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(MACs)
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Message Authentication Code (MACs)

Definition 1 (MAC)

A trippet of PPT’s (Gen, Mac, Vrfy) such that:
1. Gen(1”) outputs a key k € {0, 1}*
2. Mac(k, m) outputs a “tag" ¢
3. Vrfy(k, m, t) output 1 (YES) or 0 (NO)

Consistency: Vrfy,(m,t) =1
Vk € Supp(Gen(1™)), m € {0,1}" and t = Mack(m)
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1. Gen(1") outputs a key k € {0,1}*
2. Mac(k, m) outputs a “tag" ¢
3. Vrfy(k, m, t) output 1 (YES) or 0 (NO)

Consistency: Vrfy,(m,t) =1
Vk € Supp(Gen(1")), m € {0,1}" and t = Mac,(m)

Definition 2 (Existential unforgability)

A MAC (Gen, Mac, Vrfy) is existential unforgeable (EU), if V PPT A:
Pr [Vrfy,(m, t) = 1 A Macyk was not asked on m] = neg(n)

k<—Gen(11)
(m,r)&AMack«V”)’k(m)

Remark: convention
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Definition of MAC cont.

» “Private key" definition
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» Security definition too strong?
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Definition of MAC cont.

» “Private key" definition

» Security definition too strong? Any message?
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Definition of MAC cont.

» “Private key" definition

» Security definition too strong? Any message?Use of Verifier?
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Definition of MAC cont.

» “Private key" definition
» Security definition too strong? Any message?Use of Verifier?

> “Replay attacks"
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Definition of MAC cont.

» “Private key" definition

» Security definition too strong? Any message?Use of Verifier?

> “Replay attacks"

» Strong existential unforgeable MACS (for short, strong MAC): infeasible

to generate new valid tag (even for message for which a MAC was
asked)
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Restricted MACs

Definition 3 (Length-restricted MAC)

Same as in Definition 1, but for k € Supp(G(1")), Mack and Vrfy, only accept
messages of length n.
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Restricted MACs

Definition 3 (Length-restricted MAC)

Same as in Definition 1, but for k € Supp(G(1")), Mack and Vrfy, only accept
messages of length n.

Definition 4 (¢-time MAC)

A MAC scheme is existential unforgeable against ¢ queries (for short, ¢-time
MAC), if it is existential unforgeable as in Definition 2, but A can only make ¢
queries.
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Section 1

Constructions
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One-time length-restricted MAC
Construction 5 (One-time MAC)

» Gen(17): output k « {0,1}".
» Macy(m): output hx(m).
» Vrfy,(m,t): output 1 iff t = hx(m).
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Construction 5 (One-time MAC)

» Gen(17): output k « {0,1}".
» Mack(m): output hx(m).
» Vrfy,(m,t): output 1 iff t = hx(m).

Claim 6
The scheme is one-time MAC if {hx} is

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016

7/39



One-time length-restricted MAC
Construction 5 (One-time MAC)

» Gen(17): output k « {0,1}".
» Mack(m): output hx(m).
» Vrfy,(m,t): output 1 iff t = hx(m).

Claim 6
The scheme is one-time MAC if { h} is pairwise-independent.

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016

7/39



One-time length-restricted MAC
Construction 5 (One-time MAC)

» Gen(17): output k « {0,1}".
» Mack(m): output hx(m).
» Vrfy,(m,t): output 1 iff t = hx(m).

Claim 6
The scheme is one-time MAC if { h} is pairwise-independent.

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016

7/39



One-time length-restricted MAC
Construction 5 (One-time MAC)

» Gen(17): output k « {0,1}".
» Mack(m): output hx(m).
» Vrfy,(m,t): output 1 iff t = hx(m).

Claim 6
The scheme is one-time MAC if { h} is pairwise-independent.

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016

7/39



Subsection 1

Restricted-Length MAC
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(-wise independent functions

Definition 7 (¢-wise independent)

A function family # from {0, 1}" to {0, 1} is ¢-wise independent, if for every
distinct x1,...,x, € {0,1}" and every yi,...,y, € {0,1}", it holds that
Pracu [h(X1) =V A...A h(Xg) = yg] —
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(-times, restricted-length MAC

Construction 8 (¢/-time MAC)

Let H = {H,: {0,1}" — {0,1}"} be an efficient (¢ + 1)-wise independent
function family.

» Gen(1™): output h + H,.
» Mac(h, m): output h(m).
> Vrfy(h, m, t): output 1 iff t = h(m).
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(-times, restricted-length MAC

Construction 8 (¢/-time MAC)

Let H = {H,: {0,1}" — {0,1}"} be an efficient (¢ + 1)-wise independent
function family.

» Gen(1™): output h + H,.
» Mac(h, m): output h(m).
> Vrfy(h, m, t): output 1 iff t = h(m).

Claim 9
The above scheme is a length-restricted, ¢-time MAC

Proof: ?
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OWF — restricted-length MAC

Construction 10

Same as Construction 8, but uses function F = {F,: {0,1}" — {0,1}"}
instead of H.
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OWF — restricted-length MAC

Construction 10

Same as Construction 8, but uses function F = {F,: {0,1}" — {0,1}"}
instead of H.

Claim 11

Assuming that F is a PRF, then Construction 10 is an existential unforgeable
MAC.
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OWF — restricted-length MAC

Construction 10

Same as Construction 8, but uses function F = {F,: {0,1}" — {0,1}"}
instead of H.

Claim 11

Assuming that F is a PRF, then Construction 10 is an existential unforgeable
MAC.

y

Proof: Easy to prove if F is a family of random functions. Hence, also holds in
case Fis a PREO
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Subsection 2

Any Length
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Collision Resistant Hash Family

Definition 12 (collision resistant hash family (CRH))
A function family # = {#,: {0,1}* — {0,1}"} is collision resistant, if

h(_P?r{ [A(17, h) = (x,x") s.t. x # x" A h(x) = h(x")] = neg(n)

for any PPT A.
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Collision Resistant Hash Family

Definition 12 (collision resistant hash family (CRH))
A function family # = {#,: {0,1}* — {0,1}"} is collision resistant, if

h(_P?r{ [A(17, h) = (x,x") s.t. x # x" A h(x) = h(x")] = neg(n)

for any PPT A.

» Not known to implied by OWFs.

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016

13/39



Length-restricted MAC —- MAC

Construction 13 (Length restricted MAC — MAC)

Let (Gen, Mac, Vrfy) be a length-restricted MAC, and let
H = {Hnp: {0,1}* — {0,1}"} be an efficient function family.

» Gen’'(1"): Sample k +- Gen(1") and h <+ H,. Output k' = (k, h)
> Macj ,(m) = Mack(h(m))

> Vrfyg(,h(tv m) = Vrfyk(t7 h(m))
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Let (Gen, Mac, Vrfy) be a length-restricted MAC, and let
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» Gen’'(1"): Sample k +- Gen(1") and h <+ H,. Output k' = (k, h)
> Macj ,(m) = Mack(h(m))

> Vrfyg(,h(tv m) = Vrfyk(t7 h(m))

Claim 14

Assume 7 is an efficient collision-resistant family and (Gen, Mac, Vrfy) is
existential unforgeable, then (Gen’, Mac’, Vrfy') is existential unforgeable
MAC.
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Part Il

Signature Schemes
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Signature schemes

Definition 15 (Signature schemes)

A trippet of PPT’s (Gen, Sign, Vrfy) such that
1. Gen(1"): output a pair of keys (s, v) € {0,1}* x {0,1}*
2. Sign(s, m): output a “signature" o € {0, 1}*
3. Vrfy(v, m,o): output 1 (YES) or 0 (NO)

Consistency: Vrfy, (m,o) = 1 for any (s, v) € Supp(Gen(1”)), m € {0,1}*
and o € Supp(Signg(m))
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A trippet of PPT’s (Gen, Sign, Vrfy) such that
1. Gen(1"): output a pair of keys (s, v) € {0,1}* x {0,1}*
2. Sign(s, m): output a “signature" o € {0, 1}*
3. Vrfy(v, m,o): output 1 (YES) or 0 (NO)

Consistency: Vrfy (m, o) = 1 for any (s, v) € Supp(Gen(1")), m € {0,1}*
and o € Supp(Signg(m))

Definition 16 (Existential unforgability)

A signature scheme is existential unforgeable (EU), if V PPT A

Pr [AS‘Q“S(W, v) = (m, o) st Vrly,(m, o) = 1 A Sign, didn't query m
(s,v)«Gen(1")

is negligible in n.

y
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Signature schemes cont.

» Signature — MAC
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Signature schemes cont.

» Signature — MAC

» “Harder" to construct than MACs: (even restricted forms) require OWF
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Signature schemes cont.

Signature — MAC
“Harder" to construct than MACs: (even restricted forms) require OWF

Oracle access to Vrfy is not given

vV v vy

Strong existential unforgeable signatures (for short, strong signatures):
infeasible to generate new valid signatures (even for message for which
a signature was asked)
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Signature schemes cont.

Signature — MAC
“Harder" to construct than MACs: (even restricted forms) require OWF

Oracle access to Vrfy is not given

vV v. vy

Strong existential unforgeable signatures (for short, strong signatures):
infeasible to generate new valid signatures (even for message for which
a signature was asked)

Theorem 17
OWFs imply strong existential unforgeable signatures. J
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Section 2

OWFs — Signatures
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Subsection 1

One-time signatures
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Length-restricted signatures

Definition 18 (length-restricted signatures)

Same as in Definition 15, but for (s, v) € Supp(G(17)), Signg and Vrfy, only
accept messages of length n.
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Bounded-query signatures

Definition 19 (¢-time signatures)

A signature scheme is existential unforgeable against ¢-query (for short,

(-time signature), if it is existential unforgeable as in Definition 16, but A can
only ask for ¢ queries.
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Bounded-query signatures

Definition 19 (¢-time signatures)

A signature scheme is existential unforgeable against ¢-query (for short,
(-time signature), if it is existential unforgeable as in Definition 16, but A can
only ask for ¢ queries.

Claim 20

Assuming CRH exists, then length restricted k-time signatures can be used to
construct k-time signatures.

v
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(-time signature), if it is existential unforgeable as in Definition 16, but A can
only ask for ¢ queries.

Claim 20

Assuming CRH exists, then length restricted k-time signatures can be used to
construct k-time signatures.
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Proof: ?
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Bounded-query signatures

Definition 19 (¢-time signatures)

A signature scheme is existential unforgeable against ¢-query (for short,
(-time signature), if it is existential unforgeable as in Definition 16, but A can
only ask for ¢ queries.

Claim 20

Assuming CRH exists, then length restricted k-time signatures can be used to
construct k-time signatures.

v

Proof: ?

Proposition 21
WIg, the signer of a k-time signature scheme, for fixed k, is deterministic J

Proof: ?
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OWF — length-restricted one-time signatures

Construction 22 (length-restricted, one-time signature)

Let f: {0,1}" > {0,1}".

1. Gen(1"):

1.1 s9,sl,...,80, s} « {0,1}". ]

1.2 Secret (signing) key is s = (s?,s])._,

1.3 Public (verification) is v = (v2, v/)"_, where v? = f(sP).
2. Sign(s,m): o = (s{",....sp")

3. Vrfy(v,m,o = (o1,...,0n)): check that f(o;) = v/ for all i € [n]
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OWF — length-restricted one-time signatures

Construction 22 (length-restricted, one-time signature)
Let f: {0,1}" — {0,1}".
1. Gen(1"):
1.1 s9,sl,...,80, s} « {0,1}".
1.2 Secret (signing) key is s = (s?,s!)7
1.3 Public (verification) is v = (v2, v/)"_, where v? = f(sP).
2. Sign(s,m): o = (s{",....sp")

3. Vrfy(v,m,o = (o1,...,0n)): check that f(o;) = v/ for all i € [n]

Lemma 23

If f is a OWF, then Consiruction 22 is a length restricted one-time signature
scheme.
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Construction 22 (length-restricted, one-time signature)
Let f: {0,1}"+— {0,1}".
1. Gen(1"):
1.1 s9,sl,...,80, s} « {0,1}".
1.2 Secret (signing) key is s = (s?,s!)7
1.3 Public (verification) is v = (v?, Vi1)7=1 where v? = f(sP).

2. Sign(s,m): o = (s{",....sp")

3. Vrfy(v,m,o = (o1,...,0n)): check that f(o;) = v/ for all i € [n]

Lemma 23

If f is a OWF, then Consiruction 22 is a length restricted one-time signature
scheme.

Is this a strong signature scheme?
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OWF — length-restricted one-time signatures

Construction 22 (length-restricted, one-time signature)
Let f: {0,1}"+— {0,1}".
1. Gen(1"):
1.1 s9,sl,...,80, s} « {0,1}".
1.2 Secret (signing) key is s = (s?,s])"
1.3 Public (verification) is v = (v?, v/') _, where vP = f(sP).

2. Sign(s,m): o = (s{",....sp")

3. Vrfy(v,m,o = (o1,...,0n)): check that f(o;) = v/ for all i € [n]

Lemma 23

If f is a OWF, then Consiruction 22 is a length restricted one-time signature
scheme.

Is this a strong signature scheme? With some additional work, it can be
turned into a strong one.
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Proving Lemma 23

Leta PPT A, Z C N and p € poly that break the security of Construction 22,
we use A to invert f.
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Proving Lemma 23

Leta PPT A, Z C N and p € poly that break the security of Construction 22,
we use A to invert f.

Algorithm 24 (Inv)
Input: y € {0,1}"

1. Choose (s, v) + Gen(1") and replace v2" for a random i* € [n] and
b* € {0,1}, with y.

2. Abort, if A(1”, v) asks to sign message m < {0, 1}" with m;- = b*.
Otherwise, use s to answer the query.

3. Let (m',0’) be A’s output.
Abort, if o’ is not a valid signature for m’, or m;. # b*.
Otherwise, return ;.
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Proving Lemma 23

Leta PPT A, Z C N and p € poly that break the security of Construction 22,
we use A to invert f.

Algorithm 24 (Inv)

Input: y € {0,1}"

1. Choose (s, v) + Gen(1") and replace v2" for a random i* € [n] and
b* € {0,1}, with y.

2. Abort, if A(1”, v) asks to sign message m < {0, 1}" with m;- = b*.
Otherwise, use s to answer the query.

3. Let (m',0’) be A’s output.
Abort, if o’ is not a valid signature for m’, or mj. # b*.
Otherwise, return ;.

» v is distributed as is in the real “signature game"
» v isindependent of /* and b*.
» Therefore Inv inverts f w.p. ﬁ(n) forevery ne 7.
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Subsection 2

Stateful Schemes
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Stateful signature schemes'’

Definition 25 (Stateful scheme)

Same as in Definition 15, but Sign might keep state which is updated every
signature.

Also known as memory-dependant schemes
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Stateful signature schemes'’

Definition 25 (Stateful scheme)

Same as in Definition 15, but Sign might keep state which is updated every
signature.

» Make sense in many applications (e.g., smartcards)

» We'll later use it a building block for building stateless scheme

"Also known as memory-dependant schemes
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Stateful schemes — straight-line construction

Let (Gen, Sign, Vrfy) be a strong one-time signature scheme.
Construction 26 (straight-line construction)

» Gen'(1"): Output (s', V') = (s1,v4) + Gen(1").

> Signj, (m;), where m; is i'th message to sign:

1. Let (sit1, Vir1) < Gen(17)
2. Let oj = Signsl_(m,-, V,'+1)
3. Output 0',/- = (UI’-_1 , M, Vigq, U;).a

> Vrfy, (m, o’ = (my,v2,01),...,(M;, Vig1, 07)):
Check that
1..Vrly, ((mj, Vjs1),05) = 1 for every j € [i]
2. mi=m

404 is the empty string.
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Stateful schemes — straight-line construction

Let (Gen, Sign, Vrfy) be a strong one-time signature scheme.
Construction 26 (straight-line construction)

» Gen'(1"): Output (s', V') = (s1,v4) + Gen(1").

> Signj, (m;), where m; is i'th message to sign:

1. Let (sit1, Vir1) < Gen(17)
2. Let oj = Signsl_(m,-, V,'+1)
3. Output 0',/- = (UI’-_1 , M, Vigq, U;).a

> Vrfy, (m, o’ = (my,v2,01),...,(M;, Vig1, 07)):
Check that
1..Vrly, ((mj, Vjs1),05) = 1 for every j € [i]
2. mi=m

404 is the empty string.
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Straight-line construction cont.

» The state of Sign’ is used for maintaining the most recent signing key
(e.g., sj), and the last published signature that connects s; to v;.
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and signature size are linear in number of published signatures.
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> The state of Sign’ is used for maintaining the most recent signing key
(e.g., sj), and the last published signature that connects s; to v;.

» While polynomial time, it is rather inefficient scheme: both running time
and signature size are linear in number of published signatures.

» That (Gen, Sign, Vrfy) works for any length (specifically, it is possible to
sign message that is longer than the verification key), is critically used.

Lemma 27 J

(Gen', Sign’, Vriy') is a stateful, strong signature scheme.

Proof: Assume 3 PPT A’, p € poly and infinite set Z C N, such that A’ breaks
the strong security of (Gen’, Sign’, Vrfy') with probability ﬁ forallne T
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Straight-line construction cont.

> The state of Sign’ is used for maintaining the most recent signing key
(e.g., sj), and the last published signature that connects s; to v;.

» While polynomial time, it is rather inefficient scheme: both running time
and signature size are linear in number of published signatures.

» That (Gen, Sign, Vrfy) works for any length (specifically, it is possible to
sign message that is longer than the verification key), is critically used.

Lemma 27 J

(Gen', Sign’, Vriy') is a stateful, strong signature scheme.

Proof: Assume 3 PPT A’, p € poly and infinite set Z C N, such that A’ breaks
the strong security of (Gen’, Sign’, Vrfy') with probability ﬁ forallnec Z. We
present PPT A that breaks the security of (Gen, Sign, Vrfy).

> We assume for simplicity that p also bounds the query complexity of A’
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Proving Lemma 27 cont.

Let (m, 0’ = (my, Vo, 01),..., (M, Vir1,01)) be the pair output by A’
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Proving Lemma 27 cont.

Let (m, 0’ = (my, Vo, 01),..., (M, Vir1,01)) be the pair output by A’
Claim 28

Whenever A’ succeeds, 3i € [p] such that:

1. Sign’ has output o = (M, Vo, 04), ..., (Mh_y, Vi 07_y)
2. Sign’ has not output o7 = (M, V2, 01), ..., (M;, Vi, 4, 07)
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1. Sign’ has output o = (M, Vo, 04), ..., (Mh_y, Vi 07_y)
2. Sign’ has not output o7 = (M, V2, 01), ..., (M;, Vi, 4, 07)
Proof: ?

It follows that
> v was sampled by Sign’
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Let (m, 0’ = (my, Vo, 01),..., (M, Vir1,01)) be the pair output by A’
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Whenever A’ succeeds, 3i € [p] such that:

1. Sign’ has output o = (M, Vo, 04), ..., (Mh_y, Vi 07_y)
2. Sign’ has not output o7 = (M, V2, 01), ..., (M;, Vi, 4, 07)
Proof: ?

It follows that
> v was sampled by Sign’

Let s; be the signing key generated by Sign’ along with v, and let

m = (m, VT’+1)
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Proving Lemma 27 cont.

Let (m, 0’ = (my, Vo, 01),..., (M, Vir1,01)) be the pair output by A’
Claim 28

Whenever A’ succeeds, 3i € [p] such that:

1. Sign’ has output o = (M, Vo, 04), ..., (Mh_y, Vi 07_y)
2. Sign’ has not output o7 = (M, V2, 01), ..., (M;, Vi, 4, 07)
Proof: ?

It follows that
> v was sampled by Sign’

Let s: be the signing key generated by Sign’ along with v:, and let
m = (m, VT’+1)

> Vrfy, (m,o;) =1

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016

28/39



Proving Lemma 27 cont.

Let (m, 0’ = (my, Vo, 01),..., (M, Vir1,01)) be the pair output by A’

Claim 28
Whenever A’ succeeds, 3i € [p] such that:
1. Sign’ has output o = (M, Vo, 04), ..., (Mh_y, Vi 07_y)
2. Sign’ has not output o = (my, va,04), ..., (M, Vi, 07)
Proof: ?

It follows that
> v-was sampled by Sign’
Let s: be the signing key generated by Sign’ along with v
m= (m;, Viit)
> Vrfywi(m, o7) =1

» Sign, was not queried by Sign’ on m and output o7
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Proving Lemma 27 cont.
Let (m, 0’ = (my, Vo, 01),..., (M, Vir1,01)) be the pair output by A’
Claim 28

Whenever A’ succeeds, i € [p] such that:

1. Sign’ has output o = (M, V2, 04), ..., (M;_y, Vi, 07_,)
2. Sign’ has not output o4 = (my, va,04), ..., (M, Vi, 4, 07)
Proof: ?

It follows that
> v-was sampled by Sign’
Let s: be the signing key generated by Sign’ along with v, <, and let
m= (m;, Viit)
> Vrfy, (m, o7) =1
» Sign, was not queried by Sign’ on m and output o7
» Sign, was queried at most once by Sign’

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 28/39



Definition of A

Algorithm 29 (A)

Input: 17, v
Oracle: Sign,

1. Choose i* + [p = p(n)] and (s, V') + Gen’(1).

2. Emulate a random execution of A’S9" with a single twist:

» On the i*’th call to Signy,, set v;- = v (rather than choosing it via
Gen)

» When need to sign using s;-, use Sign.
3. Let (m,0 = (my,v1,01),...,(Mg, Vg,0q)) < A’
4. Output ((my«, vi), 0;+) (abort if i* > q))
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Definition of A

Algorithm 29 (A)

Input: 17, v
Oracle: Sign,

1. Choose i* + [p = p(n)] and (s, V') + Gen’(1).
2. Emulate a random execution of A’S9" with a single twist:

» On the i*’th call to Signy,, set v;- = v (rather than choosing it via
Gen)

» When need to sign using s;-, use Sign..

3. Let(m,o = (my,vy,01),...,(Mg, Vg,0q)) < A

4. Output ((my«, vi), 0;+) (abort if i* > q))

» The emulated game A’S9 has the same distribution as the real game.
» Sign, is called at most once

> A breaks (Gen, Sign, Vrfy) whenever i* = 1.
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Subsection 3

Somewhat-Stateful Schemes
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A somewhat-stateful scheme

Let (Gen, Sign, Vrfy) be a strong one-time signature scheme.

Construction 30 (A somewhat-stateful scheme)

> Gen’'(17): Output (8, V') = (sx, v») < Gen(17).

> Signg, (m): choose an unused r € {0,1}"

,,,,,

,,,,,,,,,,

1.2 Let ar,

,,,,,,,,,,,,,,,

,,,,,,,,,,

> Vrfy, (m,o’ = (r,ax,on,...,ar-1,0r, _,_,:0r)
Check that

,,,,,
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A somewhat-stateful Scheme, cont.

» Each one-time signature key is used at most once.
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A somewhat-stateful Scheme, cont.

» Each one-time signature key is used at most once.

Lemma 31
(Gen', Sign’, Vriy') is a stateful strong signature scheme. J
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A somewhat-stateful Scheme, cont.

» Each one-time signature key is used at most once.

Lemma 31
(Gen', Sign’, Vriy') is a stateful strong signature scheme. J

Proof: ?
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A somewhat-stateful Scheme, cont.

» Each one-time signature key is used at most once.

Lemma 31
(Gen', Sign’, Vrfy') is a stateful strong signature scheme. J

Proof: ?

» Note that Sign" does not keep track of the message history.
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A somewhat-stateful Scheme, cont.

» Each one-time signature key is used at most once.

Lemma 31
(Gen', Sign’, Vrfy') is a stateful strong signature scheme. J

Proof: ?

» Note that Sign" does not keep track of the message history.

» More efficient scheme — Enough to construct tree of depth w(log n) (i.e.,
to choose r € {0, 1}« (loen)
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Subsection 4

Stateless Schemes
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Stateless Scheme

Let M« be the set of all functions from {0,1}* to {0,1}, let g € poly be “large

enough", and let H = {#,: {0,1}* — {0,1}"} be a CRH.
Construction 32 (Inefficient stateless Scheme)
> Gen’(1"): Sample (s, ) < Gen(17), 7 ¢ Mgy and h + Hy.
Output (8" = (Sx, T, h), V! = V).
» Sign,(m): Set r = w(h(m))1... -

1. Fori=1to n:
1) < Gen(1"7m(r,..is)))
1405 Vry iJ))

,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,

,,,,,

» Vrfy’: unchanged
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Stateless Scheme

Let Mk be the set of all functions from {0, 1}* to {0, 1}* , let g € poly be “large
enough", and let H = {#,: {0,1}* — {0,1}"} be a CRH.
Construction 32 (Inefficient stateless Scheme)
> Gen’(1"): Sample (s, ) < Gen(17), 7 ¢ Mgy and h + Hy.
Output (8" = (sx, 7, h), V' = vy).
» Sign,(m): Set r = w(h(m))1... -

1. Fori=1to n:

1.1 For both j € {0,1}, let (s,
1.2 Letor, ;= SignSr1

2. Output (r,ax, 0y, ..., ar,

o Ve L ) = Gen(1™;w(r,.i, /)

,,,,, Ly

,,,,,

....................

,,,,,

» Vrfy’: unchanged

» One one-time signature key might be used several times, but always on
the same message.
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Output (8" = (sx, 7, h), V' = vy).
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enough", and let H = {#,: {0,1}* — {0,1}"} be a CRH.
Construction 32 (Inefficient stateless Scheme)
> Gen’(1"): Sample (s, ) < Gen(17), 7 ¢ Mgy and h + Hy.
Output (8" = (sx, 7, h), V' = vy).
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Stateless Scheme

Let Mk be the set of all functions from {0, 1}* to {0, 1}* , let g € poly be “large
enough", and let H = {#,: {0,1}* — {0,1}"} be a CRH.
Construction 32 (Inefficient stateless Scheme)
> Gen’(1"): Sample (s, ) < Gen(17), 7 ¢ Mgy and h + Hy.
Output (8" = (sx, 7, h), V' = vy).
» Sign,(m): Set r = w(h(m))1... -

1. Fori=1to n:

1.1 For both j € {0,1}, let (s,
1.2 Letor, ;= SignSr1

,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,

or = Sign,, (m))

,,,,,

2. Output (r,ax, 0y, ..., ar,

1,..., n—17

» Vrfy’: unchanged

» One one-time signature key might be used several times, but always on
the same message.

» Efficient scheme: use PRF (?)
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Subsection 5

“CRH free" Schemes
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Target collision-resistant functions
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Target collision-resistant functions

Definition 33 (target collision-resistant functions (TCR))
A function family # = {#,: {0,1}* — {0,1}"}, if

[x # X" A h(x) = h(X)] = neg(n)

Pr
(x,a)«—A1(17);h<Hn;x" <Az (a,h)

for any pair of PPT’s A¢, As.
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[ X # x' AN h(x) = h(x)] = n
(x,a)<—A1(1");h<—r7-Ln;x’<—A2(a,h)[ 7& ( ) ( )] neg( )

for any pair of PPT’s A¢, As.

Theorem 34
OWFs imply efficient compressing TCRs.
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Definition 33 (target collision-resistant functions (TCR))
A function family # = {#,: {0,1}* — {0,1}"}, if

P "Ah(x) = h(x")] =
(x,a)<—A1(1");h<—r?-Ln;x’<—A2(a,h) [X 7& X (X) (X )] neg(n)

for any pair of PPT’s A¢, As.

Theorem 34
OWFs imply efficient compressing TCRs.

Proof:
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Target collision-resistant functions

Definition 33 (target collision-resistant functions (TCR))
A function family # = {#,: {0,1}* — {0,1}"}, if

[ X # x' AN h(x) = h(x)] = n
(x,a)<—A1(1");h<—r?-ln;x’<—A2(a,h)[ 7 (*) ] = )

for any pair of PPT’s A1, As.

Theorem 34
OWFs imply efficient compressing TCRs.

Proof: not that trivial...
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Target one-time signatures

For simplicity we will focus on non-strong schemes.
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Target one-time signatures
For simplicity we will focus on non-strong schemes.
Definition 35 (target one-time signatures)

A signature scheme (Gen, Sign, Vrfy) is target one-time existential
unforgeable (for short, target one-time signature), if

Pr [m' # mAVry, (m', o) = 1] = neg(n)
m«—A(11)
(s,v)<Gen(1M)
(m’ ,o)«—A(Signg(m))

for any PPT A
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Target one-time signatures

For simplicity we will focus on non-strong schemes.
Definition 35 (target one-time signatures)

A signature scheme (Gen, Sign, Vrfy) is target one-time existential
unforgeable (for short, target one-time signature), if

Pr [m' # mAVry, (m', o) = 1] = neg(n)
m«—A(11)
(s,v)<Gen(1M)
(m’ ,o)«—A(Signg(m))

for any PPT A

Claim 36
OWFs imply target one-time signatures.
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Random one-time signatures

Definition 37 (random one-time signatures)

A signature scheme (Gen, Sign, Vrfy) is random one-time existential
unforgeable (for short, random one-time signature), if

Pr [m' # mAVrfy, (m', o) = 1] = neg(n)
m<«—Map; (s,v)«+Gen(11)
(m’ &) «A(m,Signg(m))

for any PPT A and any efficiently samplable string ensemble M = { M} en.
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Random one-time signatures

Definition 37 (random one-time signatures)

A signature scheme (Gen, Sign, Vrfy) is random one-time existential
unforgeable (for short, random one-time signature), if

/ / - .
m<«—Map; (s,v)«+Gen(11) [m # mA Vrny(m 70) - 1] — neg(n)
(m’ o) «—A(m,Signg(m))

for any PPT A and any efficiently samplable string ensemble M = { M} en.

Claim 38

Assume (Gen, Sign, Vrfy) is target one-time signature scheme, then it is
random one-time signature scheme.
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“CRH free" schemes
Lemma 39

If (Gen, Sign, Vrfy) and H in Consiruction 32 are target-one-time signature
scheme and TCR respectively, then it is a signature scheme.
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“CRH free" schemes

Lemma 39

If (Gen, Sign, Vrfy) and H in Consiruction 32 are target-one-time signature
scheme and TCR respectively, then it is a signature scheme.

Proof:
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“CRH free" schemes

Lemma 39

If (Gen, Sign, Vrfy) and H in Consiruction 32 are target-one-time signature
scheme and TCR respectively, then it is a signature scheme.

Proof:

Focus on the target-one-time signatures. Assume for simplicity that an
adversary cannot make the signer use the same r for for signing two different
messages.
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“CRH free" schemes

Lemma 39

If (Gen, Sign, Vrfy) and H in Consiruction 32 are target-one-time signature
scheme and TCR respectively, then it is a signature scheme.

Proof:

Focus on the target-one-time signatures. Assume for simplicity that an
adversary cannot make the signer use the same r for for signing two different
messages.

Show that
1. Random-one-time signature suffice for the nodes signatures

2. Target-one-time signature suffice for the leaves signatures
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