# Foundation of Cryptography, Lecture 6 Interactive Proofs and Zero Knowledge 

Benny Applebaum \& Iftach Haitner, Tel Aviv University

Tel Aviv University.
December 22, 2016

## Part I

## Interactive Proofs

## $\mathcal{N P}$ as a Non-interactive Proofs

## Definition 1 ( $\mathcal{N P}$ )

$\mathcal{L} \in \mathcal{N} \mathcal{P}$ iff $\exists$ and poly-time algorithm $V$ such that:

- $\forall x \in \mathcal{L}$ there exists $w \in\{0,1\}^{*}$ s.t. $\mathrm{V}(x, w)=1$
- $\mathrm{V}(x, w)=0$ for every $x \notin \mathcal{L}$ and $w \in\{0,1\}^{*}$

Only $|x|$ counts for the running time of V .

## $\mathcal{N P}$ as a Non-interactive Proofs

## Definition 1 ( $\mathcal{N P}$ )

$\mathcal{L} \in \mathcal{N} \mathcal{P}$ iff $\exists$ and poly-time algorithm V such that:

- $\forall x \in \mathcal{L}$ there exists $w \in\{0,1\}^{*}$ s.t. $\mathrm{V}(x, w)=1$
- $\mathrm{V}(x, w)=0$ for every $x \notin \mathcal{L}$ and $w \in\{0,1\}^{*}$

Only $|x|$ counts for the running time of V .

A proof system

## $\mathcal{N P}$ as a Non-interactive Proofs

## Definition 1 ( $\mathcal{N P}$ )

$\mathcal{L} \in \mathcal{N} \mathcal{P}$ iff $\exists$ and poly-time algorithm $V$ such that:

- $\forall x \in \mathcal{L}$ there exists $w \in\{0,1\}^{*}$ s.t. $\mathrm{V}(x, w)=1$
- $\mathrm{V}(x, w)=0$ for every $x \notin \mathcal{L}$ and $w \in\{0,1\}^{*}$

Only $|x|$ counts for the running time of V .

A proof system

- Efficient verifier, efficient prover (given the witness)


## $\mathcal{N P}$ as a Non-interactive Proofs

## Definition 1 ( $\mathcal{N P}$ )

$\mathcal{L} \in \mathcal{N} \mathcal{P}$ iff $\exists$ and poly-time algorithm $V$ such that:

- $\forall x \in \mathcal{L}$ there exists $w \in\{0,1\}^{*}$ s.t. $\mathrm{V}(x, w)=1$
- $\mathrm{V}(x, w)=0$ for every $x \notin \mathcal{L}$ and $w \in\{0,1\}^{*}$

Only $|x|$ counts for the running time of V .

A proof system

- Efficient verifier, efficient prover (given the witness)
- Soundness holds unconditionally


## Interactive proofs

## Protocols between efficient verifier and unbounded provers.

## Interactive proofs

Protocols between efficient verifier and unbounded provers.

## Definition 2 (Interactive proof)

A protocol $(\mathrm{P}, \mathrm{V})$ is an interactive proof for $\mathcal{L}$, if V is PPT and:
Completeness $\forall x \in \mathcal{L}, \operatorname{Pr}\left[\langle(\mathrm{P}, \mathrm{V})(x)\rangle_{\mathrm{V}}=1\right] \geq 2 / 3 .{ }^{a}$
Soundness $\forall x \notin \mathcal{L}$, and any algorithm $\mathrm{P}^{*}$

$$
\operatorname{Pr}\left[\left\langle\left(\mathrm{P}^{*}, \mathrm{~V}\right)(x)\right\rangle_{\mathrm{V}}=1\right] \leq 1 / 3
$$

IP is the class of languages that have interactive proofs.
${ }^{a}\langle(\mathrm{~A}(a), \mathrm{B}(b))(c)\rangle_{\mathrm{B}}$ denote B 's view in random execution of $(\mathrm{A}(a), \mathrm{B}(b))(c)$.

## Interactive proofs

Protocols between efficient verifier and unbounded provers.

## Definition 2 (Interactive proof)

A protocol $(\mathrm{P}, \mathrm{V})$ is an interactive proof for $\mathcal{L}$, if V is PPT and:
Completeness $\forall x \in \mathcal{L}, \operatorname{Pr}\left[\langle(\mathrm{P}, \mathrm{V})(x)\rangle_{\mathrm{V}}=1\right] \geq 2 / 3 .{ }^{a}$
Soundness $\forall x \notin \mathcal{L}$, and any algorithm $\mathrm{P}^{*}$

$$
\operatorname{Pr}\left[\left\langle\left(\mathrm{P}^{*}, \mathrm{~V}\right)(x)\right\rangle_{\mathrm{V}}=1\right] \leq 1 / 3
$$

IP is the class of languages that have interactive proofs.
${ }^{a}\langle(\mathrm{~A}(a), \mathrm{B}(b))(c)\rangle_{\mathrm{B}}$ denote B 's view in random execution of $(\mathrm{A}(a), \mathrm{B}(b))(c)$.

- IP = PSPACE!


## Interactive proofs

Protocols between efficient verifier and unbounded provers.

## Definition 2 (Interactive proof)

A protocol $(\mathrm{P}, \mathrm{V})$ is an interactive proof for $\mathcal{L}$, if V is PPT and:
Completeness $\forall x \in \mathcal{L}, \operatorname{Pr}\left[\langle(\mathrm{P}, \mathrm{V})(x)\rangle_{\mathrm{V}}=1\right] \geq 2 / 3 .{ }^{a}$
Soundness $\forall x \notin \mathcal{L}$, and any algorithm $\mathrm{P}^{*}$

$$
\operatorname{Pr}\left[\left\langle\left(P^{*}, V\right)(x)\right\rangle_{V}=1\right] \leq 1 / 3
$$

IP is the class of languages that have interactive proofs.
${ }^{a}\langle(\mathrm{~A}(a), \mathrm{B}(b))(c)\rangle_{\mathrm{B}}$ denote B 's view in random execution of $(\mathrm{A}(a), \mathrm{B}(b))(c)$.

- IP = PSPACE!
- We typically consider (and achieve) perfect completeness.


## Interactive proofs

Protocols between efficient verifier and unbounded provers.

## Definition 2 (Interactive proof)

A protocol $(\mathrm{P}, \mathrm{V})$ is an interactive proof for $\mathcal{L}$, if V is PPT and:
Completeness $\forall x \in \mathcal{L}, \operatorname{Pr}\left[\langle(\mathrm{P}, \mathrm{V})(x)\rangle_{\mathrm{V}}=1\right] \geq 2 / 3 .{ }^{a}$
Soundness $\forall x \notin \mathcal{L}$, and any algorithm $\mathrm{P}^{*}$

$$
\operatorname{Pr}\left[\left\langle\left(P^{*}, V\right)(x)\right\rangle_{V}=1\right] \leq 1 / 3
$$

IP is the class of languages that have interactive proofs.
${ }^{a}\langle(\mathrm{~A}(a), \mathrm{B}(b))(c)\rangle_{\mathrm{B}}$ denote B 's view in random execution of $(\mathrm{A}(a), \mathrm{B}(b))(c)$.

- IP = PSPACE!
- We typically consider (and achieve) perfect completeness.
- Negligible "soundness error" achieved via repetition.


## Interactive proofs

Protocols between efficient verifier and unbounded provers.

## Definition 2 (Interactive proof)

A protocol $(\mathrm{P}, \mathrm{V})$ is an interactive proof for $\mathcal{L}$, if V is PPT and:
Completeness $\forall x \in \mathcal{L}, \operatorname{Pr}\left[\langle(\mathrm{P}, \mathrm{V})(x)\rangle_{\mathrm{V}}=1\right] \geq 2 / 3 .{ }^{a}$
Soundness $\forall x \notin \mathcal{L}$, and any algorithm $\mathrm{P}^{*}$

$$
\operatorname{Pr}\left[\left\langle\left(P^{*}, V\right)(x)\right\rangle_{V}=1\right] \leq 1 / 3
$$

IP is the class of languages that have interactive proofs.
${ }^{a}\langle(\mathrm{~A}(a), \mathrm{B}(b))(c)\rangle_{\mathrm{B}}$ denote B 's view in random execution of $(\mathrm{A}(a), \mathrm{B}(b))(c)$.

- IP = PSPACE!
- We typically consider (and achieve) perfect completeness.
- Negligible "soundness error" achieved via repetition.
- Sometime we have efficient provers via "auxiliary input".


## Interactive proofs

Protocols between efficient verifier and unbounded provers.

## Definition 2 (Interactive proof)

A protocol $(\mathrm{P}, \mathrm{V})$ is an interactive proof for $\mathcal{L}$, if V is PPT and:
Completeness $\forall x \in \mathcal{L}, \operatorname{Pr}\left[\langle(\mathrm{P}, \mathrm{V})(x)\rangle_{\mathrm{V}}=1\right] \geq 2 / 3 .{ }^{a}$
Soundness $\forall x \notin \mathcal{L}$, and any algorithm $\mathrm{P}^{*}$

$$
\operatorname{Pr}\left[\left\langle\left(P^{*}, V\right)(x)\right\rangle_{V}=1\right] \leq 1 / 3
$$

IP is the class of languages that have interactive proofs.
${ }^{a}\langle(\mathrm{~A}(a), \mathrm{B}(b))(c)\rangle_{\mathrm{B}}$ denote B 's view in random execution of $(\mathrm{A}(a), \mathrm{B}(b))(c)$.

- IP = PSPACE!
- We typically consider (and achieve) perfect completeness.
- Negligible "soundness error" achieved via repetition.
- Sometime we have efficient provers via "auxiliary input".
- Relaxation: Computationally sound proofs [also known as, interactive arguments]: soundness only guaranteed against efficient (PPT) provers.


## Section 1

## Interactive Proof for Graph Non-Isomorphism

## Graph isomorphism

$\Pi_{m}$ - the set of all permutations from $[\mathrm{m}]$ to $[\mathrm{m}]$

## Definition 3 (graph isomorphism)

Graphs $\mathrm{G}_{0}=\left([m], E_{0}\right)$ and $\mathrm{G}_{1}=\left([m], E_{1}\right)$ are isomorphic, denoted $\mathrm{G}_{0} \equiv \mathrm{G}_{1}$, if $\exists \pi \in \Pi_{m}$ such that
$(u, v) \in E_{0}$ iff $(\pi(u), \pi(v)) \in E_{1}$.

## Graph isomorphism

$\Pi_{m}$ - the set of all permutations from $[\mathrm{m}]$ to $[\mathrm{m}]$

## Definition 3 (graph isomorphism)

Graphs $\mathrm{G}_{0}=\left([m], E_{0}\right)$ and $\mathrm{G}_{1}=\left([m], E_{1}\right)$ are isomorphic, denoted $\mathrm{G}_{0} \equiv \mathrm{G}_{1}$, if $\exists \pi \in \Pi_{m}$ such that
$(u, v) \in E_{0}$ iff $(\pi(u), \pi(v)) \in E_{1}$.

- $\mathcal{G I}=\left\{\left(\mathrm{G}_{0}, \mathrm{G}_{1}\right): \mathrm{G}_{0} \equiv \mathrm{G}_{1}\right\} \in \mathcal{N} \mathcal{P}$


## Graph isomorphism

$\Pi_{m}$ - the set of all permutations from $[\mathrm{m}]$ to $[\mathrm{m}]$

## Definition 3 (graph isomorphism)

Graphs $\mathrm{G}_{0}=\left([m], E_{0}\right)$ and $\mathrm{G}_{1}=\left([m], E_{1}\right)$ are isomorphic, denoted $\mathrm{G}_{0} \equiv \mathrm{G}_{1}$, if $\exists \pi \in \Pi_{m}$ such that $(u, v) \in E_{0}$ iff $(\pi(u), \pi(v)) \in E_{1}$.

- $\mathcal{G I}=\left\{\left(\mathrm{G}_{0}, \mathrm{G}_{1}\right): \mathrm{G}_{0} \equiv \mathrm{G}_{1}\right\} \in \mathcal{N} \mathcal{P}$
- Does $\mathcal{G} \mathcal{N I}=\left\{\left(\mathrm{G}_{0}, \mathrm{G}_{1}\right): \mathrm{G}_{0} \not \equiv \mathrm{G}_{1}\right\} \in \mathcal{N} \mathcal{P}$ ?


## Graph isomorphism

$\Pi_{m}$ - the set of all permutations from $[\mathrm{m}]$ to $[\mathrm{m}]$

## Definition 3 (graph isomorphism)

Graphs $\mathrm{G}_{0}=\left([m], E_{0}\right)$ and $\mathrm{G}_{1}=\left([m], E_{1}\right)$ are isomorphic, denoted $\mathrm{G}_{0} \equiv \mathrm{G}_{1}$, if $\exists \pi \in \Pi_{m}$ such that
$(u, v) \in E_{0}$ iff $(\pi(u), \pi(v)) \in E_{1}$.

- $\mathcal{G I}=\left\{\left(\mathrm{G}_{0}, \mathrm{G}_{1}\right): \mathrm{G}_{0} \equiv \mathrm{G}_{1}\right\} \in \mathcal{N} \mathcal{P}$
- Does $\mathcal{G} \mathcal{N I}=\left\{\left(\mathrm{G}_{0}, \mathrm{G}_{1}\right): \mathrm{G}_{0} \not \equiv \mathrm{G}_{1}\right\} \in \mathcal{N} \mathcal{P}$ ?
- We will show a simple interactive proof for $\mathcal{G N} \mathcal{I}$


## Graph isomorphism

$\Pi_{m}$ - the set of all permutations from $[\mathrm{m}]$ to $[\mathrm{m}]$

## Definition 3 (graph isomorphism)

Graphs $\mathrm{G}_{0}=\left([m], E_{0}\right)$ and $\mathrm{G}_{1}=\left([m], E_{1}\right)$ are isomorphic, denoted $\mathrm{G}_{0} \equiv \mathrm{G}_{1}$, if $\exists \pi \in \Pi_{m}$ such that
$(u, v) \in E_{0}$ iff $(\pi(u), \pi(v)) \in E_{1}$.

- $\mathcal{G I}=\left\{\left(\mathrm{G}_{0}, \mathrm{G}_{1}\right): \mathrm{G}_{0} \equiv \mathrm{G}_{1}\right\} \in \mathcal{N} \mathcal{P}$
- Does $\mathcal{G} \mathcal{N I}=\left\{\left(\mathrm{G}_{0}, \mathrm{G}_{1}\right): \mathrm{G}_{0} \not \equiv \mathrm{G}_{1}\right\} \in \mathcal{N} \mathcal{P}$ ?
- We will show a simple interactive proof for $\mathcal{G N} \mathcal{I}$


## Graph isomorphism

$\Pi_{m}$ - the set of all permutations from $[\mathrm{m}]$ to $[\mathrm{m}]$

## Definition 3 (graph isomorphism)

Graphs $\mathrm{G}_{0}=\left([m], E_{0}\right)$ and $\mathrm{G}_{1}=\left([m], E_{1}\right)$ are isomorphic, denoted $\mathrm{G}_{0} \equiv \mathrm{G}_{1}$, if $\exists \pi \in \Pi_{m}$ such that
$(u, v) \in E_{0}$ iff $(\pi(u), \pi(v)) \in E_{1}$.

- $\mathcal{G I}=\left\{\left(\mathrm{G}_{0}, \mathrm{G}_{1}\right): \mathrm{G}_{0} \equiv \mathrm{G}_{1}\right\} \in \mathcal{N} \mathcal{P}$
- Does $\mathcal{G} \mathcal{N I}=\left\{\left(\mathrm{G}_{0}, \mathrm{G}_{1}\right): \mathrm{G}_{0} \not \equiv \mathrm{G}_{1}\right\} \in \mathcal{N} \mathcal{P}$ ?
- We will show a simple interactive proof for $\mathcal{G N} \mathcal{I}$ Idea: Beer tasting...


## Interactive proof for $\mathcal{G N I}$

## Protocol 4 ((P, V))

Common input: $\mathbf{G}_{0}=\left([m], E_{0}\right), \mathbf{G}_{1}=\left([m], E_{1}\right)$.
(1) $V$ chooses $b \leftarrow\{0,1\}$ and $\pi \leftarrow \Pi_{m}$, and sends $\pi\left(E_{b}\right)$ to $P$. ${ }^{a}$
(2) P send $b^{\prime}$ to V (tries to set $b^{\prime}=b$ ).
(3) V accepts iff $b^{\prime}=b$.

$$
{ }^{2} \pi(E)=\{(\pi(u), \pi(v):(u, v) \in E\} .
$$

## Interactive proof for $\mathcal{G} \mathcal{N I}$

## Protocol 4 ((P, V))

Common input: $\mathbf{G}_{0}=\left([m], E_{0}\right), \mathbf{G}_{1}=\left([m], E_{1}\right)$.
(1) $V$ chooses $b \leftarrow\{0,1\}$ and $\pi \leftarrow \Pi_{m}$, and sends $\pi\left(E_{b}\right)$ to $P$. ${ }^{a}$
(2) P send $b^{\prime}$ to V (tries to set $b^{\prime}=b$ ).
(3) V accepts iff $b^{\prime}=b$.

$$
{ }^{2} \pi(E)=\{(\pi(u), \pi(v):(u, v) \in E\} .
$$

## Claim 5

The above protocol is IP for $\mathcal{G N I}$, with perfect completeness and soundness error $\frac{1}{2}$.

## Proving Claim 5

- Graph isomorphism is an equivalence relation (separates the set of all graph pairs into separate subsets)


## Proving Claim 5

- Graph isomorphism is an equivalence relation (separates the set of all graph pairs into separate subsets)


## Proving Claim 5

- Graph isomorphism is an equivalence relation (separates the set of all graph pairs into separate subsets)
- $\left([m], \pi\left(E_{i}\right)\right)$ is a random element in $\left[\mathrm{G}_{i}\right]$ - the equivalence class of $\mathrm{G}_{i}$


## Proving Claim 5

- Graph isomorphism is an equivalence relation (separates the set of all graph pairs into separate subsets)
- $\left([m], \pi\left(E_{i}\right)\right)$ is a random element in $\left[\mathrm{G}_{i}\right]$ - the equivalence class of $\mathrm{G}_{i}$


## Proving Claim 5

- Graph isomorphism is an equivalence relation (separates the set of all graph pairs into separate subsets)
- $\left([m], \pi\left(E_{i}\right)\right)$ is a random element in $\left[\mathrm{G}_{i}\right]$ - the equivalence class of $\mathrm{G}_{i}$

Hence,

$$
\mathrm{G}_{0} \equiv \mathrm{G}_{1}: \operatorname{Pr}\left[b^{\prime}=b\right] \leq \frac{1}{2}
$$

## Proving Claim 5

- Graph isomorphism is an equivalence relation (separates the set of all graph pairs into separate subsets)
- $\left([m], \pi\left(E_{i}\right)\right)$ is a random element in $\left[\mathrm{G}_{i}\right]$ - the equivalence class of $\mathrm{G}_{i}$

Hence,

$$
\begin{aligned}
\mathrm{G}_{0} \equiv \mathrm{G}_{1}: & \operatorname{Pr}\left[b^{\prime}=b\right] \leq \frac{1}{2} . \\
\mathrm{G}_{0} \not \equiv \mathrm{G}_{1}: & \operatorname{Pr}\left[b^{\prime}=b\right]=1 \text { (i.e., P can, possibly inefficiently, extracted from } \\
& \left.\pi\left(E_{i}\right)\right)
\end{aligned}
$$

## Part II

## Zero knowledge Proofs

## Where is Waldo?



## Question 6

Can you prove you know where Waldo is without revealing his location?

## The concept of zero knowledge

- Proving w/o revealing any addition information.


## The concept of zero knowledge

- Proving w/o revealing any addition information.
- What does it mean?


## The concept of zero knowledge

- Proving w/o revealing any addition information.
- What does it mean?

Simulation paradigm.

## Zero-knowledge proofs

## Definition 7 (zero-knowledge proofs)

An interactive proof $(\mathrm{P}, \mathrm{V})$ is computational zero-knowledge proof $(\mathcal{C Z K})$ for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if $\forall$ PPT $\mathrm{V}^{*}, \exists$ PPT $S$ (i.e., simulator) such that

$$
\begin{equation*}
\left\{\left\langle\left(\mathrm{P}(w(x)), \mathrm{V}^{*}\right)(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\{\mathrm{~S}(x)\}_{x \in \mathcal{L}} . \tag{1}
\end{equation*}
$$

for any poly-bounded function $w$ with $w(x) \in R_{\mathcal{L}}(x)$.

## Zero-knowledge proofs

## Definition 7 (zero-knowledge proofs)

An interactive proof $(\mathrm{P}, \mathrm{V})$ is computational zero-knowledge proof $(\mathcal{C Z K})$ for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if $\forall$ PPT $\mathrm{V}^{*}, \exists$ PPT $S$ (i.e., simulator) such that

$$
\begin{equation*}
\left\{\left\langle\left(\mathrm{P}(w(x)), \mathrm{V}^{*}\right)(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\{\mathrm{~S}(x)\}_{x \in \mathcal{L}} . \tag{1}
\end{equation*}
$$

for any poly-bounded function $w$ with $w(x) \in R_{\mathcal{L}}(x)$.
Perfect $\mathcal{Z K}(\mathcal{P Z K}) /$ statistical $\mathcal{Z K}(\mathcal{S Z K})$ - the above distributions are identically/statistically close.

## Zero-knowledge proofs

## Definition 7 (zero-knowledge proofs)

An interactive proof $(\mathrm{P}, \mathrm{V})$ is computational zero-knowledge proof $(\mathcal{C Z K})$ for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if $\forall$ PPT $\mathrm{V}^{*}, \exists$ PPT $S$ (i.e., simulator) such that

$$
\begin{equation*}
\left\{\left\langle\left(\mathrm{P}(w(x)), \mathrm{V}^{*}\right)(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\{\mathrm{~S}(x)\}_{x \in \mathcal{L}} . \tag{1}
\end{equation*}
$$

for any poly-bounded function $w$ with $w(x) \in R_{\mathcal{L}}(x)$.
Perfect $\mathcal{Z K}(\mathcal{P Z K}) /$ statistical $\mathcal{Z K}(\mathcal{S Z K})$ - the above distributions are identically/statistically close.
(1) $\mathcal{Z K}$ is a property of the prover.

## Zero-knowledge proofs

## Definition 7 (zero-knowledge proofs)

An interactive proof $(\mathrm{P}, \mathrm{V})$ is computational zero-knowledge proof $(\mathcal{C Z K})$ for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if $\forall$ PPT $\mathrm{V}^{*}, \exists$ PPT $S$ (i.e., simulator) such that

$$
\begin{equation*}
\left\{\left\langle\left(\mathrm{P}(w(x)), \mathrm{V}^{*}\right)(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\{\mathrm{~S}(x)\}_{x \in \mathcal{L}} . \tag{1}
\end{equation*}
$$

for any poly-bounded function $w$ with $w(x) \in R_{\mathcal{L}}(x)$.
Perfect $\mathcal{Z K}(\mathcal{P Z K}) /$ statistical $\mathcal{Z K}(\mathcal{S Z K})$ - the above distributions are identically/statistically close.
(1) $\mathcal{Z K}$ is a property of the prover.
(2) $\mathcal{Z K}$ only required to hold wrt. true statements.

## Zero-knowledge proofs

## Definition 7 (zero-knowledge proofs)

An interactive proof $(\mathrm{P}, \mathrm{V})$ is computational zero-knowledge proof $(\mathcal{C Z K})$ for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if $\forall$ PPT $\mathrm{V}^{*}, \exists$ PPT $S$ (i.e., simulator) such that

$$
\begin{equation*}
\left\{\left\langle\left(\mathrm{P}(w(x)), \mathrm{V}^{*}\right)(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\{\mathrm{~S}(x)\}_{x \in \mathcal{L}} . \tag{1}
\end{equation*}
$$

for any poly-bounded function $w$ with $w(x) \in R_{\mathcal{L}}(x)$.
Perfect $\mathcal{Z K}(\mathcal{P Z K}) /$ statistical $\mathcal{Z K}(\mathcal{S Z K})$ - the above distributions are identically/statistically close.
(1) $\mathcal{Z K}$ is a property of the prover.
(2) $\mathcal{Z K}$ only required to hold wrt. true statements.
(3) Trivial to achieve for $\mathcal{L} \in \mathcal{B P P}$.

## Zero-knowledge proofs

## Definition 7 (zero-knowledge proofs)

An interactive proof $(\mathrm{P}, \mathrm{V})$ is computational zero-knowledge proof $(\mathcal{C Z K})$ for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if $\forall$ PPT $\mathrm{V}^{*}, \exists$ PPT $S$ (i.e., simulator) such that

$$
\begin{equation*}
\left\{\left\langle\left(\mathrm{P}(w(x)), \mathrm{V}^{*}\right)(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\{\mathrm{~S}(x)\}_{x \in \mathcal{L}} . \tag{1}
\end{equation*}
$$

for any poly-bounded function $w$ with $w(x) \in R_{\mathcal{L}}(x)$.
Perfect $\mathcal{Z K}(\mathcal{P Z K}) /$ statistical $\mathcal{Z K}(\mathcal{S Z K})$ - the above distributions are identically/statistically close.
(1) $\mathcal{Z K}$ is a property of the prover.
(2) $\mathcal{Z K}$ only required to hold wrt. true statements.
(3) Trivial to achieve for $\mathcal{L} \in \mathcal{B P P}$.
(4) The $\mathcal{N} \mathcal{P}$ proof system is typically not zero knowledge.

## Zero-knowledge proofs

## Definition 7 (zero-knowledge proofs)

An interactive proof $(\mathrm{P}, \mathrm{V})$ is computational zero-knowledge proof $(\mathcal{C Z K})$ for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if $\forall$ PPT $\mathrm{V}^{*}, \exists$ PPT $S$ (i.e., simulator) such that

$$
\begin{equation*}
\left\{\left\langle\left(\mathrm{P}(w(x)), \mathrm{V}^{*}\right)(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\{\mathrm{~S}(x)\}_{x \in \mathcal{L}} . \tag{1}
\end{equation*}
$$

for any poly-bounded function $w$ with $w(x) \in R_{\mathcal{L}}(x)$.
Perfect $\mathcal{Z K}(\mathcal{P Z K}) /$ statistical $\mathcal{Z K}(\mathcal{S Z K})$ - the above distributions are identically/statistically close.
(1) $\mathcal{Z K}$ is a property of the prover.
(2) $\mathcal{Z K}$ only required to hold wrt. true statements.
(3) Trivial to achieve for $\mathcal{L} \in \mathcal{B P P}$.
(4) The $\mathcal{N} \mathcal{P}$ proof system is typically not zero knowledge.
(5) Meaningful also for languages outside $\mathcal{N P}$.

## Zero-knowledge proofs

## Definition 7 (zero-knowledge proofs)

An interactive proof $(\mathrm{P}, \mathrm{V})$ is computational zero-knowledge proof $(\mathcal{C Z K})$ for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if $\forall$ PPT $\mathrm{V}^{*}, \exists$ PPT $S$ (i.e., simulator) such that

$$
\begin{equation*}
\left\{\left\langle\left(\mathrm{P}(w(x)), \mathrm{V}^{*}\right)(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\{\mathrm{~S}(x)\}_{x \in \mathcal{L}} . \tag{1}
\end{equation*}
$$

for any poly-bounded function $w$ with $w(x) \in R_{\mathcal{L}}(x)$.
Perfect $\mathcal{Z K}(\mathcal{P Z K}) /$ statistical $\mathcal{Z K}(\mathcal{S Z K})$ - the above distributions are identically/statistically close.
(1) $\mathcal{Z K}$ is a property of the prover.
(2) $\mathcal{Z K}$ only required to hold wrt. true statements.
(3) Trivial to achieve for $\mathcal{L} \in \mathcal{B P P}$.
(4) The $\mathcal{N} \mathcal{P}$ proof system is typically not zero knowledge.
(5) Meaningful also for languages outside $\mathcal{N P}$.
(6) Auxiliary input

## Zero-knowledge proofs

## Definition 7 (zero-knowledge proofs)

An interactive proof $(\mathrm{P}, \mathrm{V})$ is computational zero-knowledge proof $(\mathcal{C Z K})$ for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if $\forall$ PPT $\mathrm{V}^{*}, \exists$ PPT $S$ (i.e., simulator) such that

$$
\begin{equation*}
\left\{\left\langle\left(\mathrm{P}(w(x)), \mathrm{V}^{*}\right)(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\{\mathrm{~S}(x)\}_{x \in \mathcal{L}} . \tag{1}
\end{equation*}
$$

for any poly-bounded function $w$ with $w(x) \in R_{\mathcal{L}}(x)$.
Perfect $\mathcal{Z K}(\mathcal{P Z K}) /$ statistical $\mathcal{Z K}(\mathcal{S Z K})$ - the above distributions are identically/statistically close.
(1) $\mathcal{Z K}$ is a property of the prover.
(2) $\mathcal{Z K}$ only required to hold wrt. true statements.
(3) Trivial to achieve for $\mathcal{L} \in \mathcal{B P P}$.
(4) The $\mathcal{N} \mathcal{P}$ proof system is typically not zero knowledge.
(5) Meaningful also for languages outside $\mathcal{N P}$.
(6) Auxiliary input

## Zero-knowledge proofs

## Definition 7 (zero-knowledge proofs)

An interactive proof $(\mathrm{P}, \mathrm{V})$ is computational zero-knowledge proof $(\mathcal{C Z K})$ for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if $\forall$ PPT $\mathrm{V}^{*}, \exists$ PPT $S$ (i.e., simulator) such that

$$
\begin{equation*}
\left\{\left\langle\left(\mathrm{P}(w(x)), \mathrm{V}^{*}\right)(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\{\mathrm{~S}(x)\}_{x \in \mathcal{L}} . \tag{1}
\end{equation*}
$$

for any poly-bounded function $w$ with $w(x) \in R_{\mathcal{L}}(x)$.
Perfect $\mathcal{Z K}(\mathcal{P Z K}) /$ statistical $\mathcal{Z K}(\mathcal{S Z K})$ - the above distributions are identically/statistically close.
(1) $\mathcal{Z K}$ is a property of the prover.
(2) $\mathcal{Z K}$ only required to hold wrt. true statements.
(3) Trivial to achieve for $\mathcal{L} \in \mathcal{B P P}$.
(4) The $\mathcal{N} \mathcal{P}$ proof system is typically not zero knowledge.
(5) Meaningful also for languages outside $\mathcal{N P}$.
(6) Auxiliary input (will give formal def later)

## Zero-knowledge proofs, cont.

(1) ZK for honest verifiers: (1) only holds for $\mathrm{V}^{*}=V$.

## Zero-knowledge proofs, cont.

(1) ZK for honest verifiers: (1) only holds for $\mathrm{V}^{*}=V$.
(2) We sometimes assume for notational convenient, and wlg, that a cheating $V^{*}$ outputs its view.

## Zero-knowledge proofs, cont.

(1) ZK for honest verifiers: (1) only holds for $\mathrm{V}^{*}=V$.
(2) We sometimes assume for notational convenient, and wlg, that a cheating $V^{*}$ outputs its view.
(3) Statistical ZK proofs are believed to to exists only for a restricted subclass of $\mathcal{N P}$, so to go beyond that we settle for computational ZK (as in this course). or for arguments.

## Section 2

## Zero-Knowledge Proof for Graph Isomorphism

## Zero-knowledge proof for $\mathcal{G I}$

Idea: route finding

## Zero-knowledge proof for $\mathcal{G I}$

Idea: route finding

## Protocol 8 ((P, V))

Common input: $x=\left(\mathrm{G}_{0}=\left([m], E_{0}\right), \mathrm{G}_{1}=\left([m], E_{1}\right)\right)$
P's input: a permutation $\pi$ over $[m]$ such that $\pi\left(E_{1}\right)=E_{0}$.
(1) P chooses $\pi^{\prime} \leftarrow \Pi_{m}$ and sends $E=\pi^{\prime}\left(E_{0}\right)$ to V .
(2) $V$ sends $b \leftarrow\{0,1\}$ to $P$.
(3) If $b=0, \mathrm{P}$ sets $\pi^{\prime \prime}=\pi^{\prime}$, otherwise, it sends $\pi^{\prime \prime}=\pi^{\prime} \circ \pi$ to V .
(4) V accepts iff $\pi^{\prime \prime}\left(E_{b}\right)=E$.

## Zero-knowledge proof for $\mathcal{G I}$

Idea: route finding

## Protocol 8 ((P, V))

Common input: $x=\left(\mathrm{G}_{0}=\left([m], E_{0}\right), \mathrm{G}_{1}=\left([m], E_{1}\right)\right)$
P's input: a permutation $\pi$ over $[m]$ such that $\pi\left(E_{1}\right)=E_{0}$.
(1) P chooses $\pi^{\prime} \leftarrow \Pi_{m}$ and sends $E=\pi^{\prime}\left(E_{0}\right)$ to V .
(2) $V$ sends $b \leftarrow\{0,1\}$ to $P$.
(3) If $b=0, \mathrm{P}$ sets $\pi^{\prime \prime}=\pi^{\prime}$, otherwise, it sends $\pi^{\prime \prime}=\pi^{\prime} \circ \pi$ to V .
(4) V accepts iff $\pi^{\prime \prime}\left(E_{b}\right)=E$.

## Claim 9

Protocol 8 is a $\mathcal{S Z K}$ for $\mathcal{G I}$, with perfect completeness and soundness $\frac{1}{2}$.

## Proving Claim 9

- Completeness: Clear


## Proving Claim 9

- Completeness: Clear
- Soundness: If exist $j \in\{0,1\}$ for which $\nexists \pi^{\prime} \in \Pi_{m}$ with $\pi^{\prime}\left(E_{j}\right)=E$, then V rejects w.p. at least $\frac{1}{2}$.


## Proving Claim 9

- Completeness: Clear
- Soundness: If exist $j \in\{0,1\}$ for which $\nexists \pi^{\prime} \in \Pi_{m}$ with $\pi^{\prime}\left(E_{j}\right)=E$, then V rejects w.p. at least $\frac{1}{2}$.
Assuming $\vee$ rejects w.p. less than $\frac{1}{2}$ and let $\pi_{0}$ and $\pi_{1}$ be the values guaranteed by the above observation (i.e., mapping $E_{0}$ and $E_{1}$ to $E$ respectively).


## Proving Claim 9

- Completeness: Clear
- Soundness: If exist $j \in\{0,1\}$ for which $\nexists \pi^{\prime} \in \Pi_{m}$ with $\pi^{\prime}\left(E_{j}\right)=E$, then $V$ rejects w.p. at least $\frac{1}{2}$.
Assuming $\vee$ rejects w.p. less than $\frac{1}{2}$ and let $\pi_{0}$ and $\pi_{1}$ be the values guaranteed by the above observation (i.e., mapping $E_{0}$ and $E_{1}$ to $E$ respectively).

$$
\text { Then } \pi_{0}^{-1}\left(\pi_{1}\left(E_{1}\right)\right)=\pi_{0} \Longrightarrow\left(\mathbf{G}_{0}, \mathbf{G}_{1}\right) \in \mathcal{G I}
$$

## Proving Claim 9

- Completeness: Clear
- Soundness: If exist $j \in\{0,1\}$ for which $\nexists \pi^{\prime} \in \Pi_{m}$ with $\pi^{\prime}\left(E_{j}\right)=E$, then $V$ rejects w.p. at least $\frac{1}{2}$.
Assuming $\vee$ rejects w.p. less than $\frac{1}{2}$ and let $\pi_{0}$ and $\pi_{1}$ be the values guaranteed by the above observation (i.e., mapping $E_{0}$ and $E_{1}$ to $E$ respectively).

$$
\text { Then } \pi_{0}^{-1}\left(\pi_{1}\left(E_{1}\right)\right)=\pi_{0} \Longrightarrow\left(\mathbf{G}_{0}, \mathbf{G}_{1}\right) \in \mathcal{G I}
$$

## Proving Claim 9

- Completeness: Clear
- Soundness: If exist $j \in\{0,1\}$ for which $\nexists \pi^{\prime} \in \Pi_{m}$ with $\pi^{\prime}\left(E_{j}\right)=E$, then $V$ rejects w.p. at least $\frac{1}{2}$.
Assuming $\vee$ rejects w.p. less than $\frac{1}{2}$ and let $\pi_{0}$ and $\pi_{1}$ be the values guaranteed by the above observation (i.e., mapping $E_{0}$ and $E_{1}$ to $E$ respectively).
Then $\pi_{0}^{-1}\left(\pi_{1}\left(E_{1}\right)\right)=\pi_{0} \Longrightarrow\left(\mathbf{G}_{0}, \mathbf{G}_{1}\right) \in \mathcal{G I}$.
- $\mathcal{Z K}$ : Idea - for $\left(\mathrm{G}_{0}, \mathrm{G}_{1}\right) \in \mathcal{G I}$, it is easy to generate a random transcript for Steps 1-2, and to be able to open it with prob $\frac{1}{2}$.


## The simulator

For a start, consider a deterministic cheating verifier $\mathrm{V}^{*}$ that never aborts.

## The simulator

For a start, consider a deterministic cheating verifier $\mathrm{V}^{*}$ that never aborts.

## Algorithm 10 (S)

Input: $x=\left(\mathrm{G}_{0}=\left([m], E_{0}\right), \mathrm{G}_{1}=\left([m], E_{1}\right)\right)$
Do $|x|$ times:
(1) Choose $b^{\prime} \leftarrow\{0,1\}$ and $\pi \leftarrow \Pi_{m}$, and "send" $\pi\left(E_{b^{\prime}}\right)$ to $\mathrm{V}^{*}(x)$.
(2) Let $b$ be $\mathrm{V}^{*}$ 's answer. If $b=b^{\prime}$, send $\pi$ to $\mathrm{V}^{*}$, output $\mathrm{V}^{*}$ 's view and halt. Otherwise, rewind $\mathrm{V}^{*}$ to its initial step, and go to step 1.

Abort.

## The simulator

For a start, consider a deterministic cheating verifier $\mathrm{V}^{*}$ that never aborts.

## Algorithm 10 (S)

Input: $x=\left(\mathrm{G}_{0}=\left([m], E_{0}\right), \mathrm{G}_{1}=\left([m], E_{1}\right)\right)$
Do $|x|$ times:
(1) Choose $b^{\prime} \leftarrow\{0,1\}$ and $\pi \leftarrow \Pi_{m}$, and "send" $\pi\left(E_{b^{\prime}}\right)$ to $\mathrm{V}^{*}(x)$.
(2) Let $b$ be $\mathrm{V}^{*}$ 's answer. If $b=b^{\prime}$, send $\pi$ to $\mathrm{V}^{*}$, output $\mathrm{V}^{*}$ 's view and halt. Otherwise, rewind $\mathrm{V}^{*}$ to its initial step, and go to step 1.

Abort.

## Claim 11

$$
\left\{\left\langle\left(\mathrm{P}, \mathrm{~V}^{*}\right)(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{G I}} \approx\{\mathrm{~S}(x)\}_{x \in \mathcal{G I}}
$$

## The simulator

For a start, consider a deterministic cheating verifier $\mathrm{V}^{*}$ that never aborts.

## Algorithm 10 (S)

Input: $x=\left(\mathrm{G}_{0}=\left([m], E_{0}\right), \mathrm{G}_{1}=\left([m], E_{1}\right)\right)$
Do $|x|$ times:
(1) Choose $b^{\prime} \leftarrow\{0,1\}$ and $\pi \leftarrow \Pi_{m}$, and "send" $\pi\left(E_{b^{\prime}}\right)$ to $\mathrm{V}^{*}(x)$.
(2) Let $b$ be $\mathrm{V}^{*}$ 's answer. If $b=b^{\prime}$, send $\pi$ to $\mathrm{V}^{*}$, output $\mathrm{V}^{*}$ 's view and halt. Otherwise, rewind $\mathrm{V}^{*}$ to its initial step, and go to step 1.

Abort.

## Claim 11

$\left\{\left\langle\left(\mathrm{P}, \mathrm{V}^{*}\right)(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{G} \mathcal{I}} \approx\{\mathrm{~S}(x)\}_{x \in \mathcal{G I}}$
Claim 11 implies that Protocol 8 is zero knowledge.

## Proving Claim 11

Consider the following inefficient simulator:

## Algorithm 12 ( $\mathrm{S}^{\prime}$ )

Input: $x=\left(\mathrm{G}_{0}=\left([m], E_{0}\right), \mathrm{G}_{1}=\left([m], E_{1}\right)\right)$.
Do $|x|$ times:
(1) Choose $\pi \leftarrow \Pi_{m}$ and send $E=\pi\left(E_{0}\right)$ to $\mathrm{V}^{*}(x)$.
(2) Let $b$ be $\mathrm{V}^{*}$ 's answer.
W.p. $\frac{1}{2}$,
(1) Find $\pi^{\prime}$ such that $E=\pi^{\prime}\left(E_{b}\right)$, and send it to $\mathrm{V}^{*}$.
(2) Output $\mathrm{V}^{*}$ 's view and halt.

Otherwise, rewind $\mathrm{V}^{*}$ to its initial step, and go to step 1.
Abort.

## Proving Claim 11

Consider the following inefficient simulator:

## Algorithm 12 ( $\mathrm{S}^{\prime}$ )

Input: $x=\left(\mathrm{G}_{0}=\left([m], E_{0}\right), \mathrm{G}_{1}=\left([m], E_{1}\right)\right)$.
Do $|x|$ times:
(1) Choose $\pi \leftarrow \Pi_{m}$ and send $E=\pi\left(E_{0}\right)$ to $\mathrm{V}^{*}(x)$.
(2) Let $b$ be $\mathrm{V}^{*}$ 's answer.
W.p. $\frac{1}{2}$,
(1) Find $\pi^{\prime}$ such that $E=\pi^{\prime}\left(E_{b}\right)$, and send it to $\mathrm{V}^{*}$.
(2) Output $\mathrm{V}^{*}$ 's view and halt.

Otherwise, rewind $\mathrm{V}^{*}$ to its initial step, and go to step 1.
Abort.
Claim 13
$\mathrm{S}(x) \equiv \mathrm{S}^{\prime}(x)$ for any $x \in \mathcal{G \mathcal { I }}$.

## Proving Claim 11

Consider the following inefficient simulator:

## Algorithm 12 ( $\mathrm{S}^{\prime}$ )

Input: $x=\left(\mathrm{G}_{0}=\left([m], E_{0}\right), \mathrm{G}_{1}=\left([m], E_{1}\right)\right)$.
Do $|x|$ times:
(1) Choose $\pi \leftarrow \Pi_{m}$ and send $E=\pi\left(E_{0}\right)$ to $\mathrm{V}^{*}(x)$.
(2) Let $b$ be $\mathrm{V}^{*}$ 's answer.
W.p. $\frac{1}{2}$,
(1) Find $\pi^{\prime}$ such that $E=\pi^{\prime}\left(E_{b}\right)$, and send it to $\mathrm{V}^{*}$.
(2) Output $\mathrm{V}^{*}$ 's view and halt.

Otherwise, rewind $\mathrm{V}^{*}$ to its initial step, and go to step 1.
Abort.
Claim 13
$\mathrm{S}(x) \equiv \mathrm{S}^{\prime}(x)$ for any $x \in \mathcal{G \mathcal { I }}$.

## Proving Claim 11 cont.

Consider a second inefficient simulator:

## Algorithm 14 ( $\mathrm{S}^{\prime \prime}$ )

Input: $x=\left(\mathrm{G}_{0}=\left([m], E_{0}\right), \mathrm{G}_{1}=\left([m], E_{1}\right)\right)$
(1) Choose $\pi \leftarrow \Pi_{m}$ and send $E=\pi\left(E_{0}\right)$ to $\mathrm{V}^{*}(x)$.
(2) Find $\pi^{\prime}$ such that $E=\pi^{\prime}\left(E_{b}\right)$ and send it to $\mathrm{V}^{*}$
(3) Output $\mathrm{V}^{*}$ 's view and halt.

## Proving Claim 11 cont.

Consider a second inefficient simulator:

## Algorithm 14 ( $\mathrm{S}^{\prime \prime}$ )

Input: $x=\left(\mathrm{G}_{0}=\left([m], E_{0}\right), \mathrm{G}_{1}=\left([m], E_{1}\right)\right)$
(1) Choose $\pi \leftarrow \Pi_{m}$ and send $E=\pi\left(E_{0}\right)$ to $\mathrm{V}^{*}(x)$.
(2) Find $\pi^{\prime}$ such that $E=\pi^{\prime}\left(E_{b}\right)$ and send it to $\mathrm{V}^{*}$
(3) Output $\mathrm{V}^{*}$ 's view and halt.

## Claim 15

$\forall x \in \mathcal{G I}$ it holds that
(1) $\left\langle\left(\mathrm{P}, \mathrm{V}^{*}(x)\right)\right\rangle_{\mathrm{V}^{*}} \equiv \mathrm{~S}^{\prime \prime}(x)$.

## Proving Claim 11 cont.

Consider a second inefficient simulator:

## Algorithm 14 ( $\mathrm{S}^{\prime \prime}$ )

Input: $x=\left(\mathrm{G}_{0}=\left([m], E_{0}\right), \mathrm{G}_{1}=\left([m], E_{1}\right)\right)$
(1) Choose $\pi \leftarrow \Pi_{m}$ and send $E=\pi\left(E_{0}\right)$ to $\mathrm{V}^{*}(x)$.
(2) Find $\pi^{\prime}$ such that $E=\pi^{\prime}\left(E_{b}\right)$ and send it to $\mathrm{V}^{*}$
(3) Output $\mathrm{V}^{*}$ 's view and halt.

## Claim 15

$\forall x \in \mathcal{G I}$ it holds that
(1) $\left\langle\left(\mathrm{P}, \mathrm{V}^{*}(x)\right)\right\rangle_{\mathrm{V}^{*}} \equiv \mathrm{~S}^{\prime \prime}(x)$.
(2) $\mathrm{SD}\left(\mathrm{S}^{\prime \prime}(x), \mathrm{S}^{\prime}(x)\right) \leq 2^{-|x|}$.

## Proving Claim 11 cont.

Consider a second inefficient simulator:

## Algorithm 14 ( $\mathrm{S}^{\prime \prime}$ )

Input: $x=\left(\mathrm{G}_{0}=\left([m], E_{0}\right), \mathrm{G}_{1}=\left([m], E_{1}\right)\right)$
(1) Choose $\pi \leftarrow \Pi_{m}$ and send $E=\pi\left(E_{0}\right)$ to $\mathrm{V}^{*}(x)$.
(2) Find $\pi^{\prime}$ such that $E=\pi^{\prime}\left(E_{b}\right)$ and send it to $\mathrm{V}^{*}$
(3) Output $\mathrm{V}^{*}$ 's view and halt.

## Claim 15

$\forall x \in \mathcal{G I}$ it holds that
(1) $\left\langle\left(\mathrm{P}, \mathrm{V}^{*}(x)\right)\right\rangle_{\mathrm{V}^{*}} \equiv \mathrm{~S}^{\prime \prime}(x)$.
(2) $\mathrm{SD}\left(\mathrm{S}^{\prime \prime}(x), \mathrm{S}^{\prime}(x)\right) \leq 2^{-|x|}$.

## Proving Claim 11 cont.

Consider a second inefficient simulator:

## Algorithm 14 ( $\mathrm{S}^{\prime \prime}$ )

Input: $x=\left(\mathrm{G}_{0}=\left([m], E_{0}\right), \mathrm{G}_{1}=\left([m], E_{1}\right)\right)$
(1) Choose $\pi \leftarrow \Pi_{m}$ and send $E=\pi\left(E_{0}\right)$ to $\mathrm{V}^{*}(x)$.
(2) Find $\pi^{\prime}$ such that $E=\pi^{\prime}\left(E_{b}\right)$ and send it to $\mathrm{V}^{*}$
(3) Output $\mathrm{V}^{*}$ 's view and halt.

## Claim 15

$\forall x \in \mathcal{G I}$ it holds that
(1) $\left\langle\left(\mathrm{P}, \mathrm{V}^{*}(x)\right)\right\rangle_{\mathrm{V}^{*}} \equiv \mathrm{~S}^{\prime \prime}(x)$.
(2) $\mathrm{SD}\left(\mathrm{S}^{\prime \prime}(x), \mathrm{S}^{\prime}(x)\right) \leq 2^{-|x|}$.

Proof: ?

## Proving Claim 11 cont.

Consider a second inefficient simulator:

## Algorithm 14 ( $\mathrm{S}^{\prime \prime}$ )

Input: $x=\left(\mathrm{G}_{0}=\left([m], E_{0}\right), \mathrm{G}_{1}=\left([m], E_{1}\right)\right)$
(1) Choose $\pi \leftarrow \Pi_{m}$ and send $E=\pi\left(E_{0}\right)$ to $\mathrm{V}^{*}(x)$.
(2) Find $\pi^{\prime}$ such that $E=\pi^{\prime}\left(E_{b}\right)$ and send it to $\mathrm{V}^{*}$
(3) Output $\mathrm{V}^{*}$ 's view and halt.

## Claim 15

$\forall x \in \mathcal{G I}$ it holds that
(1) $\left\langle\left(\mathrm{P}, \mathrm{V}^{*}(x)\right)\right\rangle_{\mathrm{V}^{*}} \equiv \mathrm{~S}^{\prime \prime}(x)$.
(2) $\mathrm{SD}\left(\mathrm{S}^{\prime \prime}(x), \mathrm{S}^{\prime}(x)\right) \leq 2^{-|x|}$.

Proof: ? (1) is clear.

## Proving Claim 15(2)

Fix $t \in\{0,1\}^{*}$ and let $\alpha=\operatorname{Pr}_{\text {S }^{\prime \prime}(x)}[t]$.

## Proving Claim 15(2)

Fix $t \in\{0,1\}^{*}$ and let $\alpha=\operatorname{Pr}_{S^{\prime \prime}(x)}[t]$. It holds that

$$
\begin{aligned}
\operatorname{Pr}_{S^{\prime}(x)}[t] & =\alpha \cdot \sum_{i=1}^{|x|}\left(1-\frac{1}{2}\right)^{i-1} \cdot \frac{1}{2} \\
& =\left(1-2^{-|x|}\right) \cdot \alpha
\end{aligned}
$$

## Proving Claim 15(2)

Fix $t \in\{0,1\}^{*}$ and let $\alpha=\operatorname{Pr}_{S^{\prime \prime}(x)}[t]$.
It holds that

$$
\begin{aligned}
\operatorname{Pr}_{S^{\prime}(x)}[t] & =\alpha \cdot \sum_{i=1}^{|x|}\left(1-\frac{1}{2}\right)^{i-1} \cdot \frac{1}{2} \\
& =\left(1-2^{-|x|}\right) \cdot \alpha
\end{aligned}
$$

Hence, $S D\left(S^{\prime \prime}(x), S^{\prime}(x)\right) \leq 2^{-|x|} \square$

## Remarks

(1) Perfect $\mathcal{Z K}$ for "expected polynomial-time" simulators.

## Remarks

(1) Perfect $\mathcal{Z K}$ for "expected polynomial-time" simulators.
(2) Aborting verifiers.

## Remarks

(1) Perfect $\mathcal{Z K}$ for "expected polynomial-time" simulators.
(2) Aborting verifiers.
(3) Randomized verifiers.

## Remarks

(1) Perfect $\mathcal{Z K}$ for "expected polynomial-time" simulators.
(2) Aborting verifiers.
(3) Randomized verifiers.
(1) The simulator first fixes the coins of $V^{*}$ at random.

## Remarks

(1) Perfect $\mathcal{Z K}$ for "expected polynomial-time" simulators.
(2) Aborting verifiers.
(3) Randomized verifiers.
(1) The simulator first fixes the coins of $V^{*}$ at random.
(2) Same proof goes through.

## Remarks

(1) Perfect $\mathcal{Z K}$ for "expected polynomial-time" simulators.
(2) Aborting verifiers.
(3) Randomized verifiers.
(1) The simulator first fixes the coins of $V^{*}$ at random.
(2) Same proof goes through.
(4) Negligible soundness error?

## Remarks

(1) Perfect $\mathcal{Z K}$ for "expected polynomial-time" simulators.
(2) Aborting verifiers.
(3) Randomized verifiers.
(1) The simulator first fixes the coins of $V^{*}$ at random.
(2) Same proof goes through.
(4) Negligible soundness error?
(1) Amplify by repetition

## Remarks

(1) Perfect $\mathcal{Z K}$ for "expected polynomial-time" simulators.
(2) Aborting verifiers.
(3) Randomized verifiers.
(1) The simulator first fixes the coins of $V^{*}$ at random.
(2) Same proof goes through.
(4) Negligible soundness error?
(1) Amplify by repetition
(2) But what about the ZK?

## "Transcript simulation" might not suffice!

## "Transcript simulation" might not suffice!

Let ( $G, E, D$ ) be a public-key encryption scheme and let $\mathcal{L} \in \mathcal{N P}$.

## "Transcript simulation" might not suffice!

Let ( $G, E, D$ ) be a public-key encryption scheme and let $\mathcal{L} \in \mathcal{N} \mathcal{P}$.

## Protocol 16 (( $\mathrm{P}, \mathrm{V})$ )

Common input: $x \in\{0,1\}^{*}$
P's input: $w \in R_{\mathcal{L}}(x)$
(1) V chooses $(d, e) \leftarrow \mathrm{G}\left(1^{|x|}\right)$ and sends $e$ to P
(2) P sends $c=\mathrm{E}_{e}(w)$ to V
(3) V accepts iff $\mathrm{D}_{d}(c) \in R_{\mathcal{L}}(x)$

## "Transcript simulation" might not suffice!

Let ( $G, E, D$ ) be a public-key encryption scheme and let $\mathcal{L} \in \mathcal{N} \mathcal{P}$.

## Protocol 16 (( $\mathrm{P}, \mathrm{V})$ )

Common input: $x \in\{0,1\}^{*}$
P's input: $w \in R_{\mathcal{L}}(x)$
(1) V chooses $(d, e) \leftarrow \mathrm{G}\left(1^{|x|}\right)$ and sends $e$ to P
(2) P sends $c=\mathrm{E}_{e}(w)$ to V
(3) $V$ accepts iff $D_{d}(c) \in R_{\mathcal{L}}(x)$

- The above protocol has perfect completeness and soundness.


## "Transcript simulation" might not suffice!

Let ( $G, E, D$ ) be a public-key encryption scheme and let $\mathcal{L} \in \mathcal{N} \mathcal{P}$.

## Protocol 16 (( $\mathrm{P}, \mathrm{V})$ )

Common input: $x \in\{0,1\}^{*}$
P's input: $w \in R_{\mathcal{L}}(x)$
(1) V chooses $(d, e) \leftarrow \mathrm{G}\left(1^{|x|}\right)$ and sends $e$ to P
(2) P sends $c=\mathrm{E}_{e}(w)$ to V
(3) $V$ accepts iff $D_{d}(c) \in R_{\mathcal{L}}(x)$

- The above protocol has perfect completeness and soundness.
- Is it zero-knowledge?


## "Transcript simulation" might not suffice!

Let ( $G, E, D$ ) be a public-key encryption scheme and let $\mathcal{L} \in \mathcal{N} \mathcal{P}$.

## Protocol 16 (( $\mathrm{P}, \mathrm{V})$ )

Common input: $x \in\{0,1\}^{*}$
P's input: $w \in R_{\mathcal{L}}(x)$
(1) V chooses $(d, e) \leftarrow \mathrm{G}\left(1^{|x|}\right)$ and sends $e$ to P
(2) P sends $c=\mathrm{E}_{e}(w)$ to V
(3) $V$ accepts iff $D_{d}(c) \in R_{\mathcal{L}}(x)$

- The above protocol has perfect completeness and soundness.
- Is it zero-knowledge?
- It has "transcript simulator" (at least for honest verifiers): exits PPT S such that $\left\{\left\langle\left(\mathrm{P}\left(w \in R_{\mathcal{L}}(x)\right), \mathrm{V}\right)(x)\right\rangle_{\text {trans }}\right\}_{x \in \mathcal{L}} \approx_{c}\{\mathrm{~S}(x)\}_{x \in \mathcal{L}}$, where trans stands for the transcript of the protocol (i.e., the messages exchange through the execution).


## Section 3

## Composition of Zero-Knowledge Proofs

## Is zero-knowledge maintained under composition?

- Sequential repetition?


## Is zero-knowledge maintained under composition?

- Sequential repetition?
- Parallel repetition?


## Zero-knowledge proof, auxiliary input variant

## Definition 17 (zero-knowledge proofs, auxiliary input)

An interactive proof ( $\mathrm{P}, \mathrm{V}$ ) is auxiliary-input computational zero-knowledge proof $(\mathcal{C Z K})$ for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if $\forall$ deterministic poly-time $\mathrm{V}^{*}$, $\exists$ PPT $S$ s.t.

$$
\left\{\left\langle\left(\mathrm{P}(w(x)), \mathrm{V}^{*}(z(x))(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\{\mathrm{~S}(x, z(x))\}_{x \in \mathcal{L}} .\right.
$$

for any poly-bounded functions $w$ with $w(x) \in R_{\mathcal{L}}(x)$ and $z: \mathcal{L} \mapsto\{0,1\}^{*}$.
Perfect $\mathcal{Z K}(\mathcal{P Z K}) /$ statistical auxiliary-input $\mathcal{Z K}(\mathcal{S Z K})$ — the above distributions are identically/statistically close.

## Zero-knowledge proof, auxiliary input variant

## Definition 17 (zero-knowledge proofs, auxiliary input)

An interactive proof ( $\mathrm{P}, \mathrm{V}$ ) is auxiliary-input computational zero-knowledge proof $(\mathcal{C Z K})$ for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if $\forall$ deterministic poly-time $\mathrm{V}^{*}$, $\exists$ PPT $S$ s.t.

$$
\left\{\left\langle\left(\mathrm{P}(w(x)), \mathrm{V}^{*}(z(x))(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\{\mathrm{~S}(x, z(x))\}_{x \in \mathcal{L}} .\right.
$$

for any poly-bounded functions $w$ with $w(x) \in R_{\mathcal{L}}(x)$ and $z: \mathcal{L} \mapsto\{0,1\}^{*}$.
Perfect $\mathcal{Z K}(\mathcal{P Z K}) /$ statistical auxiliary-input $\mathcal{Z K}(\mathcal{S Z K})$ — the above distributions are identically/statistically close.

- Strengthening of the standard definition.


## Zero-knowledge proof, auxiliary input variant

## Definition 17 (zero-knowledge proofs, auxiliary input)

An interactive proof ( $\mathrm{P}, \mathrm{V}$ ) is auxiliary-input computational zero-knowledge proof $(\mathcal{C Z K})$ for $\mathcal{L} \in \mathcal{N P}$, if $\forall$ deterministic poly-time $\mathrm{V}^{*}, \exists$ PPT $S$ s.t.

$$
\left\{\left\langle\left(\mathrm{P}(w(x)), \mathrm{V}^{*}(z(x))(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\{\mathrm{~S}(x, z(x))\}_{x \in \mathcal{L}} .\right.
$$

for any poly-bounded functions $w$ with $w(x) \in R_{\mathcal{L}}(x)$ and $z: \mathcal{L} \mapsto\{0,1\}^{*}$.
Perfect $\mathcal{Z K}(\mathcal{P Z K}) /$ statistical auxiliary-input $\mathcal{Z K}(\mathcal{S Z K})$ — the above distributions are identically/statistically close.

- Strengthening of the standard definition.
- The protocol for $\mathcal{G I}$ we just saw, is also auxiliary-input $\mathcal{S Z K}$


## Zero-knowledge proof, auxiliary input variant

## Definition 17 (zero-knowledge proofs, auxiliary input)

An interactive proof ( $\mathrm{P}, \mathrm{V}$ ) is auxiliary-input computational zero-knowledge proof $(\mathcal{C Z K})$ for $\mathcal{L} \in \mathcal{N P}$, if $\forall$ deterministic poly-time $\mathrm{V}^{*}, \exists$ PPT $S$ s.t.

$$
\left\{\left\langle\left(\mathrm{P}(w(x)), \mathrm{V}^{*}(z(x))(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\{\mathrm{~S}(x, z(x))\}_{x \in \mathcal{L}} .\right.
$$

for any poly-bounded functions $w$ with $w(x) \in R_{\mathcal{L}}(x)$ and $z: \mathcal{L} \mapsto\{0,1\}^{*}$.
Perfect $\mathcal{Z K}(\mathcal{P Z K}) /$ statistical auxiliary-input $\mathcal{Z K}(\mathcal{S Z K})$ — the above distributions are identically/statistically close.

- Strengthening of the standard definition.
- The protocol for $\mathcal{G I}$ we just saw, is also auxiliary-input $\mathcal{S Z K}$
- What about randomized verifiers?


## Zero-knowledge proof, auxiliary input variant

## Definition 17 (zero-knowledge proofs, auxiliary input)

An interactive proof ( $\mathrm{P}, \mathrm{V}$ ) is auxiliary-input computational zero-knowledge proof $(\mathcal{C Z K})$ for $\mathcal{L} \in \mathcal{N P}$, if $\forall$ deterministic poly-time $\mathrm{V}^{*}, \exists$ PPT $S$ s.t.

$$
\left\{\left\langle\left(\mathrm{P}(w(x)), \mathrm{V}^{*}(z(x))(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\{\mathrm{~S}(x, z(x))\}_{x \in \mathcal{L}} .\right.
$$

for any poly-bounded functions $w$ with $w(x) \in R_{\mathcal{L}}(x)$ and $z: \mathcal{L} \mapsto\{0,1\}^{*}$.
Perfect $\mathcal{Z K}(\mathcal{P Z K}) /$ statistical auxiliary-input $\mathcal{Z K}(\mathcal{S Z K})$ — the above distributions are identically/statistically close.

- Strengthening of the standard definition.
- The protocol for $\mathcal{G I}$ we just saw, is also auxiliary-input $\mathcal{S Z K}$
- What about randomized verifiers?
- Necessary for proving that zero-knowledge proof compose sequentially.


## Zero-knowledge proof, auxiliary input variant

## Definition 17 (zero-knowledge proofs, auxiliary input)

An interactive proof ( $\mathrm{P}, \mathrm{V}$ ) is auxiliary-input computational zero-knowledge proof $(\mathcal{C Z K})$ for $\mathcal{L} \in \mathcal{N P}$, if $\forall$ deterministic poly-time $\mathrm{V}^{*}, \exists$ PPT $S$ s.t.

$$
\left\{\left\langle\left(\mathrm{P}(w(x)), \mathrm{V}^{*}(z(x))(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\{\mathrm{~S}(x, z(x))\}_{x \in \mathcal{L}} .\right.
$$

for any poly-bounded functions $w$ with $w(x) \in R_{\mathcal{L}}(x)$ and $z: \mathcal{L} \mapsto\{0,1\}^{*}$.
Perfect $\mathcal{Z K}(\mathcal{P Z K}) /$ statistical auxiliary-input $\mathcal{Z K}(\mathcal{S Z K})$ — the above distributions are identically/statistically close.

- Strengthening of the standard definition.
- The protocol for $\mathcal{G I}$ we just saw, is also auxiliary-input $\mathcal{S Z K}$
- What about randomized verifiers?
- Necessary for proving that zero-knowledge proof compose sequentially.
- To keep things simple, we will typically prove the non-auxiliary zero-knowledge, but all proofs we present can easily modified to achieve the stronger auxiliary input variant.


## Is zero-knowledge maintained under composition?, cont.

- Auxiliary-input zero-knowledge is maintained under sequential repetition.


## Is zero-knowledge maintained under composition?, cont.

- Auxiliary-input zero-knowledge is maintained under sequential repetition.
- Zero-knowledge might not maintained under parallel repetition.


## Is zero-knowledge maintained under composition?, cont.

- Auxiliary-input zero-knowledge is maintained under sequential repetition.
- Zero-knowledge might not maintained under parallel repetition. Examples:


## Is zero-knowledge maintained under composition?, cont.

- Auxiliary-input zero-knowledge is maintained under sequential repetition.
- Zero-knowledge might not maintained under parallel repetition.

Examples:

- Chess game


## Is zero-knowledge maintained under composition?, cont.

- Auxiliary-input zero-knowledge is maintained under sequential repetition.
- Zero-knowledge might not maintained under parallel repetition.

Examples:

- Chess game
- Signature game


## Section 4

## Black-box Zero Knowledge

## Black-box simulators

## Definition 18 (Black-box simulator)

( $\mathrm{P}, \mathrm{V}$ ) is $\mathcal{C Z} \mathcal{K}$ with black-box simulation for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if $\exists$ oracle-aided PPT $S$ s.t.

$$
\left\{\left\langle\left(\mathrm{P}(w(x)), \mathrm{V}^{*}(z(x))\right)(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\left\{\mathrm{~S}^{\mathrm{V}^{*}(x, z(x))}(x)\right\}_{x \in \mathcal{L}}
$$

for any deterministic polynomial-time $\mathrm{V}^{*}$, any $w$ with $w(x) \in R_{\mathcal{L}}(x)$ and any $z: \mathcal{L} \mapsto\{0,1\}^{*}$.
Prefect and statistical variants are defined analogously.

## Black-box simulators

## Definition 18 (Black-box simulator)

( $\mathrm{P}, \mathrm{V}$ ) is $\mathcal{C Z} \mathcal{K}$ with black-box simulation for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if $\exists$ oracle-aided PPT $S$ s.t.

$$
\left\{\left\langle\left(\mathrm{P}(w(x)), \mathrm{V}^{*}(z(x))\right)(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\left\{\mathrm{~S}^{\mathrm{V}^{*}(x, z(x))}(x)\right\}_{x \in \mathcal{L}}
$$

for any deterministic polynomial-time $\mathrm{V}^{*}$, any $w$ with $w(x) \in R_{\mathcal{L}}(x)$ and any $z: \mathcal{L} \mapsto\{0,1\}^{*}$.
Prefect and statistical variants are defined analogously.
(1) "Most simulators" are black box

## Black-box simulators

## Definition 18 (Black-box simulator)

( $\mathrm{P}, \mathrm{V}$ ) is $\mathcal{C Z} \mathcal{K}$ with black-box simulation for $\mathcal{L} \in \mathcal{N} \mathcal{P}$, if $\exists$ oracle-aided PPT $S$ s.t.

$$
\left\{\left\langle\left(\mathrm{P}(w(x)), \mathrm{V}^{*}(z(x))\right)(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\left\{\mathrm{~S}^{\mathrm{V}^{*}(x, z(x))}(x)\right\}_{x \in \mathcal{L}}
$$

for any deterministic polynomial-time $\mathrm{V}^{*}$, any $w$ with $w(x) \in R_{\mathcal{L}}(x)$ and any $z: \mathcal{L} \mapsto\{0,1\}^{*}$.
Prefect and statistical variants are defined analogously.
(1) "Most simulators" are black box

## Black-box simulators

## Definition 18 (Black-box simulator)

$(\mathrm{P}, \mathrm{V})$ is $\mathcal{C Z K}$ with black-box simulation for $\mathcal{L} \in \mathcal{N P}$, if $\exists$ oracle-aided PPT $S$ s.t.

$$
\left\{\left\langle\left(\mathrm{P}(w(x)), \mathrm{V}^{*}(z(x))\right)(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\left\{\mathrm{~S}^{\mathrm{V}^{*}(x, z(x))}(x)\right\}_{x \in \mathcal{L}}
$$

for any deterministic polynomial-time $\mathrm{V}^{*}$, any $w$ with $w(x) \in R_{\mathcal{L}}(x)$ and any $z: \mathcal{L} \mapsto\{0,1\}^{*}$.
Prefect and statistical variants are defined analogously.
(1) "Most simulators" are black box
(2) Strictly weaker then general simulation!

## Section 5

## Zero-knowledge proofs for all NP

## $\mathcal{C Z K}$ for 3 COL

- Assuming OWFs exists, we give a (black-box) $\mathcal{C Z K}$ for 3COL .


## $\mathcal{C Z K}$ for 3COL

- Assuming OWFs exists, we give a (black-box) $\mathcal{C Z K}$ for 3COL .
- We show how to transform it for any $\mathcal{L} \in \mathcal{N P}$ (using that 3COL $\in \mathcal{N P} \mathcal{C}$ ).


## $\mathcal{C Z K}$ for 3COL

- Assuming OWFs exists, we give a (black-box) $\mathcal{C Z K}$ for 3COL .
- We show how to transform it for any $\mathcal{L} \in \mathcal{N P}$ (using that 3COL $\in \mathcal{N P} \mathcal{C}$ ).


## $\mathcal{C Z K}$ for 3 COL

- Assuming OWFs exists, we give a (black-box) $\mathcal{C Z K}$ for 3COL .
- We show how to transform it for any $\mathcal{L} \in \mathcal{N P}$ (using that 3COL $\in \mathcal{N P} \mathcal{C}$ ).

```
Definition 19 (3COL)
G=(M,E)\in3COL, if }\exists\phi:M\mapsto[3] s.t. \phi(u)\not=\phi(v) for every (u,v)\inE
```


## $\mathcal{C Z K}$ for 3COL

- Assuming OWFs exists, we give a (black-box) $\mathcal{C Z K}$ for 3COL .
- We show how to transform it for any $\mathcal{L} \in \mathcal{N P}$ (using that 3COL $\in \mathcal{N P} \mathcal{C}$ ).


## Definition 19 (3COL)

$G=(M, E) \in 3 C O L$, if $\exists \phi: M \mapsto[3]$ s.t. $\phi(u) \neq \phi(v)$ for every $(u, v) \in E$.
We use commitment schemes.

## The protocol

Let $\pi_{3}$ be the set of all permutations over [3].

## The protocol

Let $\pi_{3}$ be the set of all permutations over [3]. We use perfectly binding commitment Com $=($ Snd, Rcv $)$.

## The protocol

Let $\pi_{3}$ be the set of all permutations over [3]. We use perfectly binding commitment Com $=($ Snd, Rcv $)$.

## Protocol 20 ((P, V))

Common input: Graph $\mathrm{G}=(M, E)$ with $n=|\mathrm{G}|$
P's input: a (valid) coloring $\phi$ of G
(1) P chooses $\pi \leftarrow \Pi_{3}$ and sets $\psi=\pi \circ \phi$
(2) $\forall v \in M$ : P commits to $\psi(v)$ using Com (with security parameter $1^{n}$ ). Let $c_{v}$ and $d_{v}$ be the resulting commitment and decommitment.
(3) $V$ sends $e=(u, v) \leftarrow E$ to $P$
(4) P sends $\left(d_{u}, \psi(u)\right),\left(d_{v}, \psi(v)\right)$ to V
(5) V verifies that
(1) Both decommitments are valid,
(2) $\psi(u), \psi(v) \in[3]$, and
(3) $\psi(u) \neq \psi(v)$.

## Claim 21

The above protocol is a $\mathcal{C Z K}$ for 3COL, with perfect completeness and soundness $1 /|E|$.

## Claim 21

The above protocol is a $\mathcal{C Z K}$ for 3COL, with perfect completeness and soundness $1 /|E|$.

- Completeness: Clear


## Claim 21

The above protocol is a $\mathcal{C Z K}$ for 3COL, with perfect completeness and soundness $1 /|E|$.

- Completeness: Clear
- Soundness: Let $\left\{c_{v}\right\}_{v \in M}$ be the commitments resulting from an interaction of V with an arbitrary $\mathrm{P}^{*}$.


## Claim 21

The above protocol is a $\mathcal{C Z K}$ for 3COL, with perfect completeness and soundness $1 /|E|$.

- Completeness: Clear
- Soundness: Let $\left\{c_{v}\right\}_{v \in M}$ be the commitments resulting from an interaction of V with an arbitrary $\mathrm{P}^{*}$.


## Claim 21

The above protocol is a $\mathcal{C Z K}$ for 3COL, with perfect completeness and soundness $1 /|E|$.

- Completeness: Clear
- Soundness: Let $\left\{c_{v}\right\}_{v \in M}$ be the commitments resulting from an interaction of V with an arbitrary $\mathrm{P}^{*}$.

Define $\phi: M \mapsto[3]$ as follows:
$\forall v \in M$ : let $\phi(v)$ be the (single) value that it is possible to decommit $c_{V}$ into (if not in [3], set $\phi(v)=1$ ).

## Claim 21

The above protocol is a $\mathcal{C Z K}$ for 3COL, with perfect completeness and soundness $1 /|E|$.

- Completeness: Clear
- Soundness: Let $\left\{c_{v}\right\}_{v \in M}$ be the commitments resulting from an interaction of V with an arbitrary $\mathrm{P}^{*}$.

Define $\phi: M \mapsto[3]$ as follows:
$\forall v \in M$ : let $\phi(v)$ be the (single) value that it is possible to decommit $c_{V}$ into (if not in [3], set $\phi(v)=1$ ).

## Claim 21

The above protocol is a $\mathcal{C Z K}$ for 3COL, with perfect completeness and soundness $1 /|E|$.

- Completeness: Clear
- Soundness: Let $\left\{c_{v}\right\}_{v \in M}$ be the commitments resulting from an interaction of V with an arbitrary $\mathrm{P}^{*}$.

Define $\phi: M \mapsto[3]$ as follows:
$\forall v \in M$ : let $\phi(v)$ be the (single) value that it is possible to decommit $c_{v}$ into (if not in [3], set $\phi(v)=1$ ).

If $G \notin 3 C O L$, then $\exists(u, v) \in E$ s.t. $\psi(u)=\psi(v)$.

## Claim 21

The above protocol is a $\mathcal{C Z K}$ for 3COL, with perfect completeness and soundness $1 /|E|$.

- Completeness: Clear
- Soundness: Let $\left\{c_{v}\right\}_{v \in M}$ be the commitments resulting from an interaction of V with an arbitrary $\mathrm{P}^{*}$.

Define $\phi: M \mapsto[3]$ as follows:
$\forall v \in M$ : let $\phi(v)$ be the (single) value that it is possible to decommit $c_{v}$ into (if not in [3], set $\phi(v)=1$ ).

If $G \notin 3 C O L$, then $\exists(u, v) \in E$ s.t. $\psi(u)=\psi(v)$.
Hence, V rejects such $x$ w.p. at least $1 /|E|$.

## Proving $\mathcal{Z K}$

Fix a deterministic, non-aborting $\mathrm{V}^{*}$ that gets no auxiliary input.

## Proving $\mathcal{Z K}$

Fix a deterministic, non-aborting $\mathrm{V}^{*}$ that gets no auxiliary input.

## Algorithm 22 (S)

Input: A graph $\mathrm{G}=(M, E)$ with $n=|\mathrm{G}|$
Do $n \cdot|E|$ times:
(1) Choose $e^{\prime}=(u, v) \leftarrow E$.
(1) Set $\psi(u) \leftarrow[3]$,
(2) Set $\psi(v) \leftarrow[3] \backslash\{\psi(u)\}$, and
(3) Set $\psi(w)=1$ for $w \in M \backslash\{u, v\}$.
(2) $\forall v \in M$ : commit to $\psi(v)$ to $\mathrm{V}^{*}$ (resulting in $c_{v}$ and $d_{v}$ )
(3) Let $e$ be the edge sent by $\mathrm{V}^{*}$.

If $e=e^{\prime}$, send $\left(d_{u}, \psi(u)\right),\left(d_{v}, \psi(v)\right)$ to $\mathrm{V}^{*}$, output $\mathrm{V}^{*}$ 's view and halt.
Otherwise, rewind $\mathrm{V}^{*}$ to its initial step, and go to step 1.
Abort.

## Proving $\mathcal{Z K}$ cont.

## Algorithm 23 ( $\widetilde{S}$ )

Input: $\mathrm{G}=(V, E)$ with $n=|\mathrm{G}|$, and a (valid) coloring $\phi$ of G .
Do for $n \cdot|E|$ times:
(1) Choose $e^{\prime} \leftarrow E$.
(2) Act like the honest prover does given private input $\phi$.
(3) Let $e$ be the edge sent by $\mathrm{V}^{*}$. If $e=e^{\prime}$
(1) Send $\left(\psi(u), d_{u}\right),\left(\psi(v), d_{v}\right)$ to $\mathrm{V}^{*}$,
(2) Output $\mathrm{V}^{*}$ 's view and halt.

Otherwise, rewind $\mathrm{V}^{*}$ to its initial step, and go to step 1. Abort.

## Proving $\mathcal{Z K}$ cont.

## Algorithm 23 (S)

Input: $\mathrm{G}=(V, E)$ with $n=|\mathrm{G}|$, and a (valid) coloring $\phi$ of G .
Do for $n \cdot|E|$ times:
(1) Choose $e^{\prime} \leftarrow E$.
(2) Act like the honest prover does given private input $\phi$.
(3) Let $e$ be the edge sent by $\mathrm{V}^{*}$. If $e=e^{\prime}$
(0) Send $\left(\psi(u), d_{u}\right),\left(\psi(v), d_{v}\right)$ to $\mathrm{V}^{*}$,
(2) Output V *'s view and halt.

Otherwise, rewind $\mathrm{V}^{*}$ to its initial step, and go to step 1. Abort.

## Claim 24

$\left\{\left\langle\left(\mathrm{P}(w(x)), \mathrm{V}^{*}\right)(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in 3 \operatorname{coL}} \approx\left\{\widetilde{\mathrm{~S}}^{\mathrm{V}^{*}(x)}(x, w(x))\right\}_{x \in 3 \text { coL }}$, for any $w$ with $w(x) \in R_{\mathcal{L}}(x)$.

## Proving $\mathcal{Z K}$ cont.

## Algorithm 23 (S)

Input: $\mathrm{G}=(V, E)$ with $n=|\mathrm{G}|$, and a (valid) coloring $\phi$ of G .
Do for $n \cdot|E|$ times:
(1) Choose $e^{\prime} \leftarrow E$.
(2) Act like the honest prover does given private input $\phi$.
(3) Let $e$ be the edge sent by $\mathrm{V}^{*}$. If $e=e^{\prime}$
(0) Send $\left(\psi(u), d_{u}\right),\left(\psi(v), d_{v}\right)$ to $\mathrm{V}^{*}$,
(2) Output V *'s view and halt.

Otherwise, rewind $\mathrm{V}^{*}$ to its initial step, and go to step 1. Abort.

## Claim 24

$\left\{\left\langle\left(\mathrm{P}(w(x)), \mathrm{V}^{*}\right)(x)\right\rangle_{\mathrm{V}^{*}}\right\}_{x \in 3 \operatorname{coL}} \approx\left\{\widetilde{\mathrm{~S}}^{\mathrm{V}^{*}(x)}(x, w(x))\right\}_{x \in 3 \text { coL }}$, for any $w$ with $w(x) \in R_{\mathcal{L}}(x)$.

## Proving $\mathcal{Z K}$ cont..

## Claim 25

$\left\{\mathrm{S}^{\mathrm{V}^{*}(x)}(x)\right\}_{x \in 3 \mathrm{COL}} \approx_{c}\left\{\widetilde{\mathrm{~S}}^{\mathrm{V}^{*}(x)}(x, w(x))\right\}_{x \in 3 \mathrm{COL}}$, for any $w$ with $w(x) \in R_{\mathcal{L}}(x)$.

## Proving $\mathcal{Z K}$ cont..

## Claim 25

$\left\{\mathrm{S}^{\mathrm{V}^{*}(x)}(x)\right\}_{x \in 3 \mathrm{COL}} \approx_{c}\left\{\widetilde{\mathrm{~S}}^{\mathrm{V}^{*}(x)}(x, w(x))\right\}_{x \in 3 \mathrm{COL}}$, for any $w$ with $w(x) \in R_{\mathcal{L}}(x)$.
Proof:

## Proving $\mathcal{Z K}$ cont..

## Claim 25

$\left\{\mathrm{S}^{\mathrm{V}^{*}(x)}(x)\right\}_{x \in 3 \mathrm{COL}} \approx_{c}\left\{\widetilde{\mathrm{~S}}^{\mathrm{V}^{*}(x)}(x, w(x))\right\}_{x \in 3 \mathrm{COL}}$, for any $w$ with $w(x) \in R_{\mathcal{L}}(x)$.
Proof: Assume $\exists$ PPT D, $p \in$ poly, $w(x) \in R_{\mathcal{L}}(x)$ and an infinite set $\mathcal{I} \subseteq 3 \mathrm{COL}$ s.t.

$$
\operatorname{Pr}\left[\mathrm{D}\left(\mathrm{~S}^{\mathrm{V}^{*}(x)}(x)\right)=1\right]-\operatorname{Pr}\left[\mathrm{D}\left(\widetilde{\mathrm{~S}}^{\mathrm{V}^{*}(x)}(x, w(x))\right)=1\right] \geq \frac{1}{p(|x|)}
$$

for all $x \in \mathcal{I}$.

## Proving $\mathcal{Z K}$ cont..

## Claim 25

$\left\{\mathrm{S}^{\mathrm{V}^{*}(x)}(x)\right\}_{x \in 3 \mathrm{COL}} \approx_{c}\left\{\widetilde{\mathrm{~S}}^{\mathrm{V}^{*}(x)}(x, w(x))\right\}_{x \in 3 \mathrm{COL}}$, for any $w$ with $w(x) \in R_{\mathcal{L}}(x)$.
Proof: Assume $\exists$ PPT D, $p \in$ poly, $w(x) \in R_{\mathcal{L}}(x)$ and an infinite set $\mathcal{I} \subseteq 3 \mathrm{COL}$ s.t.

$$
\operatorname{Pr}\left[\mathrm{D}\left(\mathrm{~S}^{\mathrm{V}^{*}(x)}(x)\right)=1\right]-\operatorname{Pr}\left[\mathrm{D}\left(\widetilde{\mathrm{~S}}^{\mathrm{V}^{*}(x)}(x, w(x))\right)=1\right] \geq \frac{1}{p(|x|)}
$$

for all $x \in \mathcal{I}$.
Hence, $\exists$ PPT R* and $b \in[3] \backslash\{1\}$ such that
$\operatorname{Pr}\left[\left\langle\left(\operatorname{Snd}(1), \mathrm{R}^{*}(x, w(x))\right)\left(1^{|x|}\right)\right\rangle_{\mathrm{R}^{*}}=1\right]-\operatorname{Pr}\left[\left\langle\left(\operatorname{Snd}(b), \mathrm{R}^{*}(x, w(x))\right)\left(1^{|x|}\right)\right\rangle_{\mathrm{R}^{*}}=1\right]$

$$
\geq \frac{1}{|x|^{2} \cdot p(|x|)}
$$

for all $x \in \mathcal{I}$.

## Proving $\mathcal{Z K}$ cont..

## Claim 25

$\left\{\mathrm{S}^{\mathrm{V}^{*}(x)}(x)\right\}_{x \in 3 \mathrm{COL}} \approx_{c}\left\{\widetilde{\mathrm{~S}}^{\mathrm{V}^{*}(x)}(x, w(x))\right\}_{x \in 3 \mathrm{COL}}$, for any $w$ with $w(x) \in R_{\mathcal{L}}(x)$.
Proof: Assume $\exists$ PPT D, $p \in$ poly, $w(x) \in R_{\mathcal{L}}(x)$ and an infinite set $\mathcal{I} \subseteq 3 \mathrm{COL}$ s.t.

$$
\operatorname{Pr}\left[\mathrm{D}\left(\mathrm{~S}^{\mathrm{V}^{*}(x)}(x)\right)=1\right]-\operatorname{Pr}\left[\mathrm{D}\left(\widetilde{\mathrm{~S}}^{\mathrm{V}^{*}(x)}(x, w(x))\right)=1\right] \geq \frac{1}{p(|x|)}
$$

for all $x \in \mathcal{I}$.
Hence, $\exists$ PPT R* and $b \in[3] \backslash\{1\}$ such that
$\operatorname{Pr}\left[\left\langle\left(\operatorname{Snd}(1), \mathrm{R}^{*}(x, w(x))\right)\left(1^{|x|}\right)\right\rangle_{\mathrm{R}^{*}}=1\right]-\operatorname{Pr}\left[\left\langle\left(\operatorname{Snd}(b), \mathrm{R}^{*}(x, w(x))\right)\left(1^{|x|}\right)\right\rangle_{\mathrm{R}^{*}}=1\right]$

$$
\geq \frac{1}{|x|^{2} \cdot p(|x|)}
$$

for all $x \in \mathcal{I}$.
In contradiction to the (non-uniform) security of Com.

## Remarks

- Aborting verifiers


## Remarks

- Aborting verifiers
- Auxiliary inputs


## Remarks

- Aborting verifiers
- Auxiliary inputs
- Soundness amplification


## Extending to all $\mathcal{N P}$

## Extending to all $\mathcal{N P}$

For $\mathcal{L} \in \mathcal{N P}$, let $\operatorname{Map}_{X}$ and $\operatorname{Map}_{W}$ be two poly-time computable functions s.t.

- $x \in \mathcal{L} \Longleftrightarrow \operatorname{Map}_{x}(x) \in 3$ COL,
- $(x, w) \in R_{\mathcal{L}} \Longleftrightarrow \operatorname{Map}_{w}(x, w) \in R_{3 \operatorname{coL}}\left(\operatorname{Map}_{x}(x)\right)$.


## Extending to all $\mathcal{N P}$

For $\mathcal{L} \in \mathcal{N} \mathcal{P}$, let $\operatorname{Map}_{x}$ and $\operatorname{Map}_{w}$ be two poly-time computable functions s.t.

- $x \in \mathcal{L} \Longleftrightarrow \operatorname{Map}_{x}(x) \in 3$ COL,
- $(x, w) \in R_{\mathcal{L}} \Longleftrightarrow \operatorname{Map}_{w}(x, w) \in R_{3 \operatorname{coL}}\left(\operatorname{Map}_{x}(x)\right)$.

We assume for simplicity that $\mathrm{Map}_{x}$ is injective.

## Extending to all $\mathcal{N P}$

For $\mathcal{L} \in \mathcal{N} \mathcal{P}$, let $\operatorname{Map}_{x}$ and $\operatorname{Map}_{w}$ be two poly-time computable functions s.t.

- $x \in \mathcal{L} \Longleftrightarrow \operatorname{Map}_{x}(x) \in 3$ COL,
- $(x, w) \in R_{\mathcal{L}} \Longleftrightarrow \operatorname{Map}_{w}(x, w) \in R_{3 \operatorname{coL}}\left(\operatorname{Map}_{x}(x)\right)$.

We assume for simplicity that $\mathrm{Map}_{x}$ is injective.
Let $(\mathrm{P}, \mathrm{V})$ be a $\mathcal{C Z K}$ for 3 COL .

## Extending to all $\mathcal{N P}$

For $\mathcal{L} \in \mathcal{N} \mathcal{P}$, let $\operatorname{Map}_{X}$ and $\operatorname{Map}_{w}$ be two poly-time computable functions s.t.

- $x \in \mathcal{L} \Longleftrightarrow \operatorname{Map}_{x}(x) \in$ 3COL,
- $(x, w) \in R_{\mathcal{L}} \Longleftrightarrow \operatorname{Map}_{w}(x, w) \in R_{3 \operatorname{coL}}\left(\operatorname{Map}_{x}(x)\right)$.

We assume for simplicity that $\mathrm{Map}_{X}$ is injective.
Let $(\mathrm{P}, \mathrm{V})$ be a $\mathcal{C Z K}$ for 3COL.
Protocol $26\left(\left(\mathrm{P}_{\mathcal{L}}, \mathrm{V}_{\mathcal{L}}\right)\right)$
Common input: $x \in\{0,1\}^{*}$.
$P_{\mathcal{L}}$ 's input: $w \in R_{\mathcal{L}}(x)$.
(1) The two parties interact in $\left(\mathrm{P}\left(\operatorname{Map}_{w}(x, w)\right), \mathrm{V}\right)\left(\operatorname{Map}_{x}(x)\right)$, where $\mathrm{P}_{\mathcal{L}}$ and $\mathrm{V}_{\mathcal{L}}$ taking the role of P and V respectively.
(2) $\mathrm{V}_{\mathcal{L}}$ accepts iff V accepts in the above execution.

## Extending to all $\mathcal{L} \in \mathcal{N} \mathcal{P}$ cont.

## Claim 27

$\left(\mathrm{P}_{\mathcal{L}}, \mathrm{V}_{\mathcal{L}}\right)$ is a $\mathcal{C Z K}$ for $\mathcal{L}$ with the same completeness and soundness as $(\mathrm{P}, \mathrm{V})$ as for 3COL.

## Extending to all $\mathcal{L} \in \mathcal{N P}$ cont.

## Claim 27

$\left(\mathrm{P}_{\mathcal{L}}, \mathrm{V}_{\mathcal{L}}\right)$ is a $\mathcal{C Z K}$ for $\mathcal{L}$ with the same completeness and soundness as $(\mathrm{P}, \mathrm{V})$ as for 3COL.

- Completeness and soundness: Clear.


## Extending to all $\mathcal{L} \in \mathcal{N} \mathcal{P}$ cont.

## Claim 27

$\left(\mathrm{P}_{\mathcal{L}}, \mathrm{V}_{\mathcal{L}}\right)$ is a $\mathcal{C} \mathcal{Z} \mathcal{K}$ for $\mathcal{L}$ with the same completeness and soundness as ( $\mathrm{P}, \mathrm{V}$ ) as for 3 COL .

- Completeness and soundness: Clear.
- Zero knowledge: Let S (an efficient) $\mathcal{Z K}$ simulator for ( $\mathrm{P}, \mathrm{V}$ ) (for 3COL).


## Extending to all $\mathcal{L} \in \mathcal{N} \mathcal{P}$ cont.

## Claim 27

$\left(\mathrm{P}_{\mathcal{L}}, \mathrm{V}_{\mathcal{L}}\right)$ is a $\mathcal{C} \mathcal{Z} \mathcal{K}$ for $\mathcal{L}$ with the same completeness and soundness as ( $\mathrm{P}, \mathrm{V}$ ) as for 3 COL .

- Completeness and soundness: Clear.
- Zero knowledge: Let S (an efficient) $\mathcal{Z K}$ simulator for ( $\mathrm{P}, \mathrm{V}$ ) (for 3COL).


## Extending to all $\mathcal{L} \in \mathcal{N} \mathcal{P}$ cont.

## Claim 27

$\left(\mathrm{P}_{\mathcal{L}}, \mathrm{V}_{\mathcal{L}}\right)$ is a $\mathcal{C} \mathcal{Z} \mathcal{K}$ for $\mathcal{L}$ with the same completeness and soundness as $(\mathrm{P}, \mathrm{V})$ as for 3COL.

- Completeness and soundness: Clear.
- Zero knowledge: Let $S$ (an efficient) $\mathcal{Z K}$ simulator for ( $\mathrm{P}, \mathrm{V}$ ) (for 3COL).

On input $\left(x, z_{x}\right)$ and verifier $\mathrm{V}^{*}$, let $\mathrm{S}_{\mathcal{L}}$ output $\mathrm{S}^{\mathrm{V}^{*}\left(x, z_{x}\right)}\left(\operatorname{Map}_{X}(x)\right)$.

## Extending to all $\mathcal{L} \in \mathcal{N P}$ cont.

## Claim 27

$\left(\mathrm{P}_{\mathcal{L}}, \mathrm{V}_{\mathcal{L}}\right)$ is a $\mathcal{C Z K}$ for $\mathcal{L}$ with the same completeness and soundness as $(P, V)$ as for 3COL.

- Completeness and soundness: Clear.
- Zero knowledge: Let $S$ (an efficient) $\mathcal{Z K}$ simulator for ( $\mathrm{P}, \mathrm{V}$ ) (for 3COL).

On input ( $x, z_{x}$ ) and verifier $\mathrm{V}^{*}$, let $\mathrm{S}_{\mathcal{L}}$ output $\mathrm{S}^{\mathrm{V}^{*}\left(x, z_{x}\right)}\left(\operatorname{Map}_{x}(x)\right)$.

## Claim 28

$\left\{\left\langle\left(\mathrm{P}_{\mathcal{L}}(w(x)), \mathrm{V}_{\mathcal{L}}^{*}(z(x))\right)(x)\right\rangle_{\mathrm{V}_{\mathcal{L}}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\left\{\mathrm{~S}_{\mathcal{L}}^{\mathrm{V}_{\mathcal{L}}^{*}(x, z(x))}(x)\right\}_{x \in \mathcal{L}} \quad \forall \operatorname{PPT} \mathrm{~V}_{\mathcal{L}}^{*}, w, z$.

## Extending to all $\mathcal{L} \in \mathcal{N P}$ cont.

## Claim 27

$\left(\mathrm{P}_{\mathcal{L}}, \mathrm{V}_{\mathcal{L}}\right)$ is a $\mathcal{C Z K}$ for $\mathcal{L}$ with the same completeness and soundness as $(P, V)$ as for 3COL.

- Completeness and soundness: Clear.
- Zero knowledge: Let $S$ (an efficient) $\mathcal{Z K}$ simulator for ( $\mathrm{P}, \mathrm{V}$ ) (for 3COL). On input ( $x, z_{x}$ ) and verifier $\mathrm{V}^{*}$, let $\mathrm{S}_{\mathcal{L}}$ output $\mathrm{S}^{\mathrm{V}^{*}\left(x, z_{x}\right)}\left(\operatorname{Map}_{x}(x)\right)$.


## Claim 28

$\left\{\left\langle\left(\mathrm{P}_{\mathcal{L}}(w(x)), \mathrm{V}_{\mathcal{L}}^{*}(z(x))\right)(x)\right\rangle_{\mathrm{V}_{\mathcal{L}}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\left\{\mathrm{~S}_{\mathcal{L}}^{\mathrm{V}_{\mathcal{L}}^{*}(x, z(x))}(x)\right\}_{x \in \mathcal{L}} \quad \forall \operatorname{PPT} \mathrm{~V}_{\mathcal{L}}^{*}, w, z$.
Proof:

## Extending to all $\mathcal{L} \in \mathcal{N P}$ cont.

## Claim 27

$\left(\mathrm{P}_{\mathcal{L}}, \mathrm{V}_{\mathcal{L}}\right)$ is a $\mathcal{C Z K}$ for $\mathcal{L}$ with the same completeness and soundness as $(P, V)$ as for 3COL.

- Completeness and soundness: Clear.
- Zero knowledge: Let $S$ (an efficient) $\mathcal{Z K}$ simulator for ( $\mathrm{P}, \mathrm{V}$ ) (for 3COL).

On input ( $x, z_{x}$ ) and verifier $\mathrm{V}^{*}$, let $\mathrm{S}_{\mathcal{L}}$ output $\mathrm{S}^{\mathrm{V}^{*}\left(x, z_{x}\right)}\left(\operatorname{Map}_{x}(x)\right)$.

## Claim 28

$\left\{\left\langle\left(\mathrm{P}_{\mathcal{L}}(w(x)), \mathrm{V}_{\mathcal{L}}^{*}(z(x))\right)(x)\right\rangle_{\mathrm{V}_{\mathcal{L}}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\left\{\mathrm{~S}_{\mathcal{L}}^{\mathrm{V}_{\mathcal{L}}^{*}(x, z(x))}(x)\right\}_{x \in \mathcal{L}} \quad \forall \operatorname{PPT} \mathrm{~V}_{\mathcal{L}}^{*}, w, z$.
Proof: Assume $\left\{\left\langle\left(\mathrm{P}_{\mathcal{L}}(w(x)), \mathrm{V}_{\mathcal{L}}^{*}(z(x))(x)\right\rangle_{\mathrm{V}_{\mathcal{L}}^{*}}\right\}_{x \in \mathcal{L}} \not \nsim c_{c}\left\{\mathrm{~S}_{\mathcal{L}}^{\mathrm{V}_{\mathcal{L}}^{*}(x, z(x))}(x)\right\}_{x \in \mathcal{L}}\right.$.

## Extending to all $\mathcal{L} \in \mathcal{N P}$ cont.

## Claim 27

$\left(\mathrm{P}_{\mathcal{L}}, \mathrm{V}_{\mathcal{L}}\right)$ is a $\mathcal{C} \mathcal{Z} \mathcal{K}$ for $\mathcal{L}$ with the same completeness and soundness as ( $\mathrm{P}, \mathrm{V}$ ) as for 3 COL .

- Completeness and soundness: Clear.
- Zero knowledge: Let $S$ (an efficient) $\mathcal{Z K}$ simulator for ( $\mathrm{P}, \mathrm{V}$ ) (for 3COL).

On input $\left(x, z_{x}\right)$ and verifier $\mathrm{V}^{*}$, let $\mathrm{S}_{\mathcal{L}}$ output $\mathrm{S}^{\mathrm{V}^{*}\left(x, z_{x}\right)}\left(\operatorname{Map}_{x}(x)\right)$.

## Claim 28

$\left\{\left\langle\left(\mathrm{P}_{\mathcal{L}}(w(x)), \mathrm{V}_{\mathcal{L}}^{*}(z(x))\right)(x)\right\rangle_{\mathrm{V}_{\mathcal{L}}^{*}}\right\}_{x \in \mathcal{L}} \approx_{c}\left\{\mathrm{~S}_{\mathcal{L}}^{\mathrm{V}_{\mathcal{L}}^{*}(x, z(x))}(x)\right\}_{x \in \mathcal{L}} \quad \forall$ PPT $\mathrm{V}_{\mathcal{L}}^{*}, w, z$.
Proof: Assume $\left\{\left\langle\left(\mathrm{P}_{\mathcal{L}}(w(x)), \mathrm{V}_{\mathcal{L}}^{*}(z(x))(x)\right\rangle_{\mathrm{V}_{\mathcal{L}}^{*}}\right\}_{x \in \mathcal{L}} \not \nsim c_{c}\left\{\mathrm{~S}_{\mathcal{L}}^{\mathrm{V}_{\mathcal{L}}^{*}(x, z(x))}(x)\right\}_{x \in \mathcal{L}}\right.$. Hence, $\left\{\left\langle\left(\mathrm{P}(x, w(x)), \mathrm{V}^{*}\right)(x)\right\rangle_{\mathrm{V}^{*}\left(z^{\prime}(x)\right)}\right\}_{x \in 3 \operatorname{coL}} \not \approx_{c}\left\{\mathrm{~S}^{\mathrm{V}^{*}\left(x, z^{\prime}(x)\right)}(x)\right\}_{x \in 3 \mathrm{COL}}$, where $\mathrm{V}^{*}\left(x, z_{x}^{\prime}=\left(z_{x}, x^{-1}\right)\right)$ acts like $\mathrm{V}_{\mathcal{L}}^{*}\left(x^{-1}, z_{x}\right)$, and $z^{\prime}(x)=\left(z\left(x^{-1}\right), x^{-1}\right)$ for $x^{-1}=\operatorname{Map}_{x}^{-1}(x)$.

