3.33pt

Foundation of Cryptography, Lecture 4 MACs and Signatures

Benny Applebaum & Iftach Haitner, Tel Aviv University

Tel Aviv University.

December 8, 2016

Benny Applebaum & Iftach Haitner (TAU)

Foundation of Cryptography

Part I

Message Authentication Codes (MACs)

Message Authentication Code (MACs)

Definition 1 (MAC)

A trippet of PPT's (Gen, Mac, Vrfy) such that:

- **1.** Gen(1^{*n*}) outputs a key $k \in \{0, 1\}^*$
- **2.** Mac(*k*, *m*) outputs a "tag" *t*
- **3.** Vrfy(*k*, *m*, *t*) output 1 (YES) or 0 (NO)

Consistency: $Vrfy_k(m, t) = 1$ $\forall k \in Supp(Gen(1^n)), m \in \{0, 1\}^n \text{ and } t = Mac_k(m)$

Message Authentication Code (MACs)

Definition 1 (MAC)

A trippet of PPT's (Gen, Mac, Vrfy) such that:

- **1.** Gen(1^{*n*}) outputs a key $k \in \{0, 1\}^*$
- 2. Mac(k, m) outputs a "tag" t
- **3.** Vrfy(*k*, *m*, *t*) output 1 (YES) or 0 (NO)

Consistency: $Vrfy_k(m, t) = 1$ $\forall k \in Supp(Gen(1^n)), m \in \{0, 1\}^n \text{ and } t = Mac_k(m)$

Definition 2 (Existential unforgability)

A MAC (Gen, Mac, Vrfy) is existential unforgeable (EU), if \forall PPT A: $\Pr_{\substack{k \leftarrow \text{Gen}(1^n) \\ (m,t) \leftarrow A^{\text{Mac}_k}, \text{Vrfy}_{k(1^n)}} [\text{Vrfy}_k(m, t) = 1 \land \text{Mac}_k \text{ was not asked on } m] = \text{neg}(n)$

Message Authentication Code (MACs)

Definition 1 (MAC)

A trippet of PPT's (Gen, Mac, Vrfy) such that:

- **1.** Gen(1^{*n*}) outputs a key $k \in \{0, 1\}^*$
- **2.** Mac(*k*, *m*) outputs a "tag" *t*
- **3.** Vrfy(*k*, *m*, *t*) output 1 (YES) or 0 (NO)

Consistency: $Vrfy_k(m, t) = 1$ $\forall k \in Supp(Gen(1^n)), m \in \{0, 1\}^n \text{ and } t = Mac_k(m)$

Definition 2 (Existential unforgability)

A MAC (Gen, Mac, Vrfy) is existential unforgeable (EU), if \forall PPT A: $\Pr_{\substack{k \leftarrow \text{Gen}(1^n) \\ (m,t) \leftarrow A^{\text{Mac}_k}, \text{Vrfy}_{k(1^n)}} [\text{Vrfy}_k(m, t) = 1 \land \text{Mac}_k \text{ was not asked on } m] = \text{neg}(n)$

Remark: convention

"Private key" definition

- "Private key" definition
- Security definition too strong?

- "Private key" definition
- Security definition too strong?

- "Private key" definition
- Security definition too strong? Any message?

- "Private key" definition
- Security definition too strong? Any message?Use of Verifier?

- "Private key" definition
- Security definition too strong? Any message?Use of Verifier?
- "Replay attacks"

- "Private key" definition
- Security definition too strong? Any message?Use of Verifier?
- "Replay attacks"
- Strong existential unforgeable MACS (for short, strong MAC): infeasible to generate new valid tag (even for message for which a MAC was asked)

Restricted MACs

Definition 3 (Length-restricted MAC)

Same as in Definition 1, but for $k \in \text{Supp}(G(1^n))$, Mac_k and Vrfy_k only accept messages of length *n*.

Restricted MACs

Definition 3 (Length-restricted MAC)

Same as in Definition 1, but for $k \in \text{Supp}(G(1^n))$, Mac_k and Vrfy_k only accept messages of length *n*.

Definition 4 (*l***-time MAC)**

A MAC scheme is existential unforgeable against ℓ queries (for short, ℓ -time MAC), if it is existential unforgeable as in Definition 2, but A can only make ℓ queries.

Section 1

Constructions

Construction 5 (One-time MAC)

- Gen (1^n) : output $k \leftarrow \{0, 1\}^n$.
- $Mac_k(m)$: output $h_k(m)$.
- Vrfy_k(m, t): output 1 iff $t = h_k(m)$.

Construction 5 (One-time MAC)

- Gen (1^n) : output $k \leftarrow \{0, 1\}^n$.
- $Mac_k(m)$: output $h_k(m)$.
- Vrfy_k(m, t): output 1 iff $t = h_k(m)$.

Claim 6

The scheme is one-time MAC if $\{h_k\}$ is

Construction 5 (One-time MAC)

- Gen (1^n) : output $k \leftarrow \{0, 1\}^n$.
- $Mac_k(m)$: output $h_k(m)$.
- Vrfy_k(m, t): output 1 iff $t = h_k(m)$.

Claim 6

The scheme is one-time MAC if $\{h_k\}$ is pairwise-independent.

Construction 5 (One-time MAC)

- Gen (1^n) : output $k \leftarrow \{0, 1\}^n$.
- $Mac_k(m)$: output $h_k(m)$.
- Vrfy_k(m, t): output 1 iff $t = h_k(m)$.

Claim 6

The scheme is one-time MAC if $\{h_k\}$ is pairwise-independent.

Construction 5 (One-time MAC)

- Gen (1^n) : output $k \leftarrow \{0, 1\}^n$.
- $Mac_k(m)$: output $h_k(m)$.
- Vrfy_k(m, t): output 1 iff $t = h_k(m)$.

Claim 6

The scheme is one-time MAC if $\{h_k\}$ is pairwise-independent.

Subsection 1

Restricted-Length MAC

*l***-wise independent functions**

Definition 7 (*l*-wise independent)

A function family \mathcal{H} from $\{0, 1\}^n$ to $\{0, 1\}^m$ is ℓ -wise independent, if for every *distinct* $x_1, \ldots, x_\ell \in \{0, 1\}^n$ and every $y_1, \ldots, y_\ell \in \{0, 1\}^m$, it holds that $\Pr_{h \leftarrow \mathcal{H}} [h(x_1) = y_1 \land \ldots \land h(x_\ell) = y_\ell] = 2^{-\ell m}$.

ℓ-times, restricted-length MAC

Construction 8 (*l*-time MAC)

Let $\mathcal{H} = \{\mathcal{H}_n : \{0, 1\}^n \mapsto \{0, 1\}^n\}$ be an efficient $(\ell + 1)$ -wise independent function family.

- Gen (1^n) : output $h \leftarrow \mathcal{H}_n$.
- Mac(h, m): output h(m).
- ▶ Vrfy(h, m, t): output 1 iff t = h(m).

ℓ-times, restricted-length MAC

Construction 8 (*l*-time MAC)

Let $\mathcal{H} = {\mathcal{H}_n : {0,1}^n \mapsto {0,1}^n}$ be an efficient $(\ell + 1)$ -wise independent function family.

- Gen (1^n) : output $h \leftarrow \mathcal{H}_n$.
- Mac(h, m): output h(m).
- ▶ Vrfy(h, m, t): output 1 iff t = h(m).

Claim 9

The above scheme is a length-restricted, ℓ-time MAC

ℓ-times, restricted-length MAC

Construction 8 (*l*-time MAC)

Let $\mathcal{H} = {\mathcal{H}_n : {0,1}^n \mapsto {0,1}^n}$ be an efficient $(\ell + 1)$ -wise independent function family.

- Gen (1^n) : output $h \leftarrow \mathcal{H}_n$.
- Mac(h, m): output h(m).
- ▶ Vrfy(h, m, t): output 1 iff t = h(m).

Claim 9

The above scheme is a length-restricted, *l*-time MAC

Proof: ?

Construction 10

Same as Construction 8, but uses function $\mathcal{F} = \{\mathcal{F}_n : \{0, 1\}^n \mapsto \{0, 1\}^n\}$ instead of \mathcal{H} .

Construction 10

Same as Construction 8, but uses function $\mathcal{F} = \{\mathcal{F}_n : \{0, 1\}^n \mapsto \{0, 1\}^n\}$ instead of \mathcal{H} .

Claim 11

Assuming that \mathcal{F} is a PRF, then Construction 10 is an existential unforgeable MAC.

Construction 10

Same as Construction 8, but uses function $\mathcal{F} = \{\mathcal{F}_n : \{0, 1\}^n \mapsto \{0, 1\}^n\}$ instead of \mathcal{H} .

Claim 11

Assuming that \mathcal{F} is a PRF, then Construction 10 is an existential unforgeable MAC.

Proof:

Construction 10

Same as Construction 8, but uses function $\mathcal{F} = \{\mathcal{F}_n : \{0, 1\}^n \mapsto \{0, 1\}^n\}$ instead of \mathcal{H} .

Claim 11

Assuming that \mathcal{F} is a PRF, then Construction 10 is an existential unforgeable MAC.

Proof: Easy to prove if ${\cal F}$ is a family of random functions. Hence, also holds in case ${\cal F}$ is a PRF. \Box

Subsection 2

Any Length

Collision Resistant Hash Family

Definition 12 (collision resistant hash family (CRH))

A function family $\mathcal{H} = \{\mathcal{H}_n : \{0,1\}^* \mapsto \{0,1\}^n\}$ is collision resistant, if

$$\Pr_{h \leftarrow \mathcal{H}_n} [\mathsf{A}(1^n, h) = (x, x') \text{ s.t. } x \neq x' \land h(x) = h(x')] = \mathsf{neg}(n)$$

for any PPT A.

Collision Resistant Hash Family

Definition 12 (collision resistant hash family (CRH))

A function family $\mathcal{H} = \{\mathcal{H}_n : \{0,1\}^* \mapsto \{0,1\}^n\}$ is collision resistant, if

$$\Pr_{h \leftarrow \mathcal{H}_n} [\mathsf{A}(1^n, h) = (x, x') \text{ s.t. } x \neq x' \land h(x) = h(x')] = \mathsf{neg}(n)$$

for any PPT A.

Not known to implied by OWFs.

Length-restricted MAC \implies MAC

Construction 13 (Length restricted MAC \implies MAC)

Let (Gen, Mac, Vrfy) be a length-restricted MAC, and let $\mathcal{H} = \{\mathcal{H}_n : \{0, 1\}^* \mapsto \{0, 1\}^n\}$ be an efficient function family.

- ▶ Gen'(1^{*n*}): Sample $k \leftarrow \text{Gen}(1^n)$ and $h \leftarrow \mathcal{H}_n$. Output k' = (k, h)
- $\operatorname{Mac}_{k,h}'(m) = \operatorname{Mac}_k(h(m))$
- $\operatorname{Vrfy}_{k,h}'(t,m) = \operatorname{Vrfy}_k(t,h(m))$

Length-restricted MAC \implies MAC

Construction 13 (Length restricted MAC \implies MAC)

Let (Gen, Mac, Vrfy) be a length-restricted MAC, and let $\mathcal{H} = \{\mathcal{H}_n \colon \{0, 1\}^* \mapsto \{0, 1\}^n\}$ be an efficient function family.

- ▶ Gen'(1^{*n*}): Sample $k \leftarrow \text{Gen}(1^n)$ and $h \leftarrow \mathcal{H}_n$. Output k' = (k, h)
- $\operatorname{Mac}_{k,h}'(m) = \operatorname{Mac}_k(h(m))$
- $\operatorname{Vrfy}_{k,h}'(t,m) = \operatorname{Vrfy}_k(t,h(m))$

Claim 14

Assume \mathcal{H} is an efficient collision-resistant family and (Gen, Mac, Vrfy) is existential unforgeable, then (Gen', Mac', Vrfy') is existential unforgeable MAC.

Length-restricted MAC \implies MAC

Construction 13 (Length restricted MAC \implies MAC)

Let (Gen, Mac, Vrfy) be a length-restricted MAC, and let $\mathcal{H} = \{\mathcal{H}_n \colon \{0, 1\}^* \mapsto \{0, 1\}^n\}$ be an efficient function family.

- ▶ Gen'(1^{*n*}): Sample $k \leftarrow \text{Gen}(1^n)$ and $h \leftarrow \mathcal{H}_n$. Output k' = (k, h)
- $\operatorname{Mac}_{k,h}'(m) = \operatorname{Mac}_k(h(m))$
- $\operatorname{Vrfy}_{k,h}'(t,m) = \operatorname{Vrfy}_k(t,h(m))$

Claim 14

Assume \mathcal{H} is an efficient collision-resistant family and (Gen, Mac, Vrfy) is existential unforgeable, then (Gen', Mac', Vrfy') is existential unforgeable MAC.

Proof: ?
Part II

Signature Schemes

Signature schemes

Definition 15 (Signature schemes)

A trippet of PPT's (Gen, Sign, Vrfy) such that

- **1.** Gen (1^n) : output a pair of keys $(s, v) \in \{0, 1\}^* \times \{0, 1\}^*$
- **2.** Sign(*s*, *m*): output a "signature" $\sigma \in \{0, 1\}^*$
- **3.** Vrfy (v, m, σ) : output 1 (YES) or 0 (NO)

Consistency: $\operatorname{Vrfy}_{\nu}(m, \sigma) = 1$ for any $(s, \nu) \in \operatorname{Supp}(\operatorname{Gen}(1^n))$, $m \in \{0, 1\}^*$ and $\sigma \in \operatorname{Supp}(\operatorname{Sign}_s(m))$

Signature schemes

Definition 15 (Signature schemes)

A trippet of PPT's (Gen, Sign, Vrfy) such that

- **1.** Gen (1^n) : output a pair of keys $(s, v) \in \{0, 1\}^* \times \{0, 1\}^*$
- **2.** Sign(*s*, *m*): output a "signature" $\sigma \in \{0, 1\}^*$
- **3.** Vrfy (v, m, σ) : output 1 (YES) or 0 (NO)

Consistency: $\operatorname{Vrfy}_{\nu}(m, \sigma) = 1$ for any $(s, \nu) \in \operatorname{Supp}(\operatorname{Gen}(1^n))$, $m \in \{0, 1\}^*$ and $\sigma \in \operatorname{Supp}(\operatorname{Sign}_s(m))$

Definition 16 (Existential unforgability)

A signature scheme is existential unforgeable (EU), if \forall PPT A

 $\Pr_{(s,v)\leftarrow \operatorname{Gen}(1^n)} \left[\mathsf{A}^{\operatorname{Sign}_s}(1^n,v) = (m,\sigma) \text{ s.t } \operatorname{Vrfy}_v(m,\sigma) = 1 \land \operatorname{Sign}_s \operatorname{didn't} \operatorname{query} m \right]$

is negligible in n.

► Signature ⇒ MAC

- ► Signature ⇒ MAC
- "Harder" to construct than MACs: (even restricted forms) require OWF

- "Harder" to construct than MACs: (even restricted forms) require OWF
- Oracle access to Vrfy is not given

- "Harder" to construct than MACs: (even restricted forms) require OWF
- Oracle access to Vrfy is not given
- Strong existential unforgeable signatures (for short, strong signatures): infeasible to generate new valid signatures (even for message for which a signature was asked)

- "Harder" to construct than MACs: (even restricted forms) require OWF
- Oracle access to Vrfy is not given
- Strong existential unforgeable signatures (for short, strong signatures): infeasible to generate new valid signatures (even for message for which a signature was asked)

- "Harder" to construct than MACs: (even restricted forms) require OWF
- Oracle access to Vrfy is not given
- Strong existential unforgeable signatures (for short, strong signatures): infeasible to generate new valid signatures (even for message for which a signature was asked)

Theorem 17

OWFs imply strong existential unforgeable signatures.

Section 2 OWFs \implies Signatures

Subsection 1

One-time signatures

Length-restricted signatures

Definition 18 (length-restricted signatures)

Same as in Definition 15, but for $(s, v) \in \text{Supp}(G(1^n))$, Sign_s and Vrfy_v only accept messages of length *n*.

Definition 19 (*l*-time signatures)

A signature scheme is existential unforgeable against ℓ -query (for short, ℓ -time signature), if it is existential unforgeable as in Definition 16, but A can only ask for ℓ queries.

Definition 19 (*l*-time signatures)

A signature scheme is existential unforgeable against ℓ -query (for short, ℓ -time signature), if it is existential unforgeable as in Definition 16, but A can only ask for ℓ queries.

Claim 20

Assuming CRH exists, then length restricted k-time signatures can be used to construct k-time signatures.

Definition 19 (*l*-time signatures)

A signature scheme is existential unforgeable against ℓ -query (for short, ℓ -time signature), if it is existential unforgeable as in Definition 16, but A can only ask for ℓ queries.

Claim 20

Assuming CRH exists, then length restricted k-time signatures can be used to construct k-time signatures.

Proof: ?

Definition 19 (*l*-time signatures)

A signature scheme is existential unforgeable against ℓ -query (for short, ℓ -time signature), if it is existential unforgeable as in Definition 16, but A can only ask for ℓ queries.

Claim 20

Assuming CRH exists, then length restricted k-time signatures can be used to construct k-time signatures.

Proof: ?

Proposition 21

WIg, the signer of a k-time signature scheme, for fixed k, is deterministic

Proof: ?

Construction 22 (length-restricted, one-time signature)

- Let $f: \{0, 1\}^n \mapsto \{0, 1\}^n$.
 - **1.** Gen(1^{*n*}):
 - **1.1** $s_1^0, s_1^1, \ldots, s_n^0, s_n^1 \leftarrow \{0, 1\}^n$.
 - **1.2** Secret (signing) key is $\mathbf{s} = (\mathbf{s}_i^0, \mathbf{s}_i^1)_{i=1}^n$
 - **1.3** Public (verification) is $\mathbf{v} = (\mathbf{v}_i^0, \mathbf{v}_i^1)_{i=1}^n$ where $\mathbf{v}_i^b = f(\mathbf{s}_i^b)$.
 - **2.** Sign(*s*, *m*): $\sigma = (s_1^{m_1}, \dots, s_n^{m_n})$
 - **3.** Vrfy($v, m, \sigma = (\sigma_1, \dots, \sigma_n)$): check that $f(\sigma_i) = v_i^{m_i}$ for all $i \in [n]$

Construction 22 (length-restricted, one-time signature)

- Let $f: \{0, 1\}^n \mapsto \{0, 1\}^n$.
 - **1.** Gen(1^{*n*}):
 - **1.1** $s_1^0, s_1^1, \ldots, s_n^0, s_n^1 \leftarrow \{0, 1\}^n$.
 - **1.2** Secret (signing) key is $s = (s_i^0, s_i^1)_{i=1}^n$
 - **1.3** Public (verification) is $\mathbf{v} = (\mathbf{v}_i^0, \mathbf{v}_i^1)_{i=1}^n$ where $\mathbf{v}_i^b = f(\mathbf{s}_i^b)$.
 - **2.** Sign(*s*, *m*): $\sigma = (s_1^{m_1}, \ldots, s_n^{m_n})$
 - **3.** Vrfy $(v, m, \sigma = (\sigma_1, \dots, \sigma_n))$: check that $f(\sigma_i) = v_i^{m_i}$ for all $i \in [n]$

Lemma 23

If f is a OWF, then Construction 22 is a length restricted one-time signature scheme.

Construction 22 (length-restricted, one-time signature)

- Let $f: \{0, 1\}^n \mapsto \{0, 1\}^n$.
 - **1.** Gen(1^{*n*}):
 - **1.1** $s_1^0, s_1^1, \ldots, s_n^0, s_n^1 \leftarrow \{0, 1\}^n$.
 - **1.2** Secret (signing) key is $\mathbf{s} = (\mathbf{s}_i^0, \mathbf{s}_i^1)_{i=1}^n$
 - **1.3** Public (verification) is $\mathbf{v} = (\mathbf{v}_i^0, \mathbf{v}_i^1)_{i=1}^n$ where $\mathbf{v}_i^b = f(\mathbf{s}_i^b)$.
 - **2.** Sign(*s*, *m*): $\sigma = (s_1^{m_1}, \ldots, s_n^{m_n})$
 - **3.** Vrfy($v, m, \sigma = (\sigma_1, \dots, \sigma_n)$): check that $f(\sigma_i) = v_i^{m_i}$ for all $i \in [n]$

Lemma 23

If f is a OWF, then Construction 22 is a length restricted one-time signature scheme.

Is this a strong signature scheme?

Construction 22 (length-restricted, one-time signature)

- Let $f: \{0, 1\}^n \mapsto \{0, 1\}^n$.
 - **1.** Gen(1^{*n*}):
 - **1.1** $s_1^0, s_1^1, \ldots, s_n^0, s_n^1 \leftarrow \{0, 1\}^n$.
 - **1.2** Secret (signing) key is $\mathbf{s} = (\mathbf{s}_i^0, \mathbf{s}_i^1)_{i=1}^n$
 - **1.3** Public (verification) is $\mathbf{v} = (\mathbf{v}_i^0, \mathbf{v}_i^1)_{i=1}^n$ where $\mathbf{v}_i^b = f(\mathbf{s}_i^b)$.
 - **2.** Sign(*s*, *m*): $\sigma = (s_1^{m_1}, \dots, s_n^{m_n})$
 - **3.** Vrfy($v, m, \sigma = (\sigma_1, \dots, \sigma_n)$): check that $f(\sigma_i) = v_i^{m_i}$ for all $i \in [n]$

Lemma 23

If f is a OWF, then Construction 22 is a length restricted one-time signature scheme.

Is this a strong signature scheme? With some additional work, it can be turned into a strong one.

Benny Applebaum & Iftach Haitner (TAU)

Foundation of Cryptography

Let a PPT A, $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly}$ that break the security of Construction 22, we use A to invert *f*.

Let a PPT A, $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly}$ that break the security of Construction 22, we use A to invert *f*.

Algorithm 24 (Inv)

Input: $y \in \{0, 1\}^n$

- 1. Choose $(s, v) \leftarrow Gen(1^n)$ and replace $v_{i^*}^{b^*}$ for a random $i^* \in [n]$ and $b^* \in \{0, 1\}$, with y.
- **2.** Abort, if $A(1^n, v)$ asks to sign message $m \in \{0, 1\}^n$ with $m_{i^*} = b^*$. Otherwise, use *s* to answer the query.
- 3. Let (m', σ') be A's output. Abort, if σ' is not a valid signature for m', or $m'_{i^*} \neq b^*$. Otherwise, return σ_{i^*} .

Let a PPT A, $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly}$ that break the security of Construction 22, we use A to invert *f*.

Algorithm 24 (Inv)

Input: $y \in \{0, 1\}^n$

- 1. Choose $(s, v) \leftarrow Gen(1^n)$ and replace $v_{i^*}^{b^*}$ for a random $i^* \in [n]$ and $b^* \in \{0, 1\}$, with y.
- **2.** Abort, if $A(1^n, v)$ asks to sign message $m \in \{0, 1\}^n$ with $m_{i^*} = b^*$. Otherwise, use *s* to answer the query.
- **3.** Let (m', σ') be A's output. Abort, if σ' is not a valid signature for m', or $m'_{i^*} \neq b^*$. Otherwise, return σ_{i^*} .

v is distributed as is in the real "signature game"

Let a PPT A, $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly}$ that break the security of Construction 22, we use A to invert *f*.

Algorithm 24 (Inv)

Input: $y \in \{0, 1\}^n$

- 1. Choose $(s, v) \leftarrow Gen(1^n)$ and replace $v_{i^*}^{b^*}$ for a random $i^* \in [n]$ and $b^* \in \{0, 1\}$, with y.
- **2.** Abort, if $A(1^n, v)$ asks to sign message $m \in \{0, 1\}^n$ with $m_{i^*} = b^*$. Otherwise, use *s* to answer the query.
- **3.** Let (m', σ') be A's output. Abort, if σ' is not a valid signature for m', or $m'_{i^*} \neq b^*$. Otherwise, return σ_{i^*} .
- v is distributed as is in the real "signature game"
- v is independent of i^* and b^* .

Let a PPT A, $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly}$ that break the security of Construction 22, we use A to invert *f*.

Algorithm 24 (Inv)

Input: $y \in \{0, 1\}^n$

- 1. Choose $(s, v) \leftarrow Gen(1^n)$ and replace $v_{i^*}^{b^*}$ for a random $i^* \in [n]$ and $b^* \in \{0, 1\}$, with y.
- **2.** Abort, if $A(1^n, v)$ asks to sign message $m \in \{0, 1\}^n$ with $m_{i^*} = b^*$. Otherwise, use *s* to answer the query.
- **3.** Let (m', σ') be A's output. Abort, if σ' is not a valid signature for m', or $m'_{i^*} \neq b^*$. Otherwise, return σ_{i^*} .
- v is distributed as is in the real "signature game"
- v is independent of i* and b*.
- ► Therefore Inv inverts *f* w.p. $\frac{1}{2np(n)}$ for every $n \in \mathcal{I}$.

Subsection 2

Stateful Schemes

Stateful signature schemes¹

Definition 25 (Stateful scheme)

Same as in Definition 15, but Sign might keep state which is updated every signature.

¹Also known as memory-dependant schemes

Benny Applebaum & Iftach Haitner (TAU)

Foundation of Cryptography

Definition 25 (Stateful scheme)

Same as in Definition 15, but Sign might keep state which is updated every signature.

Make sense in many applications (e.g., smartcards)

¹Also known as memory-dependant schemes

Definition 25 (Stateful scheme)

Same as in Definition 15, but Sign might keep state which is updated every signature.

- Make sense in many applications (e.g., smartcards)
- We'll later use it a building block for building stateless scheme

¹Also known as memory-dependant schemes

Stateful schemes — straight-line construction

Let (Gen, Sign, Vrfy) be a strong one-time signature scheme.

Construction 26 (straight-line construction)

• Gen'(1^{*n*}): Output $(s', v') = (s_1, v_1) \leftarrow \text{Gen}(1^n)$.

• Sign'_{s_1}(m_i), where m_i is *i*'th message to sign:

- **1.** Let $(s_{i+1}, v_{i+1}) \leftarrow \text{Gen}(1^n)$ **2.** Let $\sigma_i = \text{Sign}_{s_i}(m_i, v_{i+1})$ **3.** Output $\sigma'_i = (\sigma'_{i-1}, m_i, v_{i+1}, \sigma_i).^a$
- ► Vrfy'_{v1}($m, \sigma' = (m_1, v_2, \sigma_1), \dots, (m_i, v_{i+1}, \sigma_i)$): Check that

1. Vrfy_{*v_j*((m_j, v_{j+1}), σ_j) = 1 for every $j \in [I]$ **2.** $m_j = m$}

 $a_{\sigma_0'}$ is the empty string.

Stateful schemes — straight-line construction

Let (Gen, Sign, Vrfy) be a strong one-time signature scheme.

Construction 26 (straight-line construction)

• Gen'(1^{*n*}): Output $(s', v') = (s_1, v_1) \leftarrow \text{Gen}(1^n)$.

• Sign'_{s_1}(m_i), where m_i is *i*'th message to sign:

- **1.** Let $(s_{i+1}, v_{i+1}) \leftarrow \text{Gen}(1^n)$ **2.** Let $\sigma_i = \text{Sign}_{s_i}(m_i, v_{i+1})$ **3.** Output $\sigma'_i = (\sigma'_{i-1}, m_i, v_{i+1}, \sigma_i).^a$
- ► Vrfy'_{v1}($m, \sigma' = (m_1, v_2, \sigma_1), \dots, (m_i, v_{i+1}, \sigma_i)$): Check that

1. Vrfy_{*v_j*((m_j, v_{j+1}), σ_j) = 1 for every $j \in [I]$ **2.** $m_j = m$}

 $a_{\sigma_0'}$ is the empty string.

The state of Sign' is used for maintaining the most recent signing key (e.g., s_i), and the last published signature that connects s_i to v₁.

- The state of Sign' is used for maintaining the most recent signing key (e.g., s_i), and the last published signature that connects s_i to v₁.
- While polynomial time, it is rather inefficient scheme: both running time and signature size are linear in number of published signatures.

- The state of Sign' is used for maintaining the most recent signing key (e.g., s_i), and the last published signature that connects s_i to v₁.
- While polynomial time, it is rather inefficient scheme: both running time and signature size are linear in number of published signatures.
- That (Gen, Sign, Vrfy) works for any length (specifically, it is possible to sign message that is longer than the verification key), is critically used.

- The state of Sign' is used for maintaining the most recent signing key (e.g., s_i), and the last published signature that connects s_i to v₁.
- While polynomial time, it is rather inefficient scheme: both running time and signature size are linear in number of published signatures.
- That (Gen, Sign, Vrfy) works for any length (specifically, it is possible to sign message that is longer than the verification key), is critically used.

- The state of Sign' is used for maintaining the most recent signing key (e.g., s_i), and the last published signature that connects s_i to v₁.
- While polynomial time, it is rather inefficient scheme: both running time and signature size are linear in number of published signatures.
- That (Gen, Sign, Vrfy) works for any length (specifically, it is possible to sign message that is longer than the verification key), is critically used.

Lemma 27

(Gen', Sign', Vrfy') is a stateful, strong signature scheme.
Straight-line construction cont.

- The state of Sign' is used for maintaining the most recent signing key (e.g., s_i), and the last published signature that connects s_i to v₁.
- While polynomial time, it is rather inefficient scheme: both running time and signature size are linear in number of published signatures.
- That (Gen, Sign, Vrfy) works for any length (specifically, it is possible to sign message that is longer than the verification key), is critically used.

Lemma 27

(Gen', Sign', Vrfy') is a stateful, strong signature scheme.

Proof: Assume \exists PPT A', $p \in \text{poly}$ and infinite set $\mathcal{I} \subseteq \mathbb{N}$, such that A' breaks the strong security of (Gen', Sign', Vrfy') with probability $\frac{1}{p(p)}$ for all $n \in \mathcal{I}$.

Straight-line construction cont.

- The state of Sign' is used for maintaining the most recent signing key (e.g., s_i), and the last published signature that connects s_i to v₁.
- While polynomial time, it is rather inefficient scheme: both running time and signature size are linear in number of published signatures.
- That (Gen, Sign, Vrfy) works for any length (specifically, it is possible to sign message that is longer than the verification key), is critically used.

Lemma 27

(Gen', Sign', Vrfy') is a stateful, strong signature scheme.

Proof: Assume \exists PPT A', $p \in \text{poly}$ and infinite set $\mathcal{I} \subseteq \mathbb{N}$, such that A' breaks the strong security of (Gen', Sign', Vrfy') with probability $\frac{1}{p(n)}$ for all $n \in \mathcal{I}$. We present PPT A that breaks the security of (Gen, Sign, Vrfy).

Straight-line construction cont.

- The state of Sign' is used for maintaining the most recent signing key (e.g., s_i), and the last published signature that connects s_i to v₁.
- While polynomial time, it is rather inefficient scheme: both running time and signature size are linear in number of published signatures.
- That (Gen, Sign, Vrfy) works for any length (specifically, it is possible to sign message that is longer than the verification key), is critically used.

Lemma 27

(Gen', Sign', Vrfy') is a stateful, strong signature scheme.

Proof: Assume \exists PPT A', $p \in$ poly and infinite set $\mathcal{I} \subseteq \mathbb{N}$, such that A' breaks the strong security of (Gen', Sign', Vrfy') with probability $\frac{1}{p(n)}$ for all $n \in \mathcal{I}$. We present PPT A that breaks the security of (Gen, Sign, Vrfy).

We assume for simplicity that p also bounds the query complexity of A'

Let $(m_t, \sigma' = (m_1, v_2, \sigma_1), \dots, (m_t, v_{t+1}, \sigma_t))$ be the pair output by A'

Let $(m_t, \sigma' = (m_1, v_2, \sigma_1), \dots, (m_t, v_{t+1}, \sigma_t))$ be the pair output by A'

Claim 28

Whenever A' succeeds, $\exists \tilde{i} \in [p]$ such that:

1. Sign' has output $\sigma'_{i-1} = (m_1, v_2, \sigma_1), \dots, (m_{\tilde{i}-1}, v_{\tilde{i}}, \sigma_{\tilde{i}-1})$

2. Sign' has not output $\sigma'_{\tilde{i}} = (m_1, v_2, \sigma_1), \dots, (m_{\tilde{i}}, v_{\tilde{i}+1}, \sigma_{\tilde{i}})$

Let $(m_t, \sigma' = (m_1, v_2, \sigma_1), \dots, (m_t, v_{t+1}, \sigma_t))$ be the pair output by A'

Claim 28

Whenever A' succeeds, $\exists \tilde{i} \in [p]$ such that:

1. Sign' has output $\sigma'_{i-1} = (m_1, v_2, \sigma_1), \dots, (m_{\tilde{i}-1}, v_{\tilde{i}}, \sigma_{\tilde{i}-1})$

2. Sign' has not output $\sigma'_{i} = (m_1, v_2, \sigma_1), \dots, (m_{\tilde{i}}, v_{\tilde{i}+1}, \sigma_{\tilde{i}})$

Proof: ?

Let $(m_t, \sigma' = (m_1, v_2, \sigma_1), \dots, (m_t, v_{t+1}, \sigma_t))$ be the pair output by A'

Claim 28

Whenever A' succeeds, $\exists \tilde{i} \in [p]$ such that:

1. Sign' has output $\sigma'_{\tilde{i}-1} = (m_1, v_2, \sigma_1), \dots, (m_{\tilde{i}-1}, v_{\tilde{i}}, \sigma_{\tilde{i}-1})$

2. Sign' has not output $\sigma'_{\tilde{i}} = (m_1, v_2, \sigma_1), \dots, (m_{\tilde{i}}, v_{\tilde{i}+1}, \sigma_{\tilde{i}})$

Proof: ?

It follows that

v_i was sampled by Sign'

Let $(m_t, \sigma' = (m_1, v_2, \sigma_1), \dots, (m_t, v_{t+1}, \sigma_t))$ be the pair output by A'

Claim 28

Whenever A' succeeds, $\exists \tilde{i} \in [p]$ such that:

1. Sign' has output $\sigma'_{\tilde{i}-1} = (m_1, v_2, \sigma_1), \dots, (m_{\tilde{i}-1}, v_{\tilde{i}}, \sigma_{\tilde{i}-1})$

2. Sign' has not output $\sigma'_{\tilde{i}} = (m_1, v_2, \sigma_1), \dots, (m_{\tilde{i}}, v_{\tilde{i}+1}, \sigma_{\tilde{i}})$

Proof: ?

It follows that

v_i was sampled by Sign'

Let $s_{\tilde{i}}$ be the signing key generated by Sign' along with $v_{\tilde{i}}$, and let $\tilde{m} = (m_{\tilde{i}}, v_{\tilde{i}+1})$

Let $(m_t, \sigma' = (m_1, v_2, \sigma_1), \dots, (m_t, v_{t+1}, \sigma_t))$ be the pair output by A'

Claim 28

Whenever A' succeeds, $\exists \tilde{i} \in [p]$ such that:

1. Sign' has output $\sigma'_{\tilde{i}-1} = (m_1, v_2, \sigma_1), \dots, (m_{\tilde{i}-1}, v_{\tilde{i}}, \sigma_{\tilde{i}-1})$

2. Sign' has not output $\sigma'_{\tilde{i}} = (m_1, v_2, \sigma_1), \dots, (m_{\tilde{i}}, v_{\tilde{i}+1}, \sigma_{\tilde{i}})$

Proof: ?

It follows that

v_i was sampled by Sign'

Let $s_{\tilde{i}}$ be the signing key generated by Sign' along with $v_{\tilde{i}}$, and let $\tilde{m} = (m_{\tilde{i}}, v_{\tilde{i}+1})$

• Vrfy_{$v_{\tilde{i}}$}($\tilde{m}, \sigma_{\tilde{i}}$) = 1

Let $(m_t, \sigma' = (m_1, v_2, \sigma_1), \dots, (m_t, v_{t+1}, \sigma_t))$ be the pair output by A'

Claim 28

Whenever A' succeeds, $\exists \tilde{i} \in [p]$ such that:

1. Sign' has output $\sigma'_{\tilde{i}-1} = (m_1, v_2, \sigma_1), \dots, (m_{\tilde{i}-1}, v_{\tilde{i}}, \sigma_{\tilde{i}-1})$

2. Sign' has not output $\sigma'_{\tilde{i}} = (m_1, v_2, \sigma_1), \dots, (m_{\tilde{i}}, v_{\tilde{i}+1}, \sigma_{\tilde{i}})$

Proof: ?

It follows that

v_i was sampled by Sign'

Let $s_{\tilde{i}}$ be the signing key generated by Sign' along with $v_{\tilde{i}}$, and let $\tilde{m} = (m_{\tilde{i}}, v_{\tilde{i}+1})$

- Vrfy_{v_i}($\widetilde{m}, \sigma_{\widetilde{i}}$) = 1
- Sign_{s_i} was not queried by Sign' on m̃ and output σ_i.

Let $(m_t, \sigma' = (m_1, v_2, \sigma_1), \dots, (m_t, v_{t+1}, \sigma_t))$ be the pair output by A'

Claim 28

Whenever A' succeeds, $\exists \tilde{i} \in [p]$ such that:

1. Sign' has output $\sigma'_{\tilde{i}-1} = (m_1, v_2, \sigma_1), \dots, (m_{\tilde{i}-1}, v_{\tilde{i}}, \sigma_{\tilde{i}-1})$

2. Sign' has not output $\sigma'_{\tilde{i}} = (m_1, v_2, \sigma_1), \dots, (m_{\tilde{i}}, v_{\tilde{i}+1}, \sigma_{\tilde{i}})$

Proof: ?

It follows that

v_i was sampled by Sign'

Let $s_{\tilde{i}}$ be the signing key generated by Sign' along with $v_{\tilde{i}}$, and let $\widetilde{m} = (m_{\tilde{i}}, v_{\tilde{i}+1})$

- Vrfy_{v_i}($\widetilde{m}, \sigma_{\widetilde{i}}$) = 1
- Sign_{s_τ} was not queried by Sign' on m̃ and output σ_i.
- Sign_s, was queried at most once by Sign'

Algorithm 29 (A)

Input: 1ⁿ, v Oracle: Sign_s

1. Choose $i^* \leftarrow [p = p(n)]$ and $(s', v') \leftarrow \text{Gen}'(1^n)$.

- On the *i**'th call to Sign'_{s'}, set v_i* = v (rather than choosing it via Gen)
- When need to sign using s_i*, use Sign_s.
- **3.** Let $(m, \sigma = (m_1, v_1, \sigma_1), \dots, (m_q, v_q, \sigma_q)) \leftarrow \mathsf{A}'$
- **4.** Output $((m_{i^*}, v_{i^*}), \sigma_{i^*})$ (abort if $i^* > q$))

Algorithm 29 (A)

Input: 1ⁿ, v Oracle: Sign_s

1. Choose $i^* \leftarrow [p = p(n)]$ and $(s', v') \leftarrow \text{Gen}'(1^n)$.

- On the *i**'th call to Sign'_{s'}, set v_i* = v (rather than choosing it via Gen)
- When need to sign using s_i*, use Sign_s.
- **3.** Let $(m, \sigma = (m_1, v_1, \sigma_1), \dots, (m_q, v_q, \sigma_q)) \leftarrow \mathsf{A}'$
- **4.** Output $((m_{i^*}, v_{i^*}), \sigma_{i^*})$ (abort if $i^* > q$))
- The emulated game A'^{Sign's'} has the same distribution as the real game.

Algorithm 29 (A)

Input: 1ⁿ, v Oracle: Sign_s

1. Choose $i^* \leftarrow [p = p(n)]$ and $(s', v') \leftarrow \text{Gen}'(1^n)$.

- On the *i**'th call to Sign'_{s'}, set v_i* = v (rather than choosing it via Gen)
- When need to sign using s_i*, use Sign_s.
- **3.** Let $(m, \sigma = (m_1, v_1, \sigma_1), \dots, (m_q, v_q, \sigma_q)) \leftarrow A'$
- **4.** Output $((m_{i^*}, v_{i^*}), \sigma_{i^*})$ (abort if $i^* > q$))
- The emulated game $A'^{Sign'_{s'}}$ has the same distribution as the real game.
- Sign_s is called at most once

Algorithm 29 (A)

Input: 1ⁿ, v Oracle: Sign_s

1. Choose $i^* \leftarrow [p = p(n)]$ and $(s', v') \leftarrow \text{Gen}'(1^n)$.

- On the *i**'th call to Sign'_{s'}, set v_i* = v (rather than choosing it via Gen)
- When need to sign using s_i*, use Sign_s.
- **3.** Let $(m, \sigma = (m_1, v_1, \sigma_1), \dots, (m_q, v_q, \sigma_q)) \leftarrow A'$
- **4.** Output $((m_{i^*}, v_{i^*}), \sigma_{i^*})$ (abort if $i^* > q$))
- The emulated game $A'^{Sign'_{s'}}$ has the same distribution as the real game.
- Sign_s is called at most once
- A breaks (Gen, Sign, Vrfy) whenever $i^* = \tilde{i}$.

Subsection 3

Somewhat-Stateful Schemes

A somewhat-stateful scheme

Let (Gen, Sign, Vrfy) be a strong one-time signature scheme.

Construction 30 (A somewhat-stateful scheme)

- Gen'(1^{*n*}): Output $(s', v') = (s_{\lambda}, v_{\lambda}) \leftarrow \text{Gen}(1^n)$.
- Sign'_{s_{λ}} (*m*): choose an unused $\mathbf{r} \in \{0, 1\}^n$
 - **1.** For i = 1 to n: if $a_{r_1,...,i}$ was not set before: **1.1** For both $j \in \{0, 1\}$, let $(s_{r_1,...,i,j}, v_{r_1,...,i,j}) \leftarrow \text{Gen}(1^n)$ **1.2** Let $a_{r_1,...,i} = (v_{r_1,...,i,0}, v_{r_1,...,i,1})$. **1.3** Let $\sigma_{r_1,...,i} = \text{Sign}_{s_{r_1,...,i}}(a_{r_1,...,i})$
 - **2.** Output $(\mathbf{r}, \mathbf{a}_{\lambda}, \sigma_{\lambda}, \dots, \mathbf{a}_{\mathbf{r}_{1,\dots,n-1}}, \sigma_{\mathbf{r}_{1,\dots,n-1}}, \sigma_{\mathbf{r}} = \operatorname{Sign}_{s_{\mathbf{r}}}(\mathbf{m}))$
- ► Vrfy'_{v_{λ}}($m, \sigma' = (\mathbf{r}, \mathbf{a}_{\lambda}, \sigma_{\lambda}, \dots, \mathbf{a}_{\mathbf{r}-1}, \sigma_{\mathbf{r}_{1,\dots,n-1}}, \sigma_{\mathbf{r}}$) Check that

1.
$$\operatorname{Vrfy}_{v_{r_1,\ldots,i}}(a_{r_1,\ldots,i},\sigma_{r_1,\ldots,i}) = 1$$
 for every $i \in \{0,\ldots,n-1\}$
2. $\operatorname{Vrfy}_{v_r}(m,\sigma_r) = 1$, for $v_r = (a_{r_1,\ldots,n-1})_{r_n}$

Each one-time signature key is used at most once.

Each one-time signature key is used at most once.

Each one-time signature key is used at most once.

Lemma 31

(Gen', Sign', Vrfy') is a stateful strong signature scheme.

Each one-time signature key is used at most once.

Lemma 31

(Gen', Sign', Vrfy') is a stateful strong signature scheme.

Proof: ?

Each one-time signature key is used at most once.

Lemma 31

(Gen', Sign', Vrfy') is a stateful strong signature scheme.

Proof: ?

Note that Sign' does not keep track of the message history.

Each one-time signature key is used at most once.

Lemma 31

(Gen', Sign', Vrfy') is a stateful strong signature scheme.

Proof: ?

- Note that Sign' does not keep track of the message history.
- More efficient scheme Enough to construct tree of depth ω(log n) (i.e., to choose r ∈ {0, 1}^{ℓ∈ω(log n}))

Subsection 4

Stateless Schemes

Let $\widetilde{\Pi}_k$ be the set of all functions from $\{0,1\}^*$ to $\{0,1\}^k$, let $q \in poly$ be "large enough", and let $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^* \mapsto \{0,1\}^n\}$ be a CRH.

- ► Gen'(1^{*n*}): Sample $(s_{\lambda}, v_{\lambda}) \leftarrow$ Gen(1^{*n*}), $\pi \leftarrow \widetilde{\Pi}_{q(n)}$ and $h \leftarrow \mathcal{H}_n$. Output $(s' = (s_{\lambda}, \pi, h), v' = v_{\lambda})$.
- Sign'_s(m): Set $\mathbf{r} = \pi(h(m))_{1,...,n}$.

1. For
$$i = 1$$
 to n :
1.1 For both $j \in \{0, 1\}$, let $(s_{r_1,...,i,j}, v_{r_1,...,i,j}) \leftarrow \text{Gen}(1^n; \pi(r_{1,...,i}, j))$
1.2 Let $\sigma_{r_1,...,i} = \text{Sign}_{s_{r_1,...,i}}(a_{r_1,...,i} = (v_{r_1,...,i,0}, v_{r_1,...,i,1}))$
2 Output $(r, a_1, \sigma_1, \dots, a_{n-1}, \sigma_{n-1}, \sigma_{n-1},$

- **2.** Output $(\mathbf{r}, \mathbf{a}_{\lambda}, \sigma_{\lambda}, \dots, \mathbf{a}_{\mathbf{r}_{1,\dots,n-1}}, \sigma_{\mathbf{r}_{1,\dots,n-1}}, \sigma_{\mathbf{r}} = \operatorname{Sign}_{s_{\mathbf{r}}}(\mathbf{m}))$
- Vrfy': unchanged

Let $\widetilde{\Pi}_k$ be the set of all functions from $\{0,1\}^*$ to $\{0,1\}^k$, let $q \in poly$ be "large enough", and let $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^* \mapsto \{0,1\}^n\}$ be a CRH.

- ► Gen'(1^{*n*}): Sample $(s_{\lambda}, v_{\lambda}) \leftarrow$ Gen(1^{*n*}), $\pi \leftarrow \widetilde{\Pi}_{q(n)}$ and $h \leftarrow \mathcal{H}_n$. Output $(s' = (s_{\lambda}, \pi, h), v' = v_{\lambda})$.
- Sign'_s(m): Set $\mathbf{r} = \pi(h(m))_{1,...,n}$.
 - **1.** For i = 1 to n: **1.1** For both $j \in \{0, 1\}$, let $(s_{r_1,...,i,j}, v_{r_1,...,i,j}) \leftarrow \text{Gen}(1^n; \pi(r_1,...,i,j))$ **1.2** Let $\sigma_{r_1,...,i} = \text{Sign}_{s_{r_1,...,i}}(a_{r_1,...,i} = (v_{r_1,...,i,0}, v_{r_1,...,i,1}))$
 - **2.** Output $(\mathbf{r}, \mathbf{a}_{\lambda}, \sigma_{\lambda}, \dots, \mathbf{a}_{\mathbf{r}_{1,\dots,n-1}}, \sigma_{\mathbf{r}_{1,\dots,n-1}}, \sigma_{\mathbf{r}} = \operatorname{Sign}_{s_{\mathbf{r}}}(\mathbf{m}))$
- Vrfy': unchanged
- One one-time signature key might be used several times, but always on the same message.

Let $\widetilde{\Pi}_k$ be the set of all functions from $\{0,1\}^*$ to $\{0,1\}^k$, let $q \in poly$ be "large enough", and let $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^* \mapsto \{0,1\}^n\}$ be a CRH.

- ► Gen'(1^{*n*}): Sample $(s_{\lambda}, v_{\lambda}) \leftarrow$ Gen(1^{*n*}), $\pi \leftarrow \widetilde{\Pi}_{q(n)}$ and $h \leftarrow \mathcal{H}_n$. Output $(s' = (s_{\lambda}, \pi, h), v' = v_{\lambda})$.
- Sign'_s(*m*): Set $r = \pi(h(m))_{1,...,n}$.
 - **1.** For i = 1 to n: **1.1** For both $j \in \{0, 1\}$, let $(s_{r_1,...,i,j}, v_{r_1,...,i,j}) \leftarrow \text{Gen}(1^n; \pi(r_{1,...,i,j}))$ **1.2** Let $\sigma_{r_1,...,i} = \text{Sign}_{s_{r_1,...,i}}(a_{r_1,...,i} = (v_{r_1,...,i,0}, v_{r_1,...,i,1}))$
 - **2.** Output $(\mathbf{r}, \mathbf{a}_{\lambda}, \sigma_{\lambda}, \dots, \mathbf{a}_{\mathbf{r}_{1,\dots,n-1}}, \sigma_{\mathbf{r}_{1,\dots,n-1}}, \sigma_{\mathbf{r}} = \operatorname{Sign}_{s_{\mathbf{r}}}(\mathbf{m}))$
- Vrfy': unchanged
- One one-time signature key might be used several times, but always on the same message.
- Efficient scheme:

Let $\widetilde{\Pi}_k$ be the set of all functions from $\{0,1\}^*$ to $\{0,1\}^k$, let $q \in poly$ be "large enough", and let $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^* \mapsto \{0,1\}^n\}$ be a CRH.

- ► Gen'(1^{*n*}): Sample $(s_{\lambda}, v_{\lambda}) \leftarrow$ Gen(1^{*n*}), $\pi \leftarrow \widetilde{\Pi}_{q(n)}$ and $h \leftarrow \mathcal{H}_n$. Output $(s' = (s_{\lambda}, \pi, h), v' = v_{\lambda})$.
- Sign'_s(*m*): Set $r = \pi(h(m))_{1,...,n}$.
 - **1.** For i = 1 to n: **1.1** For both $j \in \{0, 1\}$, let $(s_{r_1,...,i,j}, v_{r_1,...,i,j}) \leftarrow \text{Gen}(1^n; \pi(r_{1,...,i,j}))$ **1.2** Let $\sigma_{r_1,...,i} = \text{Sign}_{s_{r_1,...,i}}(a_{r_1,...,i} = (v_{r_1,...,i,0}, v_{r_1,...,i,1}))$
 - **2.** Output $(\mathbf{r}, \mathbf{a}_{\lambda}, \sigma_{\lambda}, \dots, \mathbf{a}_{\mathbf{r}_{1,\dots,n-1}}, \sigma_{\mathbf{r}_{1,\dots,n-1}}, \sigma_{\mathbf{r}} = \operatorname{Sign}_{s_{\mathbf{r}}}(\mathbf{m}))$
- Vrfy': unchanged
- One one-time signature key might be used several times, but always on the same message.
- Efficient scheme:

Let $\widetilde{\Pi}_k$ be the set of all functions from $\{0,1\}^*$ to $\{0,1\}^k$, let $q \in poly$ be "large enough", and let $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^* \mapsto \{0,1\}^n\}$ be a CRH.

- ► Gen'(1^{*n*}): Sample $(s_{\lambda}, v_{\lambda}) \leftarrow$ Gen(1^{*n*}), $\pi \leftarrow \widetilde{\Pi}_{q(n)}$ and $h \leftarrow \mathcal{H}_n$. Output $(s' = (s_{\lambda}, \pi, h), v' = v_{\lambda})$.
- Sign'_s(m): Set $\mathbf{r} = \pi(h(m))_{1,...,n}$.
 - **1.** For i = 1 to n: **1.1** For both $j \in \{0, 1\}$, let $(s_{r_1,...,i,j}, v_{r_1,...,i,j}) \leftarrow \text{Gen}(1^n; \pi(r_1,...,i,j))$ **1.2** Let $\sigma_{r_1,...,i} = \text{Sign}_{s_{r_1,...,i}}(a_{r_1,...,i} = (v_{r_1,...,i,0}, v_{r_1,...,i,1}))$
 - **2.** Output $(\mathbf{r}, \mathbf{a}_{\lambda}, \sigma_{\lambda}, \dots, \mathbf{a}_{\mathbf{r}_{1,\dots,n-1}}, \sigma_{\mathbf{r}_{1,\dots,n-1}}, \sigma_{\mathbf{r}} = \operatorname{Sign}_{s_{\mathbf{r}}}(\mathbf{m}))$
- Vrfy': unchanged
- One one-time signature key might be used several times, but always on the same message.
- Efficient scheme: use PRF (?)

Subsection 5

"CRH free" Schemes

Definition 33 (target collision-resistant functions (TCR))

A function family $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^* \mapsto \{0,1\}^n\}$, if

$$\Pr_{(x,a)\leftarrow \mathsf{A}_1(1^n);h\leftarrow \mathcal{H}_n;x'\leftarrow \mathsf{A}_2(a,h)}[x\neq x'\wedge h(x)=h(x')]=\mathsf{neg}(n)$$

for any pair of PPT's A_1, A_2 .

Definition 33 (target collision-resistant functions (TCR))

A function family $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^* \mapsto \{0,1\}^n\}$, if

$$\Pr_{(x,a)\leftarrow \mathsf{A}_1(1^n);h\leftarrow \mathcal{H}_n;x'\leftarrow \mathsf{A}_2(a,h)}[x\neq x'\wedge h(x)=h(x')]=\mathsf{neg}(n)$$

for any pair of PPT's A_1, A_2 .

Theorem 34 OWFs imply efficient compressing TCRs.

Definition 33 (target collision-resistant functions (TCR))

A function family $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^* \mapsto \{0,1\}^n\}$, if

$$\Pr_{(x,a)\leftarrow \mathsf{A}_1(1^n);h\leftarrow \mathcal{H}_n;x'\leftarrow \mathsf{A}_2(a,h)}[x\neq x'\wedge h(x)=h(x')]=\mathsf{neg}(n)$$

for any pair of PPT's A_1, A_2 .

Theorem 34

OWFs imply efficient compressing TCRs.

Proof:

Definition 33 (target collision-resistant functions (TCR))

A function family $\mathcal{H} = \{\mathcal{H}_n \colon \{0, 1\}^* \mapsto \{0, 1\}^n\}$, if

$$\Pr_{(x,a)\leftarrow \mathsf{A}_1(1^n);h\leftarrow \mathcal{H}_n;x'\leftarrow \mathsf{A}_2(a,h)}[x\neq x'\wedge h(x)=h(x')]=\mathsf{neg}(n)$$

for any pair of PPT's A_1, A_2 .

Theorem 34

OWFs imply efficient compressing TCRs.

Proof: not that trivial...

Target one-time signatures

For simplicity we will focus on non-strong schemes.
Target one-time signatures

For simplicity we will focus on non-strong schemes.

Definition 35 (target one-time signatures)

A signature scheme (Gen, Sign, Vrfy) is target one-time existential unforgeable (for short, target one-time signature), if

 $\Pr_{\substack{m \leftarrow A(1^n) \\ (s,v) \leftarrow \text{Gen}(1^n) \\ (m',\sigma) \leftarrow A(\text{Sign}_{g}(m))}} [m' \neq m \land \text{Vrfy}_v(m',\sigma) = 1] = \text{neg}(n)$

for any PPT A

Target one-time signatures

For simplicity we will focus on non-strong schemes.

Definition 35 (target one-time signatures)

A signature scheme (Gen, Sign, Vrfy) is target one-time existential unforgeable (for short, target one-time signature), if

 $\Pr_{\substack{m \leftarrow A(1^n) \\ (s,v) \leftarrow \text{Gen}(1^n) \\ (m',\sigma) \leftarrow A(\text{Sign}_{g}(m))}} [m' \neq m \land \text{Vrfy}_v(m',\sigma) = 1] = \text{neg}(n)$

for any PPT A

Claim 36

OWFs imply target one-time signatures.

Random one-time signatures

Definition 37 (random one-time signatures)

A signature scheme (Gen, Sign, Vrfy) is random one-time existential unforgeable (for short, random one-time signature), if

 $\Pr_{\substack{m \leftarrow \mathcal{M}_n: (s,v) \leftarrow \mathsf{Gen}(1^n) \\ (m', \sigma) \leftarrow \mathsf{A}(m, \mathsf{Sign}_{\mathsf{S}}(m))}} [m' \neq m \land \mathsf{Vrfy}_v(m', \sigma) = 1] = \mathsf{neg}(n)$

for any PPT A and any efficiently samplable string ensemble $\mathcal{M} = \{\mathcal{M}_n\}_{n \in \mathbb{N}}$.

Random one-time signatures

Definition 37 (random one-time signatures)

A signature scheme (Gen, Sign, Vrfy) is random one-time existential unforgeable (for short, random one-time signature), if

 $\Pr_{\substack{m \leftarrow \mathcal{M}_n: (s,v) \leftarrow \mathsf{Gen}(1^n) \\ (m', \sigma) \leftarrow A(m, \mathsf{Sign}_s(m))}} [m' \neq m \land \mathsf{Vrfy}_v(m', \sigma) = 1] = \mathsf{neg}(n)$

for any PPT A and any efficiently samplable string ensemble $\mathcal{M} = \{\mathcal{M}_n\}_{n \in \mathbb{N}}$.

Claim 38

Assume (Gen, Sign, Vrfy) is target one-time signature scheme, then it is random one-time signature scheme.

Lemma 39

If (Gen, Sign, Vrfy) and \mathcal{H} in Construction 32 are target-one-time signature scheme and TCR respectively, then it is a signature scheme.

Lemma 39

If (Gen, Sign, Vrfy) and \mathcal{H} in Construction 32 are target-one-time signature scheme and TCR respectively, then it is a signature scheme.

Proof:

Lemma 39

If (Gen, Sign, Vrfy) and \mathcal{H} in Construction 32 are target-one-time signature scheme and TCR respectively, then it is a signature scheme.

Proof:

Focus on the target-one-time signatures. Assume for simplicity that an adversary cannot make the signer use the *same r* for for signing two *different* messages.

Lemma 39

If (Gen, Sign, Vrfy) and \mathcal{H} in Construction 32 are target-one-time signature scheme and TCR respectively, then it is a signature scheme.

Proof:

Focus on the target-one-time signatures. Assume for simplicity that an adversary cannot make the signer use the *same r* for for signing two *different* messages.

Show that

- 1. Random-one-time signature suffice for the nodes signatures
- 2. Target-one-time signature suffice for the leaves signatures