
3.33pt

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 1 / 39



Foundation of Cryptography, Lecture 4
MACs and Signatures

Benny Applebaum & Iftach Haitner, Tel Aviv University

Tel Aviv University.

December 8, 2016

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 1 / 39



Part I

Message Authentication Codes
(MACs)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 2 / 39



Message Authentication Code (MACs)

Definition 1 (MAC)

A trippet of PPT’s (Gen,Mac,Vrfy) such that:

1. Gen(1n) outputs a key k ∈ {0,1}∗

2. Mac(k ,m) outputs a “tag" t

3. Vrfy(k ,m, t) output 1 (YES) or 0 (NO)

Consistency: Vrfyk (m, t) = 1
∀k ∈ Supp(Gen(1n)), m ∈ {0,1}n and t = Mack (m)

Definition 2 (Existential unforgability)

A MAC (Gen,Mac,Vrfy) is existential unforgeable (EU), if ∀ PPT A:
Pr

k←Gen(1n)

(m,t)←AMack ,Vrfyk (1n)

[Vrfyk (m, t) = 1 ∧Mack was not asked on m] = neg(n)

Remark: convention

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 3 / 39



Message Authentication Code (MACs)

Definition 1 (MAC)

A trippet of PPT’s (Gen,Mac,Vrfy) such that:

1. Gen(1n) outputs a key k ∈ {0,1}∗

2. Mac(k ,m) outputs a “tag" t

3. Vrfy(k ,m, t) output 1 (YES) or 0 (NO)

Consistency: Vrfyk (m, t) = 1
∀k ∈ Supp(Gen(1n)), m ∈ {0,1}n and t = Mack (m)

Definition 2 (Existential unforgability)

A MAC (Gen,Mac,Vrfy) is existential unforgeable (EU), if ∀ PPT A:
Pr

k←Gen(1n)

(m,t)←AMack ,Vrfyk (1n)

[Vrfyk (m, t) = 1 ∧Mack was not asked on m] = neg(n)

Remark: convention

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 3 / 39



Message Authentication Code (MACs)

Definition 1 (MAC)

A trippet of PPT’s (Gen,Mac,Vrfy) such that:

1. Gen(1n) outputs a key k ∈ {0,1}∗

2. Mac(k ,m) outputs a “tag" t

3. Vrfy(k ,m, t) output 1 (YES) or 0 (NO)

Consistency: Vrfyk (m, t) = 1
∀k ∈ Supp(Gen(1n)), m ∈ {0,1}n and t = Mack (m)

Definition 2 (Existential unforgability)

A MAC (Gen,Mac,Vrfy) is existential unforgeable (EU), if ∀ PPT A:
Pr

k←Gen(1n)

(m,t)←AMack ,Vrfyk (1n)

[Vrfyk (m, t) = 1 ∧Mack was not asked on m] = neg(n)

Remark: convention

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 3 / 39



Definition of MAC cont.

I “Private key" definition

I Security definition too strong?

Any message?Use of Verifier?

I “Replay attacks"

I Strong existential unforgeable MACS (for short, strong MAC): infeasible
to generate new valid tag (even for message for which a MAC was
asked)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 4 / 39



Definition of MAC cont.

I “Private key" definition

I Security definition too strong?

Any message?Use of Verifier?

I “Replay attacks"

I Strong existential unforgeable MACS (for short, strong MAC): infeasible
to generate new valid tag (even for message for which a MAC was
asked)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 4 / 39



Definition of MAC cont.

I “Private key" definition

I Security definition too strong?

Any message?Use of Verifier?

I “Replay attacks"

I Strong existential unforgeable MACS (for short, strong MAC): infeasible
to generate new valid tag (even for message for which a MAC was
asked)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 4 / 39



Definition of MAC cont.

I “Private key" definition

I Security definition too strong? Any message?

Use of Verifier?

I “Replay attacks"

I Strong existential unforgeable MACS (for short, strong MAC): infeasible
to generate new valid tag (even for message for which a MAC was
asked)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 4 / 39



Definition of MAC cont.

I “Private key" definition

I Security definition too strong? Any message?Use of Verifier?

I “Replay attacks"

I Strong existential unforgeable MACS (for short, strong MAC): infeasible
to generate new valid tag (even for message for which a MAC was
asked)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 4 / 39



Definition of MAC cont.

I “Private key" definition

I Security definition too strong? Any message?Use of Verifier?

I “Replay attacks"

I Strong existential unforgeable MACS (for short, strong MAC): infeasible
to generate new valid tag (even for message for which a MAC was
asked)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 4 / 39



Definition of MAC cont.

I “Private key" definition

I Security definition too strong? Any message?Use of Verifier?

I “Replay attacks"

I Strong existential unforgeable MACS (for short, strong MAC): infeasible
to generate new valid tag (even for message for which a MAC was
asked)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 4 / 39



Restricted MACs

Definition 3 (Length-restricted MAC)

Same as in Definition 1, but for k ∈ Supp(G(1n)), Mack and Vrfyk only accept
messages of length n.

Definition 4 (`-time MAC)

A MAC scheme is existential unforgeable against ` queries (for short, `-time
MAC), if it is existential unforgeable as in Definition 2, but A can only make `
queries.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 5 / 39



Restricted MACs

Definition 3 (Length-restricted MAC)

Same as in Definition 1, but for k ∈ Supp(G(1n)), Mack and Vrfyk only accept
messages of length n.

Definition 4 (`-time MAC)

A MAC scheme is existential unforgeable against ` queries (for short, `-time
MAC), if it is existential unforgeable as in Definition 2, but A can only make `
queries.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 5 / 39



Section 1

Constructions

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 6 / 39



One-time length-restricted MAC

Construction 5 (One-time MAC)

I Gen(1n): output k ← {0,1}n.

I Mack (m): output hk (m).

I Vrfyk (m, t): output 1 iff t = hk (m).

Claim 6
The scheme is one-time MAC if {hk} is pairwise-independent.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 7 / 39



One-time length-restricted MAC

Construction 5 (One-time MAC)

I Gen(1n): output k ← {0,1}n.

I Mack (m): output hk (m).

I Vrfyk (m, t): output 1 iff t = hk (m).

Claim 6
The scheme is one-time MAC if {hk} is

pairwise-independent.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 7 / 39



One-time length-restricted MAC

Construction 5 (One-time MAC)

I Gen(1n): output k ← {0,1}n.

I Mack (m): output hk (m).

I Vrfyk (m, t): output 1 iff t = hk (m).

Claim 6
The scheme is one-time MAC if {hk} is pairwise-independent.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 7 / 39



One-time length-restricted MAC

Construction 5 (One-time MAC)

I Gen(1n): output k ← {0,1}n.

I Mack (m): output hk (m).

I Vrfyk (m, t): output 1 iff t = hk (m).

Claim 6
The scheme is one-time MAC if {hk} is pairwise-independent.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 7 / 39



One-time length-restricted MAC

Construction 5 (One-time MAC)

I Gen(1n): output k ← {0,1}n.

I Mack (m): output hk (m).

I Vrfyk (m, t): output 1 iff t = hk (m).

Claim 6
The scheme is one-time MAC if {hk} is pairwise-independent.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 7 / 39



Subsection 1

Restricted-Length MAC

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 8 / 39



`-wise independent functions

Definition 7 (`-wise independent)

A function family H from {0,1}n to {0,1}m is `-wise independent, if for every
distinct x1, . . . , x` ∈ {0,1}n and every y1, . . . , y` ∈ {0,1}m, it holds that
Prh←H [h(x1) = y1 ∧ . . . ∧ h(x`) = y`] = 2−`m.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 9 / 39



`-times, restricted-length MAC

Construction 8 (`-time MAC)

Let H = {Hn : {0,1}n 7→ {0,1}n} be an efficient (`+ 1)-wise independent
function family.

I Gen(1n): output h← Hn.

I Mac(h,m): output h(m).

I Vrfy(h,m, t): output 1 iff t = h(m).

Claim 9
The above scheme is a length-restricted, `-time MAC

Proof: ?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 10 / 39



`-times, restricted-length MAC

Construction 8 (`-time MAC)

Let H = {Hn : {0,1}n 7→ {0,1}n} be an efficient (`+ 1)-wise independent
function family.

I Gen(1n): output h← Hn.

I Mac(h,m): output h(m).

I Vrfy(h,m, t): output 1 iff t = h(m).

Claim 9
The above scheme is a length-restricted, `-time MAC

Proof: ?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 10 / 39



`-times, restricted-length MAC

Construction 8 (`-time MAC)

Let H = {Hn : {0,1}n 7→ {0,1}n} be an efficient (`+ 1)-wise independent
function family.

I Gen(1n): output h← Hn.

I Mac(h,m): output h(m).

I Vrfy(h,m, t): output 1 iff t = h(m).

Claim 9
The above scheme is a length-restricted, `-time MAC

Proof: ?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 10 / 39



OWF =⇒ restricted-length MAC

Construction 10

Same as Construction 8, but uses function F = {Fn : {0,1}n 7→ {0,1}n}
instead of H.

Claim 11
Assuming that F is a PRF, then Construction 10 is an existential unforgeable
MAC.

Proof: Easy to prove if F is a family of random functions. Hence, also holds in
case F is a PRF.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 11 / 39



OWF =⇒ restricted-length MAC

Construction 10

Same as Construction 8, but uses function F = {Fn : {0,1}n 7→ {0,1}n}
instead of H.

Claim 11
Assuming that F is a PRF, then Construction 10 is an existential unforgeable
MAC.

Proof: Easy to prove if F is a family of random functions. Hence, also holds in
case F is a PRF.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 11 / 39



OWF =⇒ restricted-length MAC

Construction 10

Same as Construction 8, but uses function F = {Fn : {0,1}n 7→ {0,1}n}
instead of H.

Claim 11
Assuming that F is a PRF, then Construction 10 is an existential unforgeable
MAC.

Proof:

Easy to prove if F is a family of random functions. Hence, also holds in
case F is a PRF.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 11 / 39



OWF =⇒ restricted-length MAC

Construction 10

Same as Construction 8, but uses function F = {Fn : {0,1}n 7→ {0,1}n}
instead of H.

Claim 11
Assuming that F is a PRF, then Construction 10 is an existential unforgeable
MAC.

Proof: Easy to prove if F is a family of random functions. Hence, also holds in
case F is a PRF.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 11 / 39



Subsection 2

Any Length

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 12 / 39



Collision Resistant Hash Family

Definition 12 (collision resistant hash family (CRH))

A function family H = {Hn : {0,1}∗ 7→ {0,1}n} is collision resistant, if

Pr
h←Hn

[A(1n,h) = (x , x ′) s.t. x 6= x ′ ∧ h(x) = h(x ′)] = neg(n)

for any PPT A.

I Not known to implied by OWFs.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 13 / 39



Collision Resistant Hash Family

Definition 12 (collision resistant hash family (CRH))

A function family H = {Hn : {0,1}∗ 7→ {0,1}n} is collision resistant, if

Pr
h←Hn

[A(1n,h) = (x , x ′) s.t. x 6= x ′ ∧ h(x) = h(x ′)] = neg(n)

for any PPT A.

I Not known to implied by OWFs.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 13 / 39



Length-restricted MAC =⇒ MAC

Construction 13 (Length restricted MAC =⇒ MAC)

Let (Gen,Mac,Vrfy) be a length-restricted MAC, and let
H = {Hn : {0,1}∗ 7→ {0,1}n} be an efficient function family.

I Gen′(1n): Sample k ← Gen(1n) and h← Hn. Output k ′ = (k ,h)

I Mac′k,h(m) = Mack (h(m))

I Vrfy′k,h(t ,m) = Vrfyk (t ,h(m))

Claim 14

Assume H is an efficient collision-resistant family and (Gen,Mac,Vrfy) is
existential unforgeable, then (Gen′,Mac′,Vrfy′) is existential unforgeable
MAC.

Proof: ?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 14 / 39



Length-restricted MAC =⇒ MAC

Construction 13 (Length restricted MAC =⇒ MAC)

Let (Gen,Mac,Vrfy) be a length-restricted MAC, and let
H = {Hn : {0,1}∗ 7→ {0,1}n} be an efficient function family.

I Gen′(1n): Sample k ← Gen(1n) and h← Hn. Output k ′ = (k ,h)

I Mac′k,h(m) = Mack (h(m))

I Vrfy′k,h(t ,m) = Vrfyk (t ,h(m))

Claim 14

Assume H is an efficient collision-resistant family and (Gen,Mac,Vrfy) is
existential unforgeable, then (Gen′,Mac′,Vrfy′) is existential unforgeable
MAC.

Proof: ?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 14 / 39



Length-restricted MAC =⇒ MAC

Construction 13 (Length restricted MAC =⇒ MAC)

Let (Gen,Mac,Vrfy) be a length-restricted MAC, and let
H = {Hn : {0,1}∗ 7→ {0,1}n} be an efficient function family.

I Gen′(1n): Sample k ← Gen(1n) and h← Hn. Output k ′ = (k ,h)

I Mac′k,h(m) = Mack (h(m))

I Vrfy′k,h(t ,m) = Vrfyk (t ,h(m))

Claim 14

Assume H is an efficient collision-resistant family and (Gen,Mac,Vrfy) is
existential unforgeable, then (Gen′,Mac′,Vrfy′) is existential unforgeable
MAC.

Proof: ?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 14 / 39



Part II

Signature Schemes

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 15 / 39



Signature schemes

Definition 15 (Signature schemes)

A trippet of PPT’s (Gen,Sign,Vrfy) such that

1. Gen(1n): output a pair of keys (s, v) ∈ {0,1}∗ × {0,1}∗

2. Sign(s,m): output a “signature" σ ∈ {0,1}∗

3. Vrfy(v ,m, σ): output 1 (YES) or 0 (NO)

Consistency: Vrfyv (m, σ) = 1 for any (s, v) ∈ Supp(Gen(1n)), m ∈ {0,1}∗
and σ ∈ Supp(Signs(m))

Definition 16 (Existential unforgability)

A signature scheme is existential unforgeable (EU), if ∀ PPT A

Pr
(s,v)←Gen(1n)

[
ASigns (1n, v) = (m, σ) s.t Vrfyv (m, σ) = 1 ∧ Signs didn’t query m

]
is negligible in n.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 16 / 39



Signature schemes

Definition 15 (Signature schemes)

A trippet of PPT’s (Gen,Sign,Vrfy) such that

1. Gen(1n): output a pair of keys (s, v) ∈ {0,1}∗ × {0,1}∗

2. Sign(s,m): output a “signature" σ ∈ {0,1}∗

3. Vrfy(v ,m, σ): output 1 (YES) or 0 (NO)

Consistency: Vrfyv (m, σ) = 1 for any (s, v) ∈ Supp(Gen(1n)), m ∈ {0,1}∗
and σ ∈ Supp(Signs(m))

Definition 16 (Existential unforgability)

A signature scheme is existential unforgeable (EU), if ∀ PPT A

Pr
(s,v)←Gen(1n)

[
ASigns (1n, v) = (m, σ) s.t Vrfyv (m, σ) = 1 ∧ Signs didn’t query m

]
is negligible in n.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 16 / 39



Signature schemes cont.

I Signature =⇒ MAC

I “Harder" to construct than MACs: (even restricted forms) require OWF

I Oracle access to Vrfy is not given

I Strong existential unforgeable signatures (for short, strong signatures):
infeasible to generate new valid signatures (even for message for which
a signature was asked)

Theorem 17
OWFs imply strong existential unforgeable signatures.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 17 / 39



Signature schemes cont.

I Signature =⇒ MAC

I “Harder" to construct than MACs: (even restricted forms) require OWF

I Oracle access to Vrfy is not given

I Strong existential unforgeable signatures (for short, strong signatures):
infeasible to generate new valid signatures (even for message for which
a signature was asked)

Theorem 17
OWFs imply strong existential unforgeable signatures.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 17 / 39



Signature schemes cont.

I Signature =⇒ MAC

I “Harder" to construct than MACs: (even restricted forms) require OWF

I Oracle access to Vrfy is not given

I Strong existential unforgeable signatures (for short, strong signatures):
infeasible to generate new valid signatures (even for message for which
a signature was asked)

Theorem 17
OWFs imply strong existential unforgeable signatures.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 17 / 39



Signature schemes cont.

I Signature =⇒ MAC

I “Harder" to construct than MACs: (even restricted forms) require OWF

I Oracle access to Vrfy is not given

I Strong existential unforgeable signatures (for short, strong signatures):
infeasible to generate new valid signatures (even for message for which
a signature was asked)

Theorem 17
OWFs imply strong existential unforgeable signatures.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 17 / 39



Signature schemes cont.

I Signature =⇒ MAC

I “Harder" to construct than MACs: (even restricted forms) require OWF

I Oracle access to Vrfy is not given

I Strong existential unforgeable signatures (for short, strong signatures):
infeasible to generate new valid signatures (even for message for which
a signature was asked)

Theorem 17
OWFs imply strong existential unforgeable signatures.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 17 / 39



Signature schemes cont.

I Signature =⇒ MAC

I “Harder" to construct than MACs: (even restricted forms) require OWF

I Oracle access to Vrfy is not given

I Strong existential unforgeable signatures (for short, strong signatures):
infeasible to generate new valid signatures (even for message for which
a signature was asked)

Theorem 17
OWFs imply strong existential unforgeable signatures.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 17 / 39



Section 2

OWFs =⇒ Signatures

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 18 / 39



Subsection 1

One-time signatures

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 19 / 39



Length-restricted signatures

Definition 18 (length-restricted signatures)

Same as in Definition 15, but for (s, v) ∈ Supp(G(1n)), Signs and Vrfyv only
accept messages of length n.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 20 / 39



Bounded-query signatures

Definition 19 (`-time signatures)

A signature scheme is existential unforgeable against `-query (for short,
`-time signature), if it is existential unforgeable as in Definition 16, but A can
only ask for ` queries.

Claim 20
Assuming CRH exists, then length restricted k -time signatures can be used to
construct k -time signatures.

Proof: ?

Proposition 21

Wlg, the signer of a k -time signature scheme, for fixed k , is deterministic

Proof: ?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 21 / 39



Bounded-query signatures

Definition 19 (`-time signatures)

A signature scheme is existential unforgeable against `-query (for short,
`-time signature), if it is existential unforgeable as in Definition 16, but A can
only ask for ` queries.

Claim 20
Assuming CRH exists, then length restricted k -time signatures can be used to
construct k -time signatures.

Proof: ?

Proposition 21

Wlg, the signer of a k -time signature scheme, for fixed k , is deterministic

Proof: ?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 21 / 39



Bounded-query signatures

Definition 19 (`-time signatures)

A signature scheme is existential unforgeable against `-query (for short,
`-time signature), if it is existential unforgeable as in Definition 16, but A can
only ask for ` queries.

Claim 20
Assuming CRH exists, then length restricted k -time signatures can be used to
construct k -time signatures.

Proof: ?

Proposition 21

Wlg, the signer of a k -time signature scheme, for fixed k , is deterministic

Proof: ?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 21 / 39



Bounded-query signatures

Definition 19 (`-time signatures)

A signature scheme is existential unforgeable against `-query (for short,
`-time signature), if it is existential unforgeable as in Definition 16, but A can
only ask for ` queries.

Claim 20
Assuming CRH exists, then length restricted k -time signatures can be used to
construct k -time signatures.

Proof: ?

Proposition 21

Wlg, the signer of a k -time signature scheme, for fixed k , is deterministic

Proof: ?

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 21 / 39



OWF =⇒ length-restricted one-time signatures

Construction 22 (length-restricted, one-time signature)

Let f : {0,1}n 7→ {0,1}n.

1. Gen(1n):

1.1 s0
1, s

1
1, . . . , s

0
n, s1

n ← {0,1}n.
1.2 Secret (signing) key is s =

(
s0

i , s
1
i

)n
i=1

1.3 Public (verification) is v =
(
v0

i , v
1
i

)n
i=1 where vb

i = f (sb
i ).

2. Sign(s,m): σ = (sm1
1 , . . . , smn

n )

3. Vrfy(v ,m, σ = (σ1, . . . , σn)): check that f (σi ) = vmi
i for all i ∈ [n]

Lemma 23

If f is a OWF, then Construction 22 is a length restricted one-time signature
scheme.

Is this a strong signature scheme? With some additional work, it can be
turned into a strong one.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 22 / 39



OWF =⇒ length-restricted one-time signatures

Construction 22 (length-restricted, one-time signature)

Let f : {0,1}n 7→ {0,1}n.

1. Gen(1n):

1.1 s0
1, s

1
1, . . . , s

0
n, s1

n ← {0,1}n.
1.2 Secret (signing) key is s =

(
s0

i , s
1
i

)n
i=1

1.3 Public (verification) is v =
(
v0

i , v
1
i

)n
i=1 where vb

i = f (sb
i ).

2. Sign(s,m): σ = (sm1
1 , . . . , smn

n )

3. Vrfy(v ,m, σ = (σ1, . . . , σn)): check that f (σi ) = vmi
i for all i ∈ [n]

Lemma 23

If f is a OWF, then Construction 22 is a length restricted one-time signature
scheme.

Is this a strong signature scheme? With some additional work, it can be
turned into a strong one.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 22 / 39



OWF =⇒ length-restricted one-time signatures

Construction 22 (length-restricted, one-time signature)

Let f : {0,1}n 7→ {0,1}n.

1. Gen(1n):

1.1 s0
1, s

1
1, . . . , s

0
n, s1

n ← {0,1}n.
1.2 Secret (signing) key is s =

(
s0

i , s
1
i

)n
i=1

1.3 Public (verification) is v =
(
v0

i , v
1
i

)n
i=1 where vb

i = f (sb
i ).

2. Sign(s,m): σ = (sm1
1 , . . . , smn

n )

3. Vrfy(v ,m, σ = (σ1, . . . , σn)): check that f (σi ) = vmi
i for all i ∈ [n]

Lemma 23

If f is a OWF, then Construction 22 is a length restricted one-time signature
scheme.

Is this a strong signature scheme?

With some additional work, it can be
turned into a strong one.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 22 / 39



OWF =⇒ length-restricted one-time signatures

Construction 22 (length-restricted, one-time signature)

Let f : {0,1}n 7→ {0,1}n.

1. Gen(1n):

1.1 s0
1, s

1
1, . . . , s

0
n, s1

n ← {0,1}n.
1.2 Secret (signing) key is s =

(
s0

i , s
1
i

)n
i=1

1.3 Public (verification) is v =
(
v0

i , v
1
i

)n
i=1 where vb

i = f (sb
i ).

2. Sign(s,m): σ = (sm1
1 , . . . , smn

n )

3. Vrfy(v ,m, σ = (σ1, . . . , σn)): check that f (σi ) = vmi
i for all i ∈ [n]

Lemma 23

If f is a OWF, then Construction 22 is a length restricted one-time signature
scheme.

Is this a strong signature scheme? With some additional work, it can be
turned into a strong one.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 22 / 39



Proving Lemma 23

Let a PPT A, I ⊆ N and p ∈ poly that break the security of Construction 22,
we use A to invert f .

Algorithm 24 (Inv)

Input: y ∈ {0,1}n

1. Choose (s, v)← Gen(1n) and replace vb∗
i∗ for a random i∗ ∈ [n] and

b∗ ∈ {0,1}, with y .

2. Abort, if A(1n, v) asks to sign message m ∈ {0,1}n with mi∗ = b∗.
Otherwise, use s to answer the query.

3. Let (m′, σ′) be A’s output.
Abort, if σ′ is not a valid signature for m′, or m′i∗ 6= b∗.
Otherwise, return σi∗ .

I v is distributed as is in the real “signature game"
I v is independent of i∗ and b∗.
I Therefore Inv inverts f w.p. 1

2np(n) for every n ∈ I.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 23 / 39



Proving Lemma 23

Let a PPT A, I ⊆ N and p ∈ poly that break the security of Construction 22,
we use A to invert f .
Algorithm 24 (Inv)

Input: y ∈ {0,1}n

1. Choose (s, v)← Gen(1n) and replace vb∗
i∗ for a random i∗ ∈ [n] and

b∗ ∈ {0,1}, with y .

2. Abort, if A(1n, v) asks to sign message m ∈ {0,1}n with mi∗ = b∗.
Otherwise, use s to answer the query.

3. Let (m′, σ′) be A’s output.
Abort, if σ′ is not a valid signature for m′, or m′i∗ 6= b∗.
Otherwise, return σi∗ .

I v is distributed as is in the real “signature game"
I v is independent of i∗ and b∗.
I Therefore Inv inverts f w.p. 1

2np(n) for every n ∈ I.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 23 / 39



Proving Lemma 23

Let a PPT A, I ⊆ N and p ∈ poly that break the security of Construction 22,
we use A to invert f .
Algorithm 24 (Inv)

Input: y ∈ {0,1}n

1. Choose (s, v)← Gen(1n) and replace vb∗
i∗ for a random i∗ ∈ [n] and

b∗ ∈ {0,1}, with y .

2. Abort, if A(1n, v) asks to sign message m ∈ {0,1}n with mi∗ = b∗.
Otherwise, use s to answer the query.

3. Let (m′, σ′) be A’s output.
Abort, if σ′ is not a valid signature for m′, or m′i∗ 6= b∗.
Otherwise, return σi∗ .

I v is distributed as is in the real “signature game"

I v is independent of i∗ and b∗.
I Therefore Inv inverts f w.p. 1

2np(n) for every n ∈ I.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 23 / 39



Proving Lemma 23

Let a PPT A, I ⊆ N and p ∈ poly that break the security of Construction 22,
we use A to invert f .
Algorithm 24 (Inv)

Input: y ∈ {0,1}n

1. Choose (s, v)← Gen(1n) and replace vb∗
i∗ for a random i∗ ∈ [n] and

b∗ ∈ {0,1}, with y .

2. Abort, if A(1n, v) asks to sign message m ∈ {0,1}n with mi∗ = b∗.
Otherwise, use s to answer the query.

3. Let (m′, σ′) be A’s output.
Abort, if σ′ is not a valid signature for m′, or m′i∗ 6= b∗.
Otherwise, return σi∗ .

I v is distributed as is in the real “signature game"
I v is independent of i∗ and b∗.

I Therefore Inv inverts f w.p. 1
2np(n) for every n ∈ I.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 23 / 39



Proving Lemma 23

Let a PPT A, I ⊆ N and p ∈ poly that break the security of Construction 22,
we use A to invert f .
Algorithm 24 (Inv)

Input: y ∈ {0,1}n

1. Choose (s, v)← Gen(1n) and replace vb∗
i∗ for a random i∗ ∈ [n] and

b∗ ∈ {0,1}, with y .

2. Abort, if A(1n, v) asks to sign message m ∈ {0,1}n with mi∗ = b∗.
Otherwise, use s to answer the query.

3. Let (m′, σ′) be A’s output.
Abort, if σ′ is not a valid signature for m′, or m′i∗ 6= b∗.
Otherwise, return σi∗ .

I v is distributed as is in the real “signature game"
I v is independent of i∗ and b∗.
I Therefore Inv inverts f w.p. 1

2np(n) for every n ∈ I.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 23 / 39



Subsection 2

Stateful Schemes

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 24 / 39



Stateful signature schemes1

Definition 25 (Stateful scheme)

Same as in Definition 15, but Sign might keep state which is updated every
signature.

I Make sense in many applications (e.g., smartcards)

I We’ll later use it a building block for building stateless scheme

1Also known as memory-dependant schemes
Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 25 / 39



Stateful signature schemes1

Definition 25 (Stateful scheme)

Same as in Definition 15, but Sign might keep state which is updated every
signature.

I Make sense in many applications (e.g., smartcards)

I We’ll later use it a building block for building stateless scheme

1Also known as memory-dependant schemes
Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 25 / 39



Stateful signature schemes1

Definition 25 (Stateful scheme)

Same as in Definition 15, but Sign might keep state which is updated every
signature.

I Make sense in many applications (e.g., smartcards)

I We’ll later use it a building block for building stateless scheme

1Also known as memory-dependant schemes
Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 25 / 39



Stateful schemes — straight-line construction

Let (Gen,Sign,Vrfy) be a strong one-time signature scheme.

Construction 26 (straight-line construction)

I Gen′(1n): Output (s′, v ′) = (s1, v1)← Gen(1n).

I Sign′s1
(mi ), where mi is i ’th message to sign:

1. Let (si+1, vi+1)← Gen(1n)
2. Let σi = Signsi

(mi , vi+1)
3. Output σ′i = (σ′i−1,mi , vi+1, σi ).a

I Vrfy′v1
(m, σ′ = (m1, v2, σ1), . . . , (mi , vi+1, σi )):

Check that

1. Vrfyvj
((mj , vj+1), σj ) = 1 for every j ∈ [i]

2. mi = m
aσ′

0 is the empty string.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 26 / 39



Stateful schemes — straight-line construction

Let (Gen,Sign,Vrfy) be a strong one-time signature scheme.

Construction 26 (straight-line construction)

I Gen′(1n): Output (s′, v ′) = (s1, v1)← Gen(1n).

I Sign′s1
(mi ), where mi is i ’th message to sign:

1. Let (si+1, vi+1)← Gen(1n)
2. Let σi = Signsi

(mi , vi+1)
3. Output σ′i = (σ′i−1,mi , vi+1, σi ).a

I Vrfy′v1
(m, σ′ = (m1, v2, σ1), . . . , (mi , vi+1, σi )):

Check that

1. Vrfyvj
((mj , vj+1), σj ) = 1 for every j ∈ [i]

2. mi = m
aσ′

0 is the empty string.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 26 / 39



Straight-line construction cont.

I The state of Sign′ is used for maintaining the most recent signing key
(e.g., si ), and the last published signature that connects si to v1.

I While polynomial time, it is rather inefficient scheme: both running time
and signature size are linear in number of published signatures.

I That (Gen,Sign,Vrfy) works for any length (specifically, it is possible to
sign message that is longer than the verification key), is critically used.

Lemma 27

(Gen′,Sign′,Vrfy′) is a stateful, strong signature scheme.

Proof: Assume ∃ PPT A′, p ∈ poly and infinite set I ⊆ N, such that A′ breaks
the strong security of (Gen′,Sign′,Vrfy′) with probability 1

p(n) for all n ∈ I. We
present PPT A that breaks the security of (Gen,Sign,Vrfy).

I We assume for simplicity that p also bounds the query complexity of A′

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 27 / 39



Straight-line construction cont.

I The state of Sign′ is used for maintaining the most recent signing key
(e.g., si ), and the last published signature that connects si to v1.

I While polynomial time, it is rather inefficient scheme: both running time
and signature size are linear in number of published signatures.

I That (Gen,Sign,Vrfy) works for any length (specifically, it is possible to
sign message that is longer than the verification key), is critically used.

Lemma 27

(Gen′,Sign′,Vrfy′) is a stateful, strong signature scheme.

Proof: Assume ∃ PPT A′, p ∈ poly and infinite set I ⊆ N, such that A′ breaks
the strong security of (Gen′,Sign′,Vrfy′) with probability 1

p(n) for all n ∈ I. We
present PPT A that breaks the security of (Gen,Sign,Vrfy).

I We assume for simplicity that p also bounds the query complexity of A′

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 27 / 39



Straight-line construction cont.

I The state of Sign′ is used for maintaining the most recent signing key
(e.g., si ), and the last published signature that connects si to v1.

I While polynomial time, it is rather inefficient scheme: both running time
and signature size are linear in number of published signatures.

I That (Gen,Sign,Vrfy) works for any length (specifically, it is possible to
sign message that is longer than the verification key), is critically used.

Lemma 27

(Gen′,Sign′,Vrfy′) is a stateful, strong signature scheme.

Proof: Assume ∃ PPT A′, p ∈ poly and infinite set I ⊆ N, such that A′ breaks
the strong security of (Gen′,Sign′,Vrfy′) with probability 1

p(n) for all n ∈ I. We
present PPT A that breaks the security of (Gen,Sign,Vrfy).

I We assume for simplicity that p also bounds the query complexity of A′

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 27 / 39



Straight-line construction cont.

I The state of Sign′ is used for maintaining the most recent signing key
(e.g., si ), and the last published signature that connects si to v1.

I While polynomial time, it is rather inefficient scheme: both running time
and signature size are linear in number of published signatures.

I That (Gen,Sign,Vrfy) works for any length (specifically, it is possible to
sign message that is longer than the verification key), is critically used.

Lemma 27

(Gen′,Sign′,Vrfy′) is a stateful, strong signature scheme.

Proof: Assume ∃ PPT A′, p ∈ poly and infinite set I ⊆ N, such that A′ breaks
the strong security of (Gen′,Sign′,Vrfy′) with probability 1

p(n) for all n ∈ I. We
present PPT A that breaks the security of (Gen,Sign,Vrfy).

I We assume for simplicity that p also bounds the query complexity of A′

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 27 / 39



Straight-line construction cont.

I The state of Sign′ is used for maintaining the most recent signing key
(e.g., si ), and the last published signature that connects si to v1.

I While polynomial time, it is rather inefficient scheme: both running time
and signature size are linear in number of published signatures.

I That (Gen,Sign,Vrfy) works for any length (specifically, it is possible to
sign message that is longer than the verification key), is critically used.

Lemma 27

(Gen′,Sign′,Vrfy′) is a stateful, strong signature scheme.

Proof: Assume ∃ PPT A′, p ∈ poly and infinite set I ⊆ N, such that A′ breaks
the strong security of (Gen′,Sign′,Vrfy′) with probability 1

p(n) for all n ∈ I. We
present PPT A that breaks the security of (Gen,Sign,Vrfy).

I We assume for simplicity that p also bounds the query complexity of A′

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 27 / 39



Straight-line construction cont.

I The state of Sign′ is used for maintaining the most recent signing key
(e.g., si ), and the last published signature that connects si to v1.

I While polynomial time, it is rather inefficient scheme: both running time
and signature size are linear in number of published signatures.

I That (Gen,Sign,Vrfy) works for any length (specifically, it is possible to
sign message that is longer than the verification key), is critically used.

Lemma 27

(Gen′,Sign′,Vrfy′) is a stateful, strong signature scheme.

Proof: Assume ∃ PPT A′, p ∈ poly and infinite set I ⊆ N, such that A′ breaks
the strong security of (Gen′,Sign′,Vrfy′) with probability 1

p(n) for all n ∈ I.

We
present PPT A that breaks the security of (Gen,Sign,Vrfy).

I We assume for simplicity that p also bounds the query complexity of A′

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 27 / 39



Straight-line construction cont.

I The state of Sign′ is used for maintaining the most recent signing key
(e.g., si ), and the last published signature that connects si to v1.

I While polynomial time, it is rather inefficient scheme: both running time
and signature size are linear in number of published signatures.

I That (Gen,Sign,Vrfy) works for any length (specifically, it is possible to
sign message that is longer than the verification key), is critically used.

Lemma 27

(Gen′,Sign′,Vrfy′) is a stateful, strong signature scheme.

Proof: Assume ∃ PPT A′, p ∈ poly and infinite set I ⊆ N, such that A′ breaks
the strong security of (Gen′,Sign′,Vrfy′) with probability 1

p(n) for all n ∈ I. We
present PPT A that breaks the security of (Gen,Sign,Vrfy).

I We assume for simplicity that p also bounds the query complexity of A′

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 27 / 39



Straight-line construction cont.

I The state of Sign′ is used for maintaining the most recent signing key
(e.g., si ), and the last published signature that connects si to v1.

I While polynomial time, it is rather inefficient scheme: both running time
and signature size are linear in number of published signatures.

I That (Gen,Sign,Vrfy) works for any length (specifically, it is possible to
sign message that is longer than the verification key), is critically used.

Lemma 27

(Gen′,Sign′,Vrfy′) is a stateful, strong signature scheme.

Proof: Assume ∃ PPT A′, p ∈ poly and infinite set I ⊆ N, such that A′ breaks
the strong security of (Gen′,Sign′,Vrfy′) with probability 1

p(n) for all n ∈ I. We
present PPT A that breaks the security of (Gen,Sign,Vrfy).

I We assume for simplicity that p also bounds the query complexity of A′

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 27 / 39



Proving Lemma 27 cont.

Let (mt , σ
′ = (m1, v2, σ1), . . . , (mt , vt+1, σt )) be the pair output by A′

Claim 28

Whenever A′ succeeds, ∃̃i ∈ [p] such that:

1. Sign′ has output σ′
ĩ−1

= (m1, v2, σ1), . . . , (mĩ−1, ṽi , σ̃i−1)

2. Sign′ has not output σ′
ĩ

= (m1, v2, σ1), . . . , (mĩ , ṽi+1, σ̃i )

Proof: ?

It follows that

I ṽi was sampled by Sign′

Let s̃i be the signing key generated by Sign′ along with ṽi , and let
m̃ = (mĩ , ṽi+1)

I Vrfyṽi
(m̃, σ̃i ) = 1

I Signs̃i
was not queried by Sign′ on m̃ and output σ̃i .

I Signs̃i
was queried at most once by Sign′

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 28 / 39



Proving Lemma 27 cont.

Let (mt , σ
′ = (m1, v2, σ1), . . . , (mt , vt+1, σt )) be the pair output by A′

Claim 28

Whenever A′ succeeds, ∃̃i ∈ [p] such that:

1. Sign′ has output σ′
ĩ−1

= (m1, v2, σ1), . . . , (mĩ−1, ṽi , σ̃i−1)

2. Sign′ has not output σ′
ĩ

= (m1, v2, σ1), . . . , (mĩ , ṽi+1, σ̃i )

Proof: ?

It follows that

I ṽi was sampled by Sign′

Let s̃i be the signing key generated by Sign′ along with ṽi , and let
m̃ = (mĩ , ṽi+1)

I Vrfyṽi
(m̃, σ̃i ) = 1

I Signs̃i
was not queried by Sign′ on m̃ and output σ̃i .

I Signs̃i
was queried at most once by Sign′

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 28 / 39



Proving Lemma 27 cont.

Let (mt , σ
′ = (m1, v2, σ1), . . . , (mt , vt+1, σt )) be the pair output by A′

Claim 28

Whenever A′ succeeds, ∃̃i ∈ [p] such that:

1. Sign′ has output σ′
ĩ−1

= (m1, v2, σ1), . . . , (mĩ−1, ṽi , σ̃i−1)

2. Sign′ has not output σ′
ĩ

= (m1, v2, σ1), . . . , (mĩ , ṽi+1, σ̃i )

Proof: ?

It follows that

I ṽi was sampled by Sign′

Let s̃i be the signing key generated by Sign′ along with ṽi , and let
m̃ = (mĩ , ṽi+1)

I Vrfyṽi
(m̃, σ̃i ) = 1

I Signs̃i
was not queried by Sign′ on m̃ and output σ̃i .

I Signs̃i
was queried at most once by Sign′

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 28 / 39



Proving Lemma 27 cont.

Let (mt , σ
′ = (m1, v2, σ1), . . . , (mt , vt+1, σt )) be the pair output by A′

Claim 28

Whenever A′ succeeds, ∃̃i ∈ [p] such that:

1. Sign′ has output σ′
ĩ−1

= (m1, v2, σ1), . . . , (mĩ−1, ṽi , σ̃i−1)

2. Sign′ has not output σ′
ĩ

= (m1, v2, σ1), . . . , (mĩ , ṽi+1, σ̃i )

Proof: ?

It follows that
I ṽi was sampled by Sign′

Let s̃i be the signing key generated by Sign′ along with ṽi , and let
m̃ = (mĩ , ṽi+1)

I Vrfyṽi
(m̃, σ̃i ) = 1

I Signs̃i
was not queried by Sign′ on m̃ and output σ̃i .

I Signs̃i
was queried at most once by Sign′

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 28 / 39



Proving Lemma 27 cont.

Let (mt , σ
′ = (m1, v2, σ1), . . . , (mt , vt+1, σt )) be the pair output by A′

Claim 28

Whenever A′ succeeds, ∃̃i ∈ [p] such that:

1. Sign′ has output σ′
ĩ−1

= (m1, v2, σ1), . . . , (mĩ−1, ṽi , σ̃i−1)

2. Sign′ has not output σ′
ĩ

= (m1, v2, σ1), . . . , (mĩ , ṽi+1, σ̃i )

Proof: ?

It follows that
I ṽi was sampled by Sign′

Let s̃i be the signing key generated by Sign′ along with ṽi , and let
m̃ = (mĩ , ṽi+1)

I Vrfyṽi
(m̃, σ̃i ) = 1

I Signs̃i
was not queried by Sign′ on m̃ and output σ̃i .

I Signs̃i
was queried at most once by Sign′

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 28 / 39



Proving Lemma 27 cont.

Let (mt , σ
′ = (m1, v2, σ1), . . . , (mt , vt+1, σt )) be the pair output by A′

Claim 28

Whenever A′ succeeds, ∃̃i ∈ [p] such that:

1. Sign′ has output σ′
ĩ−1

= (m1, v2, σ1), . . . , (mĩ−1, ṽi , σ̃i−1)

2. Sign′ has not output σ′
ĩ

= (m1, v2, σ1), . . . , (mĩ , ṽi+1, σ̃i )

Proof: ?

It follows that
I ṽi was sampled by Sign′

Let s̃i be the signing key generated by Sign′ along with ṽi , and let
m̃ = (mĩ , ṽi+1)

I Vrfyṽi
(m̃, σ̃i ) = 1

I Signs̃i
was not queried by Sign′ on m̃ and output σ̃i .

I Signs̃i
was queried at most once by Sign′

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 28 / 39



Proving Lemma 27 cont.

Let (mt , σ
′ = (m1, v2, σ1), . . . , (mt , vt+1, σt )) be the pair output by A′

Claim 28

Whenever A′ succeeds, ∃̃i ∈ [p] such that:

1. Sign′ has output σ′
ĩ−1

= (m1, v2, σ1), . . . , (mĩ−1, ṽi , σ̃i−1)

2. Sign′ has not output σ′
ĩ

= (m1, v2, σ1), . . . , (mĩ , ṽi+1, σ̃i )

Proof: ?

It follows that
I ṽi was sampled by Sign′

Let s̃i be the signing key generated by Sign′ along with ṽi , and let
m̃ = (mĩ , ṽi+1)

I Vrfyṽi
(m̃, σ̃i ) = 1

I Signs̃i
was not queried by Sign′ on m̃ and output σ̃i .

I Signs̃i
was queried at most once by Sign′

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 28 / 39



Proving Lemma 27 cont.

Let (mt , σ
′ = (m1, v2, σ1), . . . , (mt , vt+1, σt )) be the pair output by A′

Claim 28

Whenever A′ succeeds, ∃̃i ∈ [p] such that:

1. Sign′ has output σ′
ĩ−1

= (m1, v2, σ1), . . . , (mĩ−1, ṽi , σ̃i−1)

2. Sign′ has not output σ′
ĩ

= (m1, v2, σ1), . . . , (mĩ , ṽi+1, σ̃i )

Proof: ?

It follows that
I ṽi was sampled by Sign′

Let s̃i be the signing key generated by Sign′ along with ṽi , and let
m̃ = (mĩ , ṽi+1)

I Vrfyṽi
(m̃, σ̃i ) = 1

I Signs̃i
was not queried by Sign′ on m̃ and output σ̃i .

I Signs̃i
was queried at most once by Sign′

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 28 / 39



Definition of A

Algorithm 29 (A)

Input: 1n, v
Oracle: Signs

1. Choose i∗ ← [p = p(n)] and (s′, v ′)← Gen′(1n).

2. Emulate a random execution of A′Sign′s′ with a single twist:

I On the i∗’th call to Sign′s′ , set vi∗ = v (rather than choosing it via
Gen)

I When need to sign using si∗ , use Signs.

3. Let (m, σ = (m1, v1, σ1), . . . , (mq , vq , σq))← A′

4. Output ((mi∗ , vi∗), σi∗) (abort if i∗ > q))

I The emulated game A′Sign′s′ has the same distribution as the real game.
I Signs is called at most once

I A breaks (Gen,Sign,Vrfy) whenever i∗ = ĩ .

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 29 / 39



Definition of A

Algorithm 29 (A)

Input: 1n, v
Oracle: Signs

1. Choose i∗ ← [p = p(n)] and (s′, v ′)← Gen′(1n).

2. Emulate a random execution of A′Sign′s′ with a single twist:

I On the i∗’th call to Sign′s′ , set vi∗ = v (rather than choosing it via
Gen)

I When need to sign using si∗ , use Signs.

3. Let (m, σ = (m1, v1, σ1), . . . , (mq , vq , σq))← A′

4. Output ((mi∗ , vi∗), σi∗) (abort if i∗ > q))

I The emulated game A′Sign′s′ has the same distribution as the real game.

I Signs is called at most once

I A breaks (Gen,Sign,Vrfy) whenever i∗ = ĩ .

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 29 / 39



Definition of A

Algorithm 29 (A)

Input: 1n, v
Oracle: Signs

1. Choose i∗ ← [p = p(n)] and (s′, v ′)← Gen′(1n).

2. Emulate a random execution of A′Sign′s′ with a single twist:

I On the i∗’th call to Sign′s′ , set vi∗ = v (rather than choosing it via
Gen)

I When need to sign using si∗ , use Signs.

3. Let (m, σ = (m1, v1, σ1), . . . , (mq , vq , σq))← A′

4. Output ((mi∗ , vi∗), σi∗) (abort if i∗ > q))

I The emulated game A′Sign′s′ has the same distribution as the real game.
I Signs is called at most once

I A breaks (Gen,Sign,Vrfy) whenever i∗ = ĩ .

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 29 / 39



Definition of A

Algorithm 29 (A)

Input: 1n, v
Oracle: Signs

1. Choose i∗ ← [p = p(n)] and (s′, v ′)← Gen′(1n).

2. Emulate a random execution of A′Sign′s′ with a single twist:

I On the i∗’th call to Sign′s′ , set vi∗ = v (rather than choosing it via
Gen)

I When need to sign using si∗ , use Signs.

3. Let (m, σ = (m1, v1, σ1), . . . , (mq , vq , σq))← A′

4. Output ((mi∗ , vi∗), σi∗) (abort if i∗ > q))

I The emulated game A′Sign′s′ has the same distribution as the real game.
I Signs is called at most once

I A breaks (Gen,Sign,Vrfy) whenever i∗ = ĩ .

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 29 / 39



Subsection 3

Somewhat-Stateful Schemes

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 30 / 39



A somewhat-stateful scheme

Let (Gen,Sign,Vrfy) be a strong one-time signature scheme.

Construction 30 (A somewhat-stateful scheme)

I Gen′(1n): Output (s′, v ′) = (sλ, vλ)← Gen(1n).

I Sign′sλ(m): choose an unused r ∈ {0,1}n

1. For i = 1 to n: if ar1,...,i was not set before:
1.1 For both j ∈ {0, 1}, let (sr1,...,i ,j , vr1,...,i ,j)← Gen(1n)
1.2 Let ar1,...,i = (vr1,...,i ,0, vr1,...,i ,1).
1.3 Let σr1,...,i = Signsr1,...,i

(ar1,...,i )

2. Output (r ,aλ, σλ, . . . ,ar1,...,n−1 , σr1,...,n−1 , σr = Signsr
(m))

I Vrfy′vλ(m, σ′ = (r ,aλ, σλ, . . . ,ar−1, σr1,...,n−1 , σr )

Check that

1. Vrfyvr1,...,i
(ar1,...,i , σr1,...,i ) = 1 for every i ∈ {0, . . . ,n − 1}

2. Vrfyvr
(m, σr ) = 1, for vr = (ar1,...,n−1 )rn

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 31 / 39



A somewhat-stateful Scheme, cont.

I Each one-time signature key is used at most once.

Lemma 31

(Gen′,Sign′,Vrfy′) is a stateful strong signature scheme.

Proof: ?

I Note that Sign′ does not keep track of the message history.

I More efficient scheme — Enough to construct tree of depth ω(log n) (i.e.,
to choose r ∈ {0,1}`∈ω(log n))

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 32 / 39



A somewhat-stateful Scheme, cont.

I Each one-time signature key is used at most once.

Lemma 31

(Gen′,Sign′,Vrfy′) is a stateful strong signature scheme.

Proof: ?

I Note that Sign′ does not keep track of the message history.

I More efficient scheme — Enough to construct tree of depth ω(log n) (i.e.,
to choose r ∈ {0,1}`∈ω(log n))

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 32 / 39



A somewhat-stateful Scheme, cont.

I Each one-time signature key is used at most once.

Lemma 31

(Gen′,Sign′,Vrfy′) is a stateful strong signature scheme.

Proof: ?

I Note that Sign′ does not keep track of the message history.

I More efficient scheme — Enough to construct tree of depth ω(log n) (i.e.,
to choose r ∈ {0,1}`∈ω(log n))

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 32 / 39



A somewhat-stateful Scheme, cont.

I Each one-time signature key is used at most once.

Lemma 31

(Gen′,Sign′,Vrfy′) is a stateful strong signature scheme.

Proof: ?

I Note that Sign′ does not keep track of the message history.

I More efficient scheme — Enough to construct tree of depth ω(log n) (i.e.,
to choose r ∈ {0,1}`∈ω(log n))

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 32 / 39



A somewhat-stateful Scheme, cont.

I Each one-time signature key is used at most once.

Lemma 31

(Gen′,Sign′,Vrfy′) is a stateful strong signature scheme.

Proof: ?

I Note that Sign′ does not keep track of the message history.

I More efficient scheme — Enough to construct tree of depth ω(log n) (i.e.,
to choose r ∈ {0,1}`∈ω(log n))

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 32 / 39



A somewhat-stateful Scheme, cont.

I Each one-time signature key is used at most once.

Lemma 31

(Gen′,Sign′,Vrfy′) is a stateful strong signature scheme.

Proof: ?

I Note that Sign′ does not keep track of the message history.

I More efficient scheme — Enough to construct tree of depth ω(log n) (i.e.,
to choose r ∈ {0,1}`∈ω(log n))

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 32 / 39



Subsection 4

Stateless Schemes

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 33 / 39



Stateless Scheme

Let Π̃k be the set of all functions from {0,1}∗ to {0,1}k , let q ∈ poly be “large
enough", and let H = {Hn : {0,1}∗ 7→ {0,1}n} be a CRH.

Construction 32 (Inefficient stateless Scheme)
I Gen′(1n): Sample (sλ, vλ)← Gen(1n), π ← Π̃q(n) and h← Hn.

Output (s′ = (sλ, π,h), v ′ = vλ).

I Sign′s(m): Set r = π(h(m))1,...,n.

1. For i = 1 to n:
1.1 For both j ∈ {0, 1}, let (sr1,...,i ,j , vr1,...,i ,j)← Gen(1n;π(r1,...,i , j))
1.2 Let σr1,...,i = Signsr1,...,i

(ar1,...,i = (vr1,...,i ,0, vr1,...,i ,1))

2. Output (r ,aλ, σλ, . . . ,ar1,...,n−1 , σr1,...,n−1 , σr = Signsr
(m))

I Vrfy′: unchanged

I One one-time signature key might be used several times, but always on
the same message.

I Efficient scheme: use PRF (?)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 34 / 39



Stateless Scheme

Let Π̃k be the set of all functions from {0,1}∗ to {0,1}k , let q ∈ poly be “large
enough", and let H = {Hn : {0,1}∗ 7→ {0,1}n} be a CRH.

Construction 32 (Inefficient stateless Scheme)
I Gen′(1n): Sample (sλ, vλ)← Gen(1n), π ← Π̃q(n) and h← Hn.

Output (s′ = (sλ, π,h), v ′ = vλ).

I Sign′s(m): Set r = π(h(m))1,...,n.

1. For i = 1 to n:
1.1 For both j ∈ {0, 1}, let (sr1,...,i ,j , vr1,...,i ,j)← Gen(1n;π(r1,...,i , j))
1.2 Let σr1,...,i = Signsr1,...,i

(ar1,...,i = (vr1,...,i ,0, vr1,...,i ,1))

2. Output (r ,aλ, σλ, . . . ,ar1,...,n−1 , σr1,...,n−1 , σr = Signsr
(m))

I Vrfy′: unchanged

I One one-time signature key might be used several times, but always on
the same message.

I Efficient scheme:

use PRF (?)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 34 / 39



Stateless Scheme

Let Π̃k be the set of all functions from {0,1}∗ to {0,1}k , let q ∈ poly be “large
enough", and let H = {Hn : {0,1}∗ 7→ {0,1}n} be a CRH.

Construction 32 (Inefficient stateless Scheme)
I Gen′(1n): Sample (sλ, vλ)← Gen(1n), π ← Π̃q(n) and h← Hn.

Output (s′ = (sλ, π,h), v ′ = vλ).

I Sign′s(m): Set r = π(h(m))1,...,n.

1. For i = 1 to n:
1.1 For both j ∈ {0, 1}, let (sr1,...,i ,j , vr1,...,i ,j)← Gen(1n;π(r1,...,i , j))
1.2 Let σr1,...,i = Signsr1,...,i

(ar1,...,i = (vr1,...,i ,0, vr1,...,i ,1))

2. Output (r ,aλ, σλ, . . . ,ar1,...,n−1 , σr1,...,n−1 , σr = Signsr
(m))

I Vrfy′: unchanged

I One one-time signature key might be used several times, but always on
the same message.

I Efficient scheme:

use PRF (?)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 34 / 39



Stateless Scheme

Let Π̃k be the set of all functions from {0,1}∗ to {0,1}k , let q ∈ poly be “large
enough", and let H = {Hn : {0,1}∗ 7→ {0,1}n} be a CRH.

Construction 32 (Inefficient stateless Scheme)
I Gen′(1n): Sample (sλ, vλ)← Gen(1n), π ← Π̃q(n) and h← Hn.

Output (s′ = (sλ, π,h), v ′ = vλ).

I Sign′s(m): Set r = π(h(m))1,...,n.

1. For i = 1 to n:
1.1 For both j ∈ {0, 1}, let (sr1,...,i ,j , vr1,...,i ,j)← Gen(1n;π(r1,...,i , j))
1.2 Let σr1,...,i = Signsr1,...,i

(ar1,...,i = (vr1,...,i ,0, vr1,...,i ,1))

2. Output (r ,aλ, σλ, . . . ,ar1,...,n−1 , σr1,...,n−1 , σr = Signsr
(m))

I Vrfy′: unchanged

I One one-time signature key might be used several times, but always on
the same message.

I Efficient scheme:

use PRF (?)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 34 / 39



Stateless Scheme

Let Π̃k be the set of all functions from {0,1}∗ to {0,1}k , let q ∈ poly be “large
enough", and let H = {Hn : {0,1}∗ 7→ {0,1}n} be a CRH.

Construction 32 (Inefficient stateless Scheme)
I Gen′(1n): Sample (sλ, vλ)← Gen(1n), π ← Π̃q(n) and h← Hn.

Output (s′ = (sλ, π,h), v ′ = vλ).

I Sign′s(m): Set r = π(h(m))1,...,n.

1. For i = 1 to n:
1.1 For both j ∈ {0, 1}, let (sr1,...,i ,j , vr1,...,i ,j)← Gen(1n;π(r1,...,i , j))
1.2 Let σr1,...,i = Signsr1,...,i

(ar1,...,i = (vr1,...,i ,0, vr1,...,i ,1))

2. Output (r ,aλ, σλ, . . . ,ar1,...,n−1 , σr1,...,n−1 , σr = Signsr
(m))

I Vrfy′: unchanged

I One one-time signature key might be used several times, but always on
the same message.

I Efficient scheme: use PRF (?)

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 34 / 39



Subsection 5

“CRH free" Schemes

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 35 / 39



Target collision-resistant functions

Definition 33 (target collision-resistant functions (TCR))

A function family H = {Hn : {0,1}∗ 7→ {0,1}n}, if

Pr
(x,a)←A1(1n);h←Hn;x ′←A2(a,h)

[x 6= x ′ ∧ h(x) = h(x ′)] = neg(n)

for any pair of PPT’s A1,A2.

Theorem 34
OWFs imply efficient compressing TCRs.

Proof: not that trivial...

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 36 / 39



Target collision-resistant functions

Definition 33 (target collision-resistant functions (TCR))

A function family H = {Hn : {0,1}∗ 7→ {0,1}n}, if

Pr
(x,a)←A1(1n);h←Hn;x ′←A2(a,h)

[x 6= x ′ ∧ h(x) = h(x ′)] = neg(n)

for any pair of PPT’s A1,A2.

Theorem 34
OWFs imply efficient compressing TCRs.

Proof: not that trivial...

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 36 / 39



Target collision-resistant functions

Definition 33 (target collision-resistant functions (TCR))

A function family H = {Hn : {0,1}∗ 7→ {0,1}n}, if

Pr
(x,a)←A1(1n);h←Hn;x ′←A2(a,h)

[x 6= x ′ ∧ h(x) = h(x ′)] = neg(n)

for any pair of PPT’s A1,A2.

Theorem 34
OWFs imply efficient compressing TCRs.

Proof: not that trivial...

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 36 / 39



Target collision-resistant functions

Definition 33 (target collision-resistant functions (TCR))

A function family H = {Hn : {0,1}∗ 7→ {0,1}n}, if

Pr
(x,a)←A1(1n);h←Hn;x ′←A2(a,h)

[x 6= x ′ ∧ h(x) = h(x ′)] = neg(n)

for any pair of PPT’s A1,A2.

Theorem 34
OWFs imply efficient compressing TCRs.

Proof:

not that trivial...

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 36 / 39



Target collision-resistant functions

Definition 33 (target collision-resistant functions (TCR))

A function family H = {Hn : {0,1}∗ 7→ {0,1}n}, if

Pr
(x,a)←A1(1n);h←Hn;x ′←A2(a,h)

[x 6= x ′ ∧ h(x) = h(x ′)] = neg(n)

for any pair of PPT’s A1,A2.

Theorem 34
OWFs imply efficient compressing TCRs.

Proof: not that trivial...

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 36 / 39



Target one-time signatures

For simplicity we will focus on non-strong schemes.

Definition 35 (target one-time signatures)

A signature scheme (Gen,Sign,Vrfy) is target one-time existential
unforgeable (for short, target one-time signature), if

Pr
m←A(1n)

(s,v)←Gen(1n)
(m′,σ)←A(Signs (m))

[m′ 6= m ∧ Vrfyv (m′, σ) = 1] = neg(n)

for any PPT A

Claim 36
OWFs imply target one-time signatures.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 37 / 39



Target one-time signatures

For simplicity we will focus on non-strong schemes.

Definition 35 (target one-time signatures)

A signature scheme (Gen,Sign,Vrfy) is target one-time existential
unforgeable (for short, target one-time signature), if

Pr
m←A(1n)

(s,v)←Gen(1n)
(m′,σ)←A(Signs (m))

[m′ 6= m ∧ Vrfyv (m′, σ) = 1] = neg(n)

for any PPT A

Claim 36
OWFs imply target one-time signatures.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 37 / 39



Target one-time signatures

For simplicity we will focus on non-strong schemes.

Definition 35 (target one-time signatures)

A signature scheme (Gen,Sign,Vrfy) is target one-time existential
unforgeable (for short, target one-time signature), if

Pr
m←A(1n)

(s,v)←Gen(1n)
(m′,σ)←A(Signs (m))

[m′ 6= m ∧ Vrfyv (m′, σ) = 1] = neg(n)

for any PPT A

Claim 36
OWFs imply target one-time signatures.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 37 / 39



Random one-time signatures

Definition 37 (random one-time signatures)

A signature scheme (Gen,Sign,Vrfy) is random one-time existential
unforgeable (for short, random one-time signature), if

Pr
m←Mn ; (s,v)←Gen(1n)
(m′,σ)←A(m,Signs (m))

[m′ 6= m ∧ Vrfyv (m′, σ) = 1] = neg(n)

for any PPT A and any efficiently samplable string ensembleM = {Mn}n∈N.

Claim 38
Assume (Gen,Sign,Vrfy) is target one-time signature scheme, then it is
random one-time signature scheme.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 38 / 39



Random one-time signatures

Definition 37 (random one-time signatures)

A signature scheme (Gen,Sign,Vrfy) is random one-time existential
unforgeable (for short, random one-time signature), if

Pr
m←Mn ; (s,v)←Gen(1n)
(m′,σ)←A(m,Signs (m))

[m′ 6= m ∧ Vrfyv (m′, σ) = 1] = neg(n)

for any PPT A and any efficiently samplable string ensembleM = {Mn}n∈N.

Claim 38
Assume (Gen,Sign,Vrfy) is target one-time signature scheme, then it is
random one-time signature scheme.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 38 / 39



“CRH free" schemes

Lemma 39
If (Gen,Sign,Vrfy) and H in Construction 32 are target-one-time signature
scheme and TCR respectively, then it is a signature scheme.

Proof:
Focus on the target-one-time signatures. Assume for simplicity that an
adversary cannot make the signer use the same r for for signing two different
messages.

Show that

1. Random-one-time signature suffice for the nodes signatures

2. Target-one-time signature suffice for the leaves signatures

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 39 / 39



“CRH free" schemes

Lemma 39
If (Gen,Sign,Vrfy) and H in Construction 32 are target-one-time signature
scheme and TCR respectively, then it is a signature scheme.

Proof:

Focus on the target-one-time signatures. Assume for simplicity that an
adversary cannot make the signer use the same r for for signing two different
messages.

Show that

1. Random-one-time signature suffice for the nodes signatures

2. Target-one-time signature suffice for the leaves signatures

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 39 / 39



“CRH free" schemes

Lemma 39
If (Gen,Sign,Vrfy) and H in Construction 32 are target-one-time signature
scheme and TCR respectively, then it is a signature scheme.

Proof:
Focus on the target-one-time signatures. Assume for simplicity that an
adversary cannot make the signer use the same r for for signing two different
messages.

Show that

1. Random-one-time signature suffice for the nodes signatures

2. Target-one-time signature suffice for the leaves signatures

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 39 / 39



“CRH free" schemes

Lemma 39
If (Gen,Sign,Vrfy) and H in Construction 32 are target-one-time signature
scheme and TCR respectively, then it is a signature scheme.

Proof:
Focus on the target-one-time signatures. Assume for simplicity that an
adversary cannot make the signer use the same r for for signing two different
messages.

Show that

1. Random-one-time signature suffice for the nodes signatures

2. Target-one-time signature suffice for the leaves signatures

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 39 / 39


	Message Authentication Codes (MACs)
	Constructions
	Restricted-Length MAC
	Any Length


	Signature Schemes
	OWFs -3mu Signatures
	One-time signatures
	Stateful Schemes
	Somewhat-Stateful Schemes
	Stateless Schemes
	``CRH free" Schemes



