in \mathcal{L}$ and $w \in R_{\mathcal{L}}(x)$, and CRS $c = (c_1, c_2)$

Algorithm 18 (V)

Input: $x \in \{0, 1\}^*$, $\pi = (vk, \pi_A, \sigma)$ and a CRS $c = (c_1, c_2)$ Verify that Vrfy_{vk} $((x, \pi_A), \sigma) = 1$ and V_A $((x, c_1, vk), c_2, \pi_A) = 1$

Recall $\mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.$

Algorithm 17 (P)

Input: $x \in \mathcal{L}$ and $w \in R_{\mathcal{L}}(x)$, and CRS $c = (c_1, c_2)$

Algorithm 18 (V)

Input: $x \in \{0, 1\}^*$, $\pi = (vk, \pi_A, \sigma)$ and a CRS $c = (c_1, c_2)$ Verify that Vrfy_{vk} $((x, \pi_A), \sigma) = 1$ and V_A $((x, c_1, vk), c_2, \pi_A) = 1$

Claim 19

The proof system (P,V) is an adaptive \mathcal{NIZK} for \mathcal{L} , with one-time simulation soundness.

Recall $\mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.$

Recall $\mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.$

• Adaptive completeness: Follows by the adaptive completeness of (P_A, V_A) .

```
Recall \mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.
```

- Adaptive completeness: Follows by the adaptive completeness of (P_A, V_A) .
- Adaptive ZK:

Recall $\mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.$

- Adaptive completeness: Follows by the adaptive completeness of (P_A, V_A) .
- Adaptive ZK:
 - ► $S_1(1^n)$:

```
Recall \mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.
```

- Adaptive completeness: Follows by the adaptive completeness of (P_A, V_A) .
- Adaptive ZK:
 - ► $S_1(1^n)$:

```
Recall \mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.
```

- Adaptive completeness: Follows by the adaptive completeness of (P_A, V_A) .
- Adaptive ZK:
 - ► $S_1(1^n)$:
 - 1 Let $(sk, vk) \leftarrow \text{Gen}(1^n)$, $z \leftarrow \{0, 1\}^{\ell(n)}$ and $c_1 = \text{Com}(vk, z)$.
 - Output $(c = (c_1, c_2), s = (z, sk, vk))$, where c_2 is chosen uniformly at random.

Recall
$$\mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.$$

- Adaptive completeness: Follows by the adaptive completeness of (P_A, V_A).
- Adaptive ZK:
 - ► $S_1(1^n)$:
 - 1 Let $(sk, vk) \leftarrow \text{Gen}(1^n)$, $z \leftarrow \{0, 1\}^{\ell(n)}$ and $c_1 = \text{Com}(vk, z)$.
 - Output $(c = (c_1, c_2), s = (z, sk, vk))$, where c_2 is chosen uniformly at random.
 - ► $S_2(x, c = (c_1, c_2), s = (z, sk, vk))$:

Recall
$$\mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.$$

- Adaptive completeness: Follows by the adaptive completeness of (P_A, V_A).
- Adaptive ZK:
 - ► $S_1(1^n)$:
 - 1 Let $(sk, vk) \leftarrow \text{Gen}(1^n)$, $z \leftarrow \{0, 1\}^{\ell(n)}$ and $c_1 = \text{Com}(vk, z)$.
 - Output $(c = (c_1, c_2), s = (z, sk, vk))$, where c_2 is chosen uniformly at random.
 - ► $S_2(x, c = (c_1, c_2), s = (z, sk, vk))$:

Recall $\mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.$

- Adaptive completeness: Follows by the adaptive completeness of (P_A, V_A).
- Adaptive ZK:
 - ► $S_1(1^n)$:
 - 1 Let $(sk, vk) \leftarrow \text{Gen}(1^n)$, $z \leftarrow \{0, 1\}^{\ell(n)}$ and $c_1 = \text{Com}(vk, z)$.
 - Output $(c = (c_1, c_2), s = (z, sk, vk))$, where c_2 is chosen uniformly at random.
 - ► $S_2(x, c = (c_1, c_2), s = (z, sk, vk))$:

Recall
$$\mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.$$

- Adaptive completeness: Follows by the adaptive completeness of (P_A, V_A).
- Adaptive ZK:
 - ► $S_1(1^n)$:
 - 1 Let $(sk, vk) \leftarrow \text{Gen}(1^n)$, $z \leftarrow \{0, 1\}^{\ell(n)}$ and $c_1 = \text{Com}(vk, z)$.
 - Output $(c = (c_1, c_2), s = (z, sk, vk))$, where c_2 is chosen uniformly at random.
 - $ightharpoonup S_2(x, c = (c_1, c_2), s = (z, sk, vk))$:

 - 3 Output $\pi = (vk, \pi_A, \sigma)$

Recall
$$\mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.$$

- Adaptive completeness: Follows by the adaptive completeness of (P_A, V_A).
- Adaptive ZK:
 - ► $S_1(1^n)$:
 - 1 Let $(sk, vk) \leftarrow \text{Gen}(1^n)$, $z \leftarrow \{0, 1\}^{\ell(n)}$ and $c_1 = \text{Com}(vk, z)$.
 - Output $(c = (c_1, c_2), s = (z, sk, vk))$, where c_2 is chosen uniformly at random.
 - $ightharpoonup S_2(x, c = (c_1, c_2), s = (z, sk, vk))$:

 - 3 Output $\pi = (vk, \pi_A, \sigma)$

Recall
$$\mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.$$

- Adaptive completeness: Follows by the adaptive completeness of (P_A, V_A).
- Adaptive ZK:
 - ► $S_1(1^n)$:
 - 1 Let $(sk, vk) \leftarrow \text{Gen}(1^n)$, $z \leftarrow \{0, 1\}^{\ell(n)}$ and $c_1 = \text{Com}(vk, z)$.
 - Output $(c = (c_1, c_2), s = (z, sk, vk))$, where c_2 is chosen uniformly at random.
 - $ightharpoonup S_2(x, c = (c_1, c_2), s = (z, sk, vk))$:

Proof follows by the adaptive WI of (P_A, V_A) and the pseudorandomness of Com

Recall
$$\mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.$$

- Adaptive completeness: Follows by the adaptive completeness of (P_A, V_A).
- Adaptive ZK:
 - ► $S_1(1^n)$:

 - Output $(c = (c_1, c_2), s = (z, sk, vk))$, where c_2 is chosen uniformly at random.
 - $ightharpoonup S_2(x, c = (c_1, c_2), s = (z, sk, vk))$:

Proof follows by the adaptive WI of (P_A, V_A) and the pseudorandomness of Com

 Adaptive soundness: Implicit in the proof of simulation soundness, given next slide.

Proving simulation soundness

Recall $\mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.$

Proving simulation soundness

```
Recall \mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.
```

Let $P^* = (P_1^*, P_2^*)$ be a pair of PPTM's attacking the simulation soundness of (V, S) with respect to \mathcal{L} , and let $c = (c_1, c_2)$, x, π , x' and $\pi' = (vk', \pi'_A, \sigma')$ be the values generated by a random execution of Exp_{V,S,P^*}^n .

Recall $\mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.$

Let $P^* = (P_1^*, P_2^*)$ be a pair of PPTM's attacking the simulation soundness of (V, S) with respect to \mathcal{L} , and let $c = (c_1, c_2)$, x, π , x' and $\pi' = (vk', \pi'_A, \sigma')$ be the values generated by a random execution of Exp_{V,S,P^*}^n .

Assume $Vrfy_{vk'}((x', \pi'_A), \sigma') = 1$, $x' \notin \mathcal{L}$ and $(x', \pi') \neq (x, \pi)$.

Recall $\mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.$

Let $P^* = (P_1^*, P_2^*)$ be a pair of PPTM's attacking the simulation soundness of (V, S) with respect to \mathcal{L} , and let $c = (c_1, c_2)$, x, π , x' and $\pi' = (vk', \pi'_A, \sigma')$ be the values generated by a random execution of Exp_{V,S,P^*}^n .

Assume $Vrfy_{vk'}((x', \pi'_A), \sigma') = 1$, $x' \notin \mathcal{L}$ and $(x', \pi') \neq (x, \pi)$.

Then with all but negligible probability:

• vk' is not the verification key appeared in π ((Gen, Sign, Vrfy) is a strong signature)

Recall $\mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.$

Let $P^* = (P_1^*, P_2^*)$ be a pair of PPTM's attacking the simulation soundness of (V, S) with respect to \mathcal{L} , and let $c = (c_1, c_2)$, x, π , x' and $\pi' = (vk', \pi'_A, \sigma')$ be the values generated by a random execution of Exp_{V,S,P^*}^n .

Assume $Vrfy_{vk'}((x', \pi'_A), \sigma') = 1, x' \notin \mathcal{L} \text{ and } (x', \pi') \neq (x, \pi).$

Then with all but negligible probability:

• vk' is not the verification key appeared in π ((Gen, Sign, Vrfy) is a strong signature)

 $\implies \nexists r \in \{0,1\}^* \text{ s.t. } c_1 = \text{Com}(vk',r) \text{ (Com is perfectly binding)}$

Recall $\mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.$

Let $P^* = (P_1^*, P_2^*)$ be a pair of PPTM's attacking the simulation soundness of (V, S) with respect to \mathcal{L} , and let $c = (c_1, c_2)$, x, π , x' and $\pi' = (vk', \pi'_A, \sigma')$ be the values generated by a random execution of Exp_{V,S,P^*}^n .

Assume $Vrfy_{vk'}((x', \pi'_A), \sigma') = 1, x' \notin \mathcal{L} \text{ and } (x', \pi') \neq (x, \pi).$

Then with all but negligible probability:

• vk' is not the verification key appeared in π ((Gen, Sign, Vrfy) is a strong signature)

```
\implies \nexists r \in \{0,1\}^* \text{ s.t. } c_1 = \text{Com}(vk',r) \quad \text{(Com is perfectly binding)}
\implies x'_A = (x',c_1,vk') \notin \mathcal{L}_A \quad \text{(above and } x' \notin \mathcal{L}\text{)}
```

Recall $\mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.$

Let $P^* = (P_1^*, P_2^*)$ be a pair of PPTM's attacking the simulation soundness of (V, S) with respect to \mathcal{L} , and let $c = (c_1, c_2)$, x, π , x' and $\pi' = (vk', \pi'_A, \sigma')$ be the values generated by a random execution of Exp_{V,S,P^*}^n .

Assume $Vrfy_{vk'}((x', \pi'_A), \sigma') = 1, x' \notin \mathcal{L} \text{ and } (x', \pi') \neq (x, \pi).$

Then with all but negligible probability:

• vk' is not the verification key appeared in π ((Gen, Sign, Vrfy) is a strong signature)

```
\implies \nexists r \in \{0,1\}^* \text{ s.t. } c_1 = \text{Com}(vk',r) \quad \text{(Com is perfectly binding)}
\implies x'_A = (x',c_1,vk') \notin \mathcal{L}_A \quad \text{(above and } x' \notin \mathcal{L}\text{)}
```

Recall $\mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.$

Let $P^* = (P_1^*, P_2^*)$ be a pair of PPTM's attacking the simulation soundness of (V, S) with respect to \mathcal{L} , and let $c = (c_1, c_2)$, x, π , x' and $\pi' = (vk', \pi'_A, \sigma')$ be the values generated by a random execution of Exp_{V,S,P^*}^n .

Assume $Vrfy_{vk'}((x', \pi'_A), \sigma') = 1$, $x' \notin \mathcal{L}$ and $(x', \pi') \neq (x, \pi)$.

Then with all but negligible probability:

• vk' is not the verification key appeared in π ((Gen, Sign, Vrfy) is a strong signature)

$$\implies \nexists r \in \{0,1\}^* \text{ s.t. } c_1 = \text{Com}(vk',r) \quad \text{(Com is perfectly binding)}$$

 $\implies x_A' = (x',c_1,vk') \notin \mathcal{L}_A \quad \text{(above and } x' \notin \mathcal{L}\text{)}$

Since c_2 was chosen at random by S_1 , the adaptive soundness of (P_A, V_A) yields that $Pr[V_A(x_A', c_2, \pi_A') = 1] = neg(n)$.

Recall $\mathcal{L}_A := \{(x, \text{com}, w) \colon x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* \colon \text{com} = \text{Com}(w, r)\}.$

Let $P^* = (P_1^*, P_2^*)$ be a pair of PPTM's attacking the simulation soundness of (V, S) with respect to \mathcal{L} , and let $c = (c_1, c_2)$, x, π , x' and $\pi' = (vk', \pi'_A, \sigma')$ be the values generated by a random execution of Exp_{V,S,P^*}^n .

Assume $Vrfy_{vk'}((x', \pi'_A), \sigma') = 1$, $x' \notin \mathcal{L}$ and $(x', \pi') \neq (x, \pi)$.

Then with all but negligible probability:

• vk' is not the verification key appeared in π ((Gen, Sign, Vrfy) is a strong signature)

$$\implies \nexists r \in \{0,1\}^* \text{ s.t. } c_1 = \text{Com}(vk',r) \quad \text{(Com is perfectly binding)}$$

 $\implies x_A' = (x',c_1,vk') \notin \mathcal{L}_A \quad \text{(above and } x' \notin \mathcal{L}\text{)}$

Since c_2 was chosen at random by S_1 , the adaptive soundness of (P_A, V_A) yields that $Pr[V_A(x_A', c_2, \pi_A') = 1] = neg(n)$.

Adaptive soundness?

Part II

Proof of Knowledge

The protocol (P, V) is a proof of knowledge for $\mathcal{L} \in \mathcal{NP}$, if a P^* convinces V to accept x, then P^* "knows" $w \in \mathcal{R}_{\mathcal{L}}(x)$.

The protocol (P, V) is a proof of knowledge for $\mathcal{L} \in \mathcal{NP}$, if a P* convinces V to accept x, then P* "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 20 (knowledge extractor)

Let (P,V) be an interactive proof for $\mathcal{L} \in \mathcal{NP}$. A probabilistic algorithm E is a knowledge extractor for (P,V) and $R_{\mathcal{L}}$ with error $\eta \colon \mathbb{N} \mapsto \mathbb{R}$, if $\exists t \in \mathsf{poly} \ \mathrm{s.t.}$ $\forall x \in \mathcal{L}$ and deterministic algorithm P^* , $E^{P^*}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x) - \eta(|x|)}$ and outputs $w \in R_{\mathcal{L}}(x)$, where $\delta(x) = \Pr[(P^*, V)(x) = 1]$.

The protocol (P, V) is a proof of knowledge for $\mathcal{L} \in \mathcal{NP}$, if a P* convinces V to accept x, then P* "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 20 (knowledge extractor)

Let (P,V) be an interactive proof for $\mathcal{L}\in\mathcal{NP}$. A probabilistic algorithm E is a knowledge extractor for (P,V) and $R_{\mathcal{L}}$ with error $\eta\colon\mathbb{N}\mapsto\mathbb{R}$, if $\exists t\in\mathsf{poly}\ s.t.$ $\forall x\in\mathcal{L}$ and deterministic algorithm P^* , $E^{P^*}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x)-\eta(|x|)}$ and outputs $w\in R_{\mathcal{L}}(x)$, where $\delta(x)=\mathsf{Pr}[(P^*,V)(x)=1]$.

(P, V) is a proof of knowledge for \mathcal{L} with error η ,

A property of V

The protocol (P, V) is a proof of knowledge for $\mathcal{L} \in \mathcal{NP}$, if a P* convinces V to accept x, then P* "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 20 (knowledge extractor)

Let (P,V) be an interactive proof for $\mathcal{L}\in\mathcal{NP}$. A probabilistic algorithm E is a knowledge extractor for (P,V) and $R_{\mathcal{L}}$ with error $\eta\colon\mathbb{N}\mapsto\mathbb{R}$, if $\exists t\in\mathsf{poly}\ s.t.$ $\forall x\in\mathcal{L}$ and deterministic algorithm P^* , $E^{P^*}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x)-\eta(|x|)}$ and outputs $w\in R_{\mathcal{L}}(x)$, where $\delta(x)=\mathsf{Pr}[(P^*,V)(x)=1]$.

- A property of V
- Why do we need it?

The protocol (P, V) is a proof of knowledge for $\mathcal{L} \in \mathcal{NP}$, if a P* convinces V to accept x, then P* "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 20 (knowledge extractor)

Let (P,V) be an interactive proof for $\mathcal{L} \in \mathcal{NP}$. A probabilistic algorithm E is a knowledge extractor for (P,V) and $R_{\mathcal{L}}$ with error $\eta \colon \mathbb{N} \mapsto \mathbb{R}$, if $\exists t \in \mathsf{poly} \ \mathrm{s.t.}$ $\forall x \in \mathcal{L}$ and deterministic algorithm P^* , $E^{P^*}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x) - \eta(|x|)}$ and outputs $w \in R_{\mathcal{L}}(x)$, where $\delta(x) = \Pr[(P^*, V)(x) = 1]$.

- A property of V
- Why do we need it?

The protocol (P, V) is a proof of knowledge for $\mathcal{L} \in \mathcal{NP}$, if a P* convinces V to accept x, then P* "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 20 (knowledge extractor)

Let (P,V) be an interactive proof for $\mathcal{L} \in \mathcal{NP}$. A probabilistic algorithm E is a knowledge extractor for (P,V) and $R_{\mathcal{L}}$ with error $\eta \colon \mathbb{N} \mapsto \mathbb{R}$, if $\exists t \in \mathsf{poly} \ \mathrm{s.t.}$ $\forall x \in \mathcal{L}$ and deterministic algorithm P^* , $E^{P^*}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x) - \eta(|x|)}$ and outputs $w \in R_{\mathcal{L}}(x)$, where $\delta(x) = \Pr[(P^*, V)(x) = 1]$.

- A property of V
- Why do we need it? Authentication schmes

The protocol (P, V) is a proof of knowledge for $\mathcal{L} \in \mathcal{NP}$, if a P* convinces V to accept x, then P* "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 20 (knowledge extractor)

Let (P,V) be an interactive proof for $\mathcal{L} \in \mathcal{NP}$. A probabilistic algorithm E is a knowledge extractor for (P,V) and $R_{\mathcal{L}}$ with error $\eta \colon \mathbb{N} \mapsto \mathbb{R}$, if $\exists t \in \mathsf{poly} \ \mathrm{s.t.}$ $\forall x \in \mathcal{L}$ and deterministic algorithm P^* , $E^{P^*}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x) - \eta(|x|)}$ and outputs $w \in R_{\mathcal{L}}(x)$, where $\delta(x) = \Pr[(P^*, V)(x) = 1]$.

- A property of V
- Why do we need it? Authentication schmes
- Why only deterministic P*?

Claim 21

The \mathcal{ZK} proof we've seen in class for \mathcal{GI} , has a knowledge extractor with error $\frac{1}{2}$.

Claim 21

The \mathcal{ZK} proof we've seen in class for \mathcal{GI} , has a knowledge extractor with error $\frac{1}{2}$.

Proof: ?

Claim 21

The \mathcal{ZK} proof we've seen in class for \mathcal{GI} , has a knowledge extractor with error $\frac{1}{2}$.

Proof: ?

Claim 22

The \mathcal{ZK} proof we've seen in class for 3COL, has a knowledge extractor with error $\frac{1}{|E|}$.

Claim 21

The \mathcal{ZK} proof we've seen in class for \mathcal{GI} , has a knowledge extractor with error $\frac{1}{2}$.

Proof: ?

Claim 22

The \mathcal{ZK} proof we've seen in class for 3COL, has a knowledge extractor with error $\frac{1}{|E|}$.

Proof: ?